初中数学三角形专题教学内容
数学八年级上册《三角形-复习课》教案

三角形三边关系、内角和,多边形的外角和与内角和公式是重点;
教学难点ห้องสมุดไป่ตู้
三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形是难点。
教学方法与手段
教学准备
第一课时
课时数
1课时
课堂教学实施设计(教师活动、学生活动)
复备内容或集体备课讨论记录(标、增、改、删、调)
一、知识结构(师生一起梳理)(5分钟)
探索∠A与∠1+∠2有什么数量关系?并说明理由。
例3如图所示,在△ABC中,△ABC的内角平分线与外角平分线交于点P,试说明∠P=1/2∠A.
板书设计:
教学小结:
6、三角形的外角和是多少?
n边形的外角和是多少?
你能说明为什么多边形的外角和与边数无关吗?
三、例题导引(15分钟)
例1 如图,在△ABC中,∠A︰∠B︰∠C=3︰4︰5,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求∠BHC的度数。
例2如图,把△ABC沿DE折叠,当点A落在四边形BCDE内部时,
二、回顾与思考(10分钟)
1、什么是三角形?
什么是多边形?
什么是正多边形?
三角形是不是多边形?
1、什么是三角形的高、中线、角平分线?
2、什么是对角线?
三角形有对角线吗?n边形的的对角线有多少条?
4、三角形的三条高,三条中线,三条角平分线各有什么特点?
5、三角形的内角和是多少?n边形的内角和是多少?
你能用三角形的内角和说明n边形的内角和吗?
初中20-20学年度第一学期教学设计
主备教师
审核教师
授课周次
授课时间
课题
三角形复习课
课型
解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。
具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。
二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。
2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。
3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。
三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。
教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。
四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。
学具:直角三角形模型、计算器、练习本。
五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。
2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。
3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。
(2)通过例题讲解,让学生掌握解直角三角形的方法。
(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。
4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。
5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。
六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。
初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图全等三角形”是八年级数学教材第十一章的重要内容,旨在让学生掌握全等三角形的概念和性质,以及五种判定全等的方法和角平分线的性质和判定方法,进而解决实际问题。
本单元共分三个专题,通过小组讨论和交流,引导学生进行探索、猜想、证明的过程,发展学生的推理意识和能力,课堂效果良好。
研究重点是全等三角形的性质和判定的综合运用,难点在于让学生理解证明的基本过程和用综合法证明的格式,并能灵活运用。
研究目标包括知识与技能、过程与方法、情感态度与价值观三个方面,旨在培养学生的空间观念、几何直觉、合作交流意识、大胆猜想和解决问题的能力。
本文介绍了数学中的两个重要概念:全等三角形和角平分线。
全等三角形的概念包括对应顶点、对应边和对应角等,掌握全等三角形的判定方法和证明格式是必要的。
角平分线的性质包括将一个角平分成两个相等的角,掌握角平分线的判定方法也是必要的。
在研究全等三角形时,需要掌握全等三角形的概念和性质,以及准确地辨认全等三角形中的对应元素。
通过观察、操作、想象、交流等教学活动,让学生经历理解全等三角形性质的过程。
同时,运用多媒体演示图形的位置变化,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。
在研究角平分线时,需要掌握角平分线的性质和判定方法。
角平分线将一个角平分成两个相等的角,可以通过作图来判定角平分线。
在教学中可以使用多媒体课件、几何画板课件、作图工具和纸笔等教学资源,让学生通过动手操作、分组讨论、归纳结论等方式来探究全等三角形和角平分线的概念和性质。
总之,掌握全等三角形和角平分线的概念、性质和判定方法对于研究数学和几何学都是必要的。
在教学中,可以通过多种方式来引导学生探究和理解这些概念和性质,培养学生动态研究几何图形的意识,激发学生热爱科学、勇于探索的精神。
提出问题:两个全等的三角形,能否任意摆放并重合?如何放置才能重合?活动二:探究全等三角形的性质1、提出问题:观察图中两个三角形的对应边和对应角有什么关系?2、让学生观察图形、动手操作、分组讨论得出结论。
全等三角形的说课稿

全等三角形的说课稿一、教学内容分析本次教学内容为“全等三角形”,是初中数学必修二的重点知识之一。
全等三角形是指两个三角形的对应边和对应角相等,因此它们具有相同的形状和大小。
