简谐运动的能量问题

合集下载

简谐运动的回复力和能量(解析版)

简谐运动的回复力和能量(解析版)

第3节简谐运动的回复力和能量一、简谐运动的回复力1.关于简谐运动的回复力,下列说法正确的是()A.简谐运动的回复力可能是恒力B.做简谐运动的物体的加速度方向与位移方向可能相同C.简谐运动中回复力的公式F kx=-中k是弹簧的劲度系数,x是弹簧的长度D.做简谐运动的物体每次经过平衡位置回复力一定为零【答案】D【详解】AC.根据简谐运动的定义可知,物体做简谐运动时,回复力为F kx=-,k是比例系数,不一定是弹簧的劲度系数,x是物体相对平衡位置的位移,不是弹簧长度,因x是变化的,回复力不可能是恒力,故A、C错误;B.回复力方向总是与位移方向相反,根据牛顿第二定律,加速度的方向也必定与位移方向相反,故B错误;D.做简谐运动的物体每次经过平衡位置回复力一定为零,故D正确。

故选D。

2.关于简谐运动的回复力F kx=-的含义,下列说法正确的是()A.k是弹簧的劲度系数,x是弹簧的长度B.k是回复力跟位移的比值,x是做简谐运动的物体离开平衡位置的位移C.根据Fkx=-,可以认为k与F成正比D.表达式中的“-”号表示F始终阻碍物体的运动【详解】A B .回复力F kx =-是所有简谐运动都必须满足的关系式,其中F 是回复力,k 是回复力跟位移的比值(即公式中的比例关系),x 是做简谐运动的物体离开平衡位置的位移,A 错误,B 正确; C .k 是回复力跟位移的比值(即公式中的比例关系),与F 无关,C 错误;D .“-”号表示F 始终与物体位移方向相反,有时使物体加速,有时阻碍物体的运动,D 错误。

故选B 。

二、简谐运动的能量3.一个弹簧振子做简谐运动的周期为T ,设t 1时刻小球不在平衡位置,经过一段时间到t 2时刻,小球的速度与t 1时刻的速度大小相等、方向相同,()212Tt t -<,如图所示,则下列说法错误..的是( )A .t 2时刻小球的加速度一定跟t 1时刻的加速度大小相等、方向相反B .在t 1~t 2时间内,小球的加速度先减小后增大C .在t 1~t 2时间内,小球的动能先增大后减小D .在t 1~t 2时间内,弹簧振子的机械能先减小后增大 【答案】D【详解】A .由题图可知t 1、t 2时刻小球的回复力等大反向,则加速度大小相等,方向相反,故A 正确; B .在t 1~t 2时间内回复力先减小后增大,所以小球的加速度先减小后增大,故B 正确; C .在t 1~t 2时间内,小球的速度先增大后减小,所以动能先增大后减小,故C 正确; D .简谐运动的机械能守恒,故D 错误。

11.3 简谐运动的回复力和能量(解析版)

11.3 简谐运动的回复力和能量(解析版)