全等三角形在实际生活中广泛应用,例如建筑、制图、测量等领域。
本节课的主要内容包括:全等三角形的定义、判定方法、性质及其应用。
二、教学目标1. 知识与技能:(1)掌握全等三角形的定义和判定方法;(2)了解全等三角形的性质及其应用;(3)能够运用所学知识解决实际问题。
2. 过程与方法:(1)通过观察和思考引导学生发现全等三角形的特征;(2)通过讲解和练习提高学生对全等三角形的理解和掌握;(3)通过实例分析激发学生对数学知识的兴趣。
3. 情感态度与价值观:(1)培养学生认真观察、仔细思考问题的良好习惯;(2)激发学生对数学知识的兴趣和学习热情;(3)培养学生勤奋、认真、负责的学习态度。
三、教学重难点1. 教学重点:(1)全等三角形的定义和判定方法;(2)全等三角形的性质及其应用。
2. 教学难点:(1)如何准确判断两个三角形是否全等;(2)如何应用全等三角形的性质解决实际问题。
四、教学方法与手段1. 教学方法:(1)归纳法:通过观察和思考引导学生发现全等三角形的特征,总结出全等三角形的定义和判定方法。
(2)演绎法:通过讲解和练习提高学生对全等三角形的理解和掌握,引导他们运用所学知识解决实际问题。
(3)启发式教学法:通过实例分析激发学生对数学知识的兴趣,提高他们对数学知识的理解和应用能力。
2. 教具准备:黑板、白板、彩色粉笔、直尺、量角器、图形模型等。
五、教学过程设计1. 导入环节:引出“相似”和“全等”概念(1)通过展示两个相似的图形,引导学生思考相似的含义。
(2)通过展示两个全等的图形,引导学生思考全等的含义。
2. 新课讲解:全等三角形(1)定义:两个三角形的对应边和对应角分别相等时,这两个三角形是全等三角形。
(2)判定方法:① SSS 判定法:若两个三角形的三边分别相等,则它们是全等的。
三角形全等模型详细专题 初中数学

全等三角形中辅助线的添加主要内容:复习三角形全等的判定定理,通过三角形全等证明图形中线段和角度的关系。
(位置关系和数量关系)学习目标:通过学习三角形全等的判定,探索三角形全等的条件,能够培养比较完整、清晰的思维逻辑能力并进行基础的推理论证能力。
学习重点:灵活应用三角形中线段的性质与三角形的判定定理证明综合性的题目。
学习难点:能够从结论出发,联系已知,找出解决问题的关键点,同时能够挖掘出图中的隐含条件而且能够将未知转化为已知来解决问题(基本的全等模型与常见辅助线)。
一、知识精讲1.三边分别相等的两个三角形全等,简写为“边边边”或者“SSS”。
(三角形具有稳定性)2.两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”。
3.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写为“角角边”或“AAS”。
4.两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”。
5.在直角三角形中,一条斜边和一条直角边对应相等的两个直角三角形全等,简写为“HL”。
6.易错点:两边分别相等且其中一组等边的对角相等的两个三角形全等这个结论是不正确的。
EDFCBADCB A二、典型例题: 考点一倍长中线法:当遇到中线时,通常延长中线一倍,采用补短的方法,构造三角形全等条件:△ABC 中AD 是BC 边中线方法一: 延长AD 到E ,使DE=AD ,连接BE 方式 方法二:间接倍长,作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE方法三: 延长MD 到N ,使DN=MD ,连接CN【例题1】 已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.【例题2】如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.【变式训练】1、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.【练习题】1、已知:如图,在正方形ABCD中,E是BC的中点,点F在CD上,∠FAE=∠BAE.求证:AF=BC+FC.2、如图所示,在△ABC中,AD是∠BAC的角平分线,且AE=AF。
八年级上册数学三角形判定说课稿9篇

八年级上册数学三角形判定说课稿9篇八年级上册数学三角形判定说课稿9篇说课稿能够促进教师的自我反思和专业成长,通过不断反思、总结和探究教学方法和教学策略,来提高自己的教学能力。
能够提高教学效果和教学质量,是课堂教学不可或缺的重要组成部分。
现在随着小编一起往下看看八年级上册数学三角形判定说课稿,希望你喜欢。
八年级上册数学三角形判定说课稿【篇1】一、教材分析(说教材):1、教材所处的地位和作用:这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。
在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。
本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标:①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS。
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。
⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点、难点:①掌握并理解三角形全等的判定定理②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。
探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。
这样学生就更容易理解和掌握定理。
在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
(初二数学课件)人教版初中八年级数学上册第11章三角形11.1.1 三角形的边教学课件 (3)

探究新知 遮 阳 棚
探究新知
想一想 四边形没有稳定性,怎样使它稳定呢?
做一做 将四边形木架上再钉一根木条,将它的一对顶点
连接起来,然后再扭动它,这时木架的形状还会改变 吗?
探究新知
帮帮忙
1. 牧民阿其木家用于圈羊的木栅门,由于年久失修 已经变成如图甲,为什么会变形?
2. 为了恢复成原样图乙,而且要保持形状不变,他该 怎么做呢?
A.稳定性总是有益的,而不稳定性总是有害的 B.稳定性有利用价值,而不稳定性没有利用价值 C.稳定性和不稳定性均有利用价值 D.以上说法都不对
课堂检测
基础巩固题
3. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,
使其不变形,这种做法的根据是( D )
A.两点之间线段最短
A
B.三角形两边之和大于第三边
课堂小结
三角形 独有性质
稳定 性
四边形具有不 稳定性
应用
素养目标
2. 了解三角形的稳定性和四边形不稳定性的 应用. 1. 了解三角形的稳定性和四边形的不稳定性.
探究新知 知识点 1 三角形的稳定性
动手做一做
1. 将三根木条用钉子钉成一个三角形木架. 2. 将四根木条用钉子钉成一个四边形木架.
探究新知 请同学们看看:三角形和四边形的模型,扭一扭模
型,它们的形状会改变吗?
具有稳定性 不具有稳定性 不具有稳定性
具有稳定性 不具有稳定性 具有稳定性
探究新知
知识点 2 四边形不稳定性的应用
四边形的不稳定性是我们常常需要克服的, 那么四边形的不稳定性在生活中有没有应用价值呢? 如果有,你能举出实例吗?
探究新知
四边形的不稳定性有广泛的应用
活 动 晾 衣 架
人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计

人教版八年级数学上册《第十一章三角形》大单元整体教学设计一、内容分析与整合(一)教学内容分析人教版初中数学八年级上册的《第十一章三角形》是几何学习中的一个重要章节,它不仅承载着对三角形基础概念和性质的全面介绍,还扮演着连接学生先前所学与后续几何知识深入探索的桥梁角色。
本章内容丰富多彩,深入浅出地引导学生走进三角形的奇妙世界,为他们构建一个系统而坚实的几何知识体系。
在这一章节中,学生们将首先接触到三角形的各种线段,包括边、高、中线以及角平分线等。
这些看似简单的概念,实则是解锁三角形众多性质的关键。
通过学习,学生们将理解每条线段在三角形中的独特位置和作用,以及它们如何相互关联,共同塑造三角形的形态与特性。
例如,中线不仅将对应的底边平分,还将三角形分为面积相等的两部分,这一性质的学习对于学生后续理解更复杂的几何问题大有裨益。
除了线段,章节还深入探讨了三角形的角,包括内角和外角。
学生将学习如何计算三角形的内角和,这一基础知识是证明许多三角形性质的基础。
外角的概念及其与相邻内角的关系,也将被详尽阐述,帮助学生从多角度审视三角形的角特征,培养他们的空间想象力和逻辑推理能力。
本章还拓展到了多边形及其内角和的内容,进一步丰富了学生的几何视野。
多边形作为三角形的延伸,其内角和的计算方法不仅加深了学生对几何图形内在规律的认识,也为后续学习更复杂几何图形打下了坚实的基础。
更为重要的是,本单元的教学不仅仅局限于理论知识的传授,更注重培养学生的实践操作能力和逻辑推理能力。
通过实际测量、作图、证明等一系列活动,学生被鼓励亲自动手,体验知识的生成过程,从而在实践中深化对三角形性质的理解。