11.3 简谐运动的回复力和能量(解析版)简谐运动的回复力和能量(解析版)简谐运动是物理学中的一种基本运动形式,也是许多实际问题的基础模型。

本文将解析简谐运动中的回复力和能量的相关概念和计算方法。

一、简谐运动的回复力简谐运动的回复力是指物体在偏离平衡位置后所受的恢复力,该力的大小与偏离平衡位置的距离成正比,方向与偏离方向相反。

简谐运动的回复力服从胡克定律,可以表示为F = -kx,其中F为回复力的大小,k为回复力常数,x为偏离平衡位置的距离。

回复力的大小与物体的质量无关,只与被拉伸或压缩的弹簧的劲度系数k和偏离平衡位置的距离x有关。

当物体偏离平衡位置越远时,回复力的大小越大,当物体回到平衡位置时,回复力为零。

二、简谐运动的能量简谐运动的能量可以分为势能和动能两部分。

1. 势能势能是物体由于位置变化而具有的能量。

对于简谐运动,物体的势能可以表示为Ep = 1/2kx^2,其中Ep为势能,k为回复力常数,x为偏离平衡位置的距离。

当物体处于平衡位置时,势能为零,当物体偏离平衡位置越远时,势能越大。

2. 动能动能是物体由于运动而具有的能量。

对于简谐运动,物体的动能可以表示为Ek = 1/2mv^2,其中Ek为动能,m为物体的质量,v为物体的速度。

由于简谐运动的速度与物体的位置关系是正弦函数,因此动能也是随位置变化而变化的。

三、简谐运动的总能量守恒对于简谐运动系统来说,总能量是守恒的,即势能和动能的和保持不变。

当物体在偏离平衡位置时,势能增加,动能减小;当物体回到平衡位置时,势能减小,动能增加。

在一个简谐周期内,势能和动能交换,但总能量保持不变。

总能量可以表示为E = Ep + Ek。

在简谐运动中,总能量的大小等于势能的最大值等于动能的最大值。

四、总结简谐运动的回复力和能量是描述该运动的两个重要概念。

回复力的大小与偏离平衡位置的距离成正比,方向与偏离方向相反。

势能是由于位置变化而产生的能量,动能是由于运动而产生的能量。

高中物理 11.3 简谐运动的回复力和能量试题(含解析)新人教版选修3-4-新人教版高二选修3-4物

高中物理 11.3 简谐运动的回复力和能量试题(含解析)新人教版选修3-4-新人教版高二选修3-4物

11.3 简谐运动的回复力和能量一、简谐运动的回复力1.简谐运动的定义:如果质点所受的力与它偏离_____________的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。

2.回复力:力的方向总是指向平衡位置,它的作用总是把物体______________,这个力称为回复力。

它可以是某一个力,也可以是几个力的合力或某个力的分力,属于_________。

3.位移:由平衡位置指向振动质点所在位置的_____________,是矢量,其最大值等于振幅。

4.回复表达式:F=-kx,其中“-〞表示回复力与位移的方向相反,k是弹簧的劲度系数,x是弹簧振子的位移。

二、简谐运动的能量1.运动学特征:x、v、a均按_________________发生周期性变化〔注意v、a的变化趋势相反〕。

2.能量特征:系统的___________,振幅A不变。

平衡位置位移拉回到平衡位置效果力有向线段正弦或余弦规律机械能守恒一、简谐运动的特征1.受力特征:简谐运动的回复力满足F=-kx,位移x与回复力的方向相反。

由牛顿第二定律知,加速度a与位移的大小成正比,方向相反。

2.运动特征:当v、a同向时〔即v、F同向,也就是v、x反向〕时,v一定增大;当v、a反向时〔即v、F反向,也就是v、x同向〕时,v一定减小。

当物体靠近平衡位置时,a、f、x都减小,v增大;当物体远离平衡位置时,a、f、x都增大,v减小。

3.能量特征:对弹簧振子来说,振幅越大,能量越大,在振动过程中,动能和势能相互转化,机械能守恒。

4.周期特征:物体做简谐运动时,其位移、回复力、加速度、速度、动量等矢量都随时间做周期变化,他们的周期就是简谐运动的周期T。

物体动能和势能也随时间周期性变化,其周期为T/2。

5.对称性特征〔1〕速率的对称性:物体在关于平衡位置对称的两个位置具有相等的速率。

〔2〕时间的对称性:物体通过关于平衡位置对称的两段位移的时间相等。

〔3〕加速度的对称性:物体在关于平衡位置对称的两位置具有等大、反向的加速度。

简谐振动的能量变化

简谐振动的能量变化

简谐振动的能量变化简谐振动是物理学中一个重要的概念,几乎存在于各个领域的物理现象中。

它描述了一个物体在一个恒定的振幅范围内进行周期性的振动运动。

在简谐振动中,物体的能量会不断变化。

本文将探讨简谐振动的能量变化规律及其背后的原理。

一、简谐振动的特点简谐振动的特点是具有周期性和恒定振幅。

在一个周期内,物体会从原点出发,向正方向振动到最大偏离量,然后返回原点,并向负方向振动到最大偏离量,最后再次返回原点。

这个周期性的运动形式被称为正弦曲线。

二、简谐振动的能量转换简谐振动的能量转换是一个循环过程,由动能和势能交替转化。

当物体偏离平衡位置时,存在势能。

随着物体向最大偏离量移动,势能达到最大值。

当物体通过平衡位置时,速度最大,动能也最大。

当物体移动回原点时,势能再次为零,并在反向运动时达到最大值,动能减小为零。

因此,简谐振动的能量变化由势能和动能的周期性转换组成。

三、简谐振动的能量守恒在简谐振动中,动能和势能的和始终保持不变。

即使在振动过程中,能量的总和也保持不变。

这是因为质点在简谐振动的过程中没有受到摩擦或其他能量损耗的作用。

四、简谐振动的公式推导我们可以通过公式推导简谐振动的能量变化规律。

假设简谐振动的位置函数为x(t),其中t表示时间。

那么动能可表示为:K = 0.5 * m * v^2 = 0.5 * m * (dx/dt)^2,其中m为质量,v为速度,x为位移。

而势能可表示为:U = 0.5 * k * x^2,其中k为劲度系数。

根据能量守恒定律,总能量E为常数,即K + U = E。

将上述动能和势能的表达式代入,得到:0.5 * m * (dx/dt)^2 + 0.5 * k * x^2 = E。

这是简谐振动的能量守恒方程,描述了简谐振动过程中能量的变化规律。

五、简谐振动的应用简谐振动广泛应用于各个领域。

在物理学中,它被用于描述原子和分子的振动,以及声波和光波的传播。

在工程学中,它被用于设计和优化机械结构的振动模式。

简谐运动的回复力和能量

简谐运动的回复力和能量

简谐运动的回复力和能量简谐运动是一种在物理学中经常出现的现象,它是指一种物体在作往复振动时,其位移随时间变化呈现出正弦曲线的运动。

简单来说,就是物体在一定的位置上来回振动,比如一个摆锤在悬挂在绳子上摆动,或者是一个弹簧在振动。

这种运动具有回复力和能量的特点,下面将分别进行讨论。

回复力的定义和特点在简谐运动中,回复力指的是弹性势能的作用力,它是当物体离开平衡位置时,受到的恢复力,使物体朝向平衡位置方向移动。

回复力的大小和方向与物体离开平衡位置的距离成正比,反向指向平衡位置。

具体来说,回复力的公式为F = -kx,其中k是弹性系数,x是物体离开平衡位置的距离。

回复力对于简谐运动来说是一个非常重要的特性,因为它是使物体朝向平衡位置恢复的力量,同时也是振动维持的关键因素。

在简谐运动中,振动的频率、周期和振幅都取决于回复力的大小和弹性系数的变化。

当振幅变大时,回复力也会变大,当弹性系数增大或减小时,回复力的大小也会发生相应的变化。

能量的定义和特点能量是指物体的运动状态所具有的“有用”的物理量。

在简谐运动中,能量由动能和势能组成,它们之间通过运动的转化实现互相转换。

简谐运动的总能量等于动能和势能的和,它是一个守恒量,也就是说在运动过程中能量的总和始终保持不变。

具体来说,当物体在平衡位置附近振动时,它具有最小的动能和弹性势能;当物体脱离平衡位置时,弹性势能会转化为动能,同时物体有更大的动能;当物体到达到最远的位置时,它的动能最大,而弹性势能为零。