这种“做中学”的方式,极大地提升了学生的学习兴趣和参与度,使他们在探索中发现几何之美,培养解决问题的能力和创新思维。
《第十一章三角形》不仅是初中数学课程中的一个核心章节,更是学生几何思维形成的关键时期。
通过本章的学习,学生不仅能够掌握三角形的基础概念和性质,更能在实践中锻炼几何直觉,学会用数学的眼光观察世界,为后续更深层次的几何学习乃至整个数学学习旅程奠定坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A字型 X字型
平行
两角对 应相等
相似三角形 的性质
相似三角形 的判定
相似三角形
三边对应 成比例
两边成比例 且夹角相等
图形的相似
相似形 相似多边形
对应角相等, 对应边成比例, 周长的比=相似比 面积的比=相似比的平方
第27章相似
位似 用坐标表示
画法、性质 位似变换
九 年 级 下
两图形位似 对应顶点的连线 交于一点
上分1两析、点:.注,由且已重A知AE联可=C系用FA′ S实S求S证证际△:AABBFC=≌D发到EA△引实′ C入际DA概生念活,中并。将如所,学用知全识等应和用相
B
B′ C C′
∠DAC=∠BCA
B
或
似的知识解决测量问题。
C B′
D
∠DCA=∠BAC
C F
A
2、△让BCB学F≌生△D经CA′ E历或△B数′ AB学F≌知△识CDCE的形成E 过程
三 角 形
能证明三角形的基本性质;
掌握基本的推理技能。
认识通过观察、实验、 归纳、类比、推断可以 获得数学猜想;体验数 学活动充满着探索性和 创造性;感受证明过程 的严谨性以及结论的确 定性。
二、编写意图
教材设置了思考、探究、
讨论等栏目引导学生自主
探索,激发学生进行思考,
促进合作交流。
加
大
了
探
索
八 年 级 上 册
八年级下册 第十八章勾股定理
已知两边 求第三边
赵爽弦图 毕答哥拉斯 茄菲尔德
证明
内容
互逆命题 内容
全等
证明
应用
勾股定理
勾股定理的逆定理
知三边 定形状
应用
第18章勾股定理
八 年 级 下 册
九年级下册 第二十七章 相似
对应角相等 对应边成比例
对应中线的比=对应高的 比=对应角平分线的比= 相似比 周长的比=相似比 面积的比=相似比的平方
角平分线的性质
性质
判定
八年级上册 第十二章第三节等腰三角形
顶 角 和 底
腰 和 底 边
角
等三 边线 对合 等一 角
性质
定 义
等 角 对
等
边
判定
相关概念 等腰三角形
600 600
每
一 个 角 都 等
三 线 合 一
性质
的三 三个 角角 形相
等
有
的 三 角 形
一 个 角 是
判定
等边三角形
第12章等腰三角形
从不同角度分析和解决
三、体例安排
体例安排
四、内容结构
直角三角形 三角形
三角形之间 的关系
知识内容 三 角 形 专 题
三角形与其它 图形的关系
五、立体整合
三角形知识内容之间的关系
相似三角形
拓展 和 角形
解直角三角形
等腰三角形
特殊三角形
锐角三角函数 勾股定理
三角形
函数
领域间的
三
位似中心是原点 对应点的坐标比
为k或-k
册 对应边平行
九年级下册 第二十八章 锐角三角三角函数
三角函数 30° 45°
60°
sin a
1
2
2
2
coas 3
2
2
2
正 弦
余 弦
正 切
定义
tana
3
3
1
特殊值的运算
锐角三角函数
3 2
1 2
求求 边角
3
计算
解直角三角形
方
俯仰 角角
位 角
坡 度
应用
第28章锐角三角三角函数