这意味着,简谐运动所产生的能量是从一种形式到另一种形式的转化。

简谐运动是一种常见的物理现象,它具有回复力和能量的特点。

回复力是指物体朝向平衡位置方向恢复的力量;能量由动能和势能组成,是物体运动状态的“有用”物理量。

回复力和能量是简谐运动的关键特性,它们直接决定了运动的频率、周期和振幅变化,因此在研究简谐运动时非常重要。

分析简谐振动的受力和能量变化

分析简谐振动的受力和能量变化

分析简谐振动的受力和能量变化简谐振动是物理学中一种重要的运动形式,它具有周期性、匀速和可逆的特点。

在简谐振动中,物体受到的力和能量随时间的变化呈现出一定的规律性。

本文将分析简谐振动的受力和能量变化,并探讨其特点和影响因素。

简谐振动的受力主要来自恢复力和阻尼力。

恢复力是指物体由于偏离平衡位置而产生的力,与偏离量成正比。

根据胡克定律,恢复力的大小与偏离量的乘积成正比,方向与偏离量相反。

恢复力的表达式可以用F=-kx表示,其中F为恢复力的大小,k为恢复力常数,x为物体偏离平衡位置的位移量。

当物体偏离平衡位置时,恢复力的方向与位移方向相反,使物体向平衡位置回复。

阻尼力是指简谐振动中由于摩擦等因素产生的阻碍物体运动的力。

阻尼力的大小与物体的速度成正比,方向与物体的速度相反。

阻尼力的表达式可以用F_d=-bv表示,其中F_d为阻尼力的大小,b为阻尼系数,v为物体的速度。

阻尼力的作用是减小运动的振幅,使振动逐渐衰减和停止。

简谐振动的能量变化包括动能和势能的变化。

动能是物体由于运动而具有的能量,可表示为K=1/2mv^2,其中m为物体的质量,v为物体的速度。

在简谐振动中,物体在最大位移处速度最小,在平衡位置处速度最大,因此动能随时间的变化呈周期性波动。

当物体偏离平衡位置时,动能增加;当物体达到最大位移处时,动能减小至零。

势能是物体由于位置发生变化而具有的能量,可表示为U=1/2kx^2,其中U为势能,k为恢复力常数,x为物体的位移量。

在简谐振动中,势能随时间的变化也呈周期性波动。

当物体偏离平衡位置时,势能增加;当物体达到最大位移处时,势能减小至零。

在简谐振动中,恢复力与阻尼力的合力决定了物体的运动规律。

当阻尼系数较小或为零时,物体的振动呈现出理想的简谐运动,振幅保持不变,持续振动;当阻尼系数较大时,物体的振幅不断减小,振动逐渐衰减和停止。

除了受力的影响,简谐振动的频率和周期还受到质量和恢复力常数的影响。

频率是指单位时间内振动的次数,可以用f=1/T表示,其中f为频率,T为周期。

简谐振动的能量与周期

简谐振动的能量与周期

简谐振动的能量与周期简谐振动是物体在弹性势能恢复力作用下进行的一种周期性振动。

在简谐振动中,能量与周期之间存在一定的关系。

下面将通过分析简谐振动的能量变化以及与周期之间的关系来探讨这一问题。

一、简谐振动的能量变化简谐振动的能量可以分为两部分,一部分是动能,另一部分是势能。

在振动过程中,物体在运动的过程中,动能和势能不断地相互转换,但其总和保持不变。

1. 动能的变化物体在振动过程中具有动能。

当物体达到最大振幅时,速度最大,此时动能也最大。

而当物体通过平衡位置时,速度为零,动能也为零。

因此,可以得出结论:动能随物体的位移而变化,与物体的位移成正比。

2. 势能的变化物体在振动过程中具有势能。

当物体位于极大位移时,弹性势能最大,此时势能也最大。

而当物体通过平衡位置时,位移为零,势能也为零。

因此,可以得出结论:势能随物体的位移而变化,与物体的位移成正比。

3. 能量守恒定律根据能量守恒定律,简谐振动中的能量保持不变。

即动能和势能之和等于常数。

可以用下式表示:E = K + U其中,E表示总能量,K表示动能,U表示势能。

因为动能和势能之和保持不变,所以在振动过程中,动能和势能的增减是互相抵消的。

二、简谐振动的周期与能量的关系简谐振动的周期是指完成一次完整振动所需要的时间。

简谐振动的周期与其能量之间存在一定的关系。

下面将从理论和实验两个方面探讨这一问题。

1. 理论推导简谐振动的周期与物体的振动频率有关。

振动频率可以用下式表示:f = 1 / T其中,f表示振动频率,T表示周期。

根据简谐振动的定义,可以得出如下的等式:ω^2 = k / m其中,ω表示角频率,k表示弹簧的劲度系数,m表示物体的质量。

角频率与振动频率之间存在如下的关系:ω = 2πf将振动频率表达式代入上式,可以得到:ω = 2π / T通过对上述等式的变换,可以得到简谐振动的周期与劲度系数和物体质量的关系:T = 2π√(m / k)由上式可以看出,简谐振动的周期与劲度系数和物体质量有关。

11.3 简谐运动的回复力和能量(解析版)

11.3  简谐运动的回复力和能量(解析版)

《11.3 简谐运动的回复力和能量》针对训练1.如图所示,对做简谐运动的弹簧振子m 的受力分析,正确的是A .重力、支持力、弹簧的弹力B .重力、支持力、弹簧的弹力、回复力C .重力、支持力、回复力、摩擦力D .重力、支持力、摩擦力【答案】A【解析】有不少同学误选B ,产生错解的主要原因是对回复力的性质不能理解清楚或者说是对回复力来源没有弄清楚造成的,一定清楚地认识到回复力是根据效果命名的,它是由其他力所提供的力。

2.关于做简谐运动的物体完成一次全振动的意义有以下说法,其中正确的A .回复力第一次恢复原来的大小和方向所经历的过程B .速度第一次恢复原来的大小和方向所经历的过程C .动能或势能第一次恢复原来的大小所经历的过程D .速度和加速度第一次同时恢复原来的大小和方向所经历的过程【答案】D【解析】回复力满足F =-kx ,一个周期内两次经过同一位置,故全振动过程是回复力第2次恢复原来的大小和方向所经历的过程,故A 错误;一个周期内速度相同的位置有两处,故全振动过程是速度第二次恢复原来的大小和方向所经历的过程,故B 错误;每次经过同一位置动能或势能相同,关于平衡位置对称的点的动能或势能也相同,故一个周期内动能和势能相同的时刻有4个时刻,故C 错误;根据a =-kx m,加速度相同说明位移相同,经过同一位置速度有两个不同的方向,故全振动过程是速度和加速度第一次同时恢复原来的大小和方向所经历的过程,故D 正确。

3.下图为某个弹簧振子做简谐运动的图象,由图象可知A .由于在0.1s 末振幅为零,所以振子的振动能量为零B .在0.2s 末振子具有最大势能C .在0.4s 末振子具有的势能尚未达到最大值D .在0.4s 末振子的动能最大【答案】B【解析】简谐振动的能量是守恒的,故A 、C 错;0.2秒末、0.4秒末位移最大,动能为零,势能最大,故B 对,D 错。

4.光滑的水平面上放有质量分别为m 和12m 的两木块,下方木块与一劲度系数为k 的弹簧相连,弹簧的另一端固定在墙上,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张建斌:浅谈机械波传播过程中介质中质点的运动
浅谈机械波传播过程中介质中质点的运动
张建斌
摘要:人民教育出版社2007年11月版物理《选修3-4》认为:有正弦波传播的介质中的质点在做简谐运动。

但笔者查阅了相关书籍后发现这一说法欠妥。

本文将从平面简谐波的波动方程和介质波的能量出发,分析机械波能量在空间上的分布、随时间的变化与能量传递的实质,通过与简谐运动的对比,对新教材中关于机械波传播过程中介质中质点的运动作新的描述“简谐波是简谐运动在介质中的传播,但介质中各质点做得并非简谐运动,而是运动规律满足正弦(或余弦)图像的受迫振动”。

关键词:受迫振动简谐运动机械波能量传递
普通高中课程标准实验教科书《物理:选修3-4》(人民教育出版社2007年4月第2版)第27页“介质中有正弦波传播时,介质的质点在做简谐运动”。