初中数学三角形专题
一、课标要求
在探索图形的性 质中,初步建立 空间观念,发展 几何直觉。
数学思考
解决问题
尝试从不同角度 寻求解决问题的 方法并能有效地 解决问题;体会 在解决问题的过 程中与他人合作 的重要性。
知识与技能
课标要求
情感与态度
经历探索三角形基本性质的 过程;掌握三角形的基本性 质;掌握基本的识图、作图 等技能;体会证明的必要性,
与三角形有关的角
中线 高
三角形的 主要线段
角平分线
与三角形有 关的线段
三角形的 稳定性
第7章三角形
七 年 级 下 册
定义 多边形及 其内角和
镶嵌
多边形 外角和
八年级上册 第十一章全等三角形
对应边相等
对应角相等
三角形全等的条件
HL
全等三角形的性质
全等三角形
全等三角形的概念
第11章全等三角形
八 年 级 上 册
图三 形角 的形 关与 系其
他
垂径定理的计算转 化为解直角三角形 问题
利用圆周角定理、切 线长定理可得到等腰 三角形和直角三角形
”
六、教学建议
以画思路图的方式说明证明题丰的富思多考彩方的法图(形如世:界给三角形的
顺推、逆推、两头凑)启发学生学自习己提说供思了路大。量真实的素材,教
例题:已知:如图,AB=CD 学BC时=D要A注意E、联F系是实AC际,从实际出
C
B
B′A
B
全等证明不容易,三组元C素′ 要齐备.
要想证明如A 变等简腰要单三A′ 证,角明尽形B量“F=找等DE出边A′相对等等边角.”、“三线合一
3、还公差 共注BC′ 条边重件角”形分不对性,CB用顶析质并′ 急角的进思A,,得一′ 路利直出步A 用接,,利C 等应可用让角用以轴学来不先对A生补用让称A′ 齐说学的学..生性会剪质思出思等考考腰相问三等题角的
联系和综合
角
形
专
题
八上 第11章全等三角形 第12章轴对称 等腰三角形
八下第18章勾股定理
论证几何开始
论证几何向 计算几何过渡
实验为主 出现推理
七下 第7章三角形
各年级的 侧重点不同
三 角 形 专 题
淡化证明 回归自然
九下第27章相似 第28章锐角三角函数
七年级下册 第七章三角形
两边之和大 于第三边
九 年 级 下 册
多边形
四边形
正多边形的计算转 化为解直角三角形 问题
应用三角形全等知识 证明特殊四边形性质
应用三角形内角和 求多边形的内角和
三角形的外接圆 三角形的内切圆
三角形
圆
由平行四边形的性质证 明了三角形的中位线定 理。由三角形中位线定 理又能得到梯形中位线 定理。
由矩形的性质得到” 直角三角形斜边上的 中线等于斜边的一半
通过让学生观察 实际生活中的图 形,加强对图形
交 流
的直观认识和感
的
受,从中“发现” 几何图形,归纳 出几何图形的基
空 间
本特征,从而更
好地“把握图
形”。
编写意图
老教材偏重于逻辑推 理,纯理论题占大多数; 新教材对于推理能力的 培养,按照“说点儿 理”“说理”“简单推 理”“符号表示推理” 等不同层次分阶段地安 排,逐步达到《课标》 要求。在七年级主要采 取渗透说理的方式,从 八年级上学期的“全等 三角形”开始正式出现 “证明”。
两边一A角线′ 要段正和B确相,等须的B是角′ 两,B 边发和现夹等C角腰B.三′ 角形的性质。
利用边角由证操全作等过,程反得之到全启等发证:边通角过.做出等腰三角形
的对称轴得到两个全等三角形,从而利用全
4、善于总结技等证术明口等决腰三和角基形本的性图质形。
5、关注学生的学习兴趣和参与程度
七、评价建议