但简谐运动的能量在整个振动过程中是一个守恒量,简谐运动的过程是动能和势能的相互转化过程,这样做简谐运动的介质中的质点将无法实现传递能量的功能。

实际上,平面波传播时,若介质中质点按正弦(或余弦)规律运动时,叫做平面简谐波,是最基本的波动形式,一些复杂的波可视为平面简谐波的叠加。

但平面简谐波传播时,介质中的质点并非简谐运动,只是其运动规律满足正弦(或余弦)规律。

因为介质中每一个振动质点(体元)的动能和势能同时达到最大、同时达到最小,质点的机械能在最大值和最小值之间变化,每个质点都在不断吸收和放出能量的过程中实现能量的传递。

本文主要阐述机械波的能量及其传递,并尝试对新教材中关于机械波传播过程中介质中质点的运动谈一点自己的看法。

一、波动方程
设一列平面简谐波沿轴正向传播,波源点的振动方程为,在轴上任意点的振动比点滞后(是振动状态传播的速度、即波速),即当点相位为时,点相位为,因此点的振动方程为,这就是平面简谐波方程,它可以描述平面简谐波在传播方向上任意点的振动规律。

二、介质中波的能量分布
一列波在弹性介质中传播时,各体元都在平衡位置附近振动,所以具有动能;同时,各体元发生形变,又有弹性势能。

现以简谐横波为例,研究某体元的动能、势能和总能的变化规律。

1、动能
在有简谐横波传播的介质中,取一微元,根据平面简谐波方程可得到其振动速度
设介质密度为,微元体积为,则该体元的动能为
2、形变势能
我们选取的介质中的微元同时受到相邻的微元的作用而发生剪切形变(即在力偶作用下,两平行截面发生相对移动的形变),如图1所示,若设表示假想截面的面积,且在该面上均匀分布,则剪应力。

同时,我们用平行截面间相对滑动位移与截面垂直距离之比描述剪切形变,称为剪切应变。

由图1:,称为切变角。

则可由剪切形变的胡克定律得:在形变范围内(为剪切模量,反映材料抵抗剪切应变的能力),且单位体积剪切形变的弹性势能为。

对于传播横波的介质中的微元而言,其剪切形变简化为如图2所示,。

所以选取的微元的形变势能为
3、总能
弹性介质中横波的波动方程可写为:
对偏导运算可得:
所以弹性介质中横波的波速为:(波速由介质决定)
则形变势能为:
即波动中某一微元的动能和势能具有相同的数值,它们同时达到最大和最小。

微元的总能等于两者之和,即。

实际中,常用能量密度:
也是时间和空间坐标的函数,体现出波的能量在时间和空间上的周期性。

三、机械波能量及其传递的高中教学
基于高中学生的数学基础,我们在进行这部分内容教学时,应切合学生实际,从学生已有知识基础和能力水平去构建新的知识体系。

笔者在实际辅导教学中先让学生回顾弹簧拉伸形变和形变势能,然后简单介绍剪切形变和剪切形变势能。

接着如下过程:
1、机械波能量在空间上的分布
机械波在传播过程中,某时刻介质中某处质点的动能决定于该处质点的振动速度的大小,而势能决定于该处介质的形变(即剪切形变)的大小。

图3所示为一列沿弹性绳传播的简谐横波,我们分别在位于平衡位置的B和位于最大位移的A、C处,取相同长度的媒质微元来讨论。

可以看出B处质点的振动速度最大,同时该处绳子的形变也最大,因此该处质点的动能和势能为最大,其总能量也就最大。

而对于A、C两处的质点,此时它们的振动速度为零,且该处绳子的形变也趋于零,因此该处质点的动能和势能都为零,即总能量也就最小(为零),而A、B之间、B、C之间的质点的能量就介于最大和零之间。

可见,同一时刻介质中各处的能量分布并不相同,在波峰和波谷处质点的能量最小(为零),而在平衡位置处质点的能量最大。

质点离平衡位置越近,能量就越大,即能量在波的传播方向上呈现周期性的分布,随着波形的向前传播,这种能量分布的状态也以波的传播速度向前传递。

2、机械波能量随时间的变化
弹簧振子和单摆做自由的简谐运动时,只有振动系统内部的动能和势能的转化,系统的总能量是守恒的,这表明振动系统不与外界交换能量,可认为是一个“保守系统”;那么在简谐波的传播过程中,每一质点的运动规律与简谐运动相同,那么每一质点的能量是否也守恒呢? 如图4所示,随着波向前传播,经过周期后,B处质点到达了波峰,动能和势能都从最大减少到零,而A、C处质点回到平衡位置,动能和势能都变为最大。

可见每一质点的总能量会随时间作周期性变化,是不守恒的。

这表明每一介质质点通过振动不断地从前一质点吸收能量而又不断地向后一质点释放能量,从而把振动的能量传播出去。

3、机械波能量传递的实质
图5所示为一列沿绳子向右传播的简谐横波在某一时刻的波形图。

A、B、C为绳子上三个相邻的质点,设波是由A传向B,再传向C的,则B质点的振动是由于A质点的振动使绳子发生形变而产生的弹力F带动的,这个弹力对A做负功而对B做正功,使A质点不断释放能量,而使B质点不断吸收能量,使能量从A传递给B。

同理B质点又不断地向C质点传递能量。

但每一质点在任一小段时间内,从前一质点吸收的能量并不等于向后一质点释放的能量,如图5中的质点B,由于两侧介质的形变大小不同,两侧质点A、C对它的弹力也就不同,左侧形变小、弹力小,右侧形变大、弹力大,因此在这一时刻附近的一小段时间内A对B 做的正功小于B克服C做的功,也就是说B从A吸收的能量小于B向C释放的能量。

因而B 向上离开平衡位置的过程中总能量是减少的。

同理,在B返回平衡位置的过程中总能量又是增加的,这样通过介质之间的相互作用力做功,便每一质点周期性的积累能量和释放能量,实现了能量随波的传递。

综上所述,机械波在传播过程中,每一时刻介质中各处的能量(即能量密度)在波的传播方向上呈现周期性的分布,是不均匀的,而每一质点的能量也是随时间周期性变化的,是不守恒
的,能量的传递是通过质点之间的相互作用力做功来实现的。

四、对新教材“波动”部分的一点看法
1、关于简谐运动
质点在某位置所受的力(沿运动方向受的力)为零,则此位置称为平衡位置。

若作用于质点的力总与质点相对平衡位置的位移(线位移或角位移)成正比,且指向平衡位置,则此作用力称为线性回复力。

以平衡位置为原点,以x表示质点相对于原点的位移,线性回复力,是正常数。

力是质点位移x的线性函数,且与位移x反向,即促使质点返回平衡位置。

质点在线性回复力作用下围绕平衡位置的运动叫做简谐运动。

简谐运动的动力学方程为:,决定于振动系统本身的性质。

根据常微分方程的理论可求得上式的解为,这就是简谐运动的运动学方程,其运动图像为余弦(或正弦)图线。

新教材对简谐运动的定义“如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(图)是一条正弦曲线,这样的振动叫做简谐运动”,这个定义显然不够。

新教材既然通过振动图像来定义简谐运动,则必须同时应说明图像中的是由振动系统本身的性质决定的。

这样也有助于学生区分简谐运动与有简谐波传播介质中的质点的运动。

2、关于介质中质点在简谐波传播过程中的运动
可以描述平面简谐波在传播方向上任意点的振动规律。

对于平衡位置在处的质点而言,其振动图像也是正弦曲线,但这并不意味着点做简谐运动,主要在于式中的并非决定于振动系统本身性质而是取决于波源频率。

介质中有正弦波传播时,介质中质点的运动规律与简谐运动相似,但它并非简谐运动而是等幅的受迫振动。

其能量也不像自由的简谐运动那样只存在动能和势能的相互转换,总量是不变的。

介质中质点在做受迫振动的同时,其能量在零和最大值之间变化,通过质点间的相互作用力做功来实现能量的传递。

笔者以为:《物理选修3-4》(人民教育出版社2007年4月第2版)第27页“介质中有正弦波传播时,介质的质点在做简谐运动”应作如下所述:简谐波是简谐运动在介质中的传播,但介质中各质点做得并非简谐运动,而是运动规律满足正弦(或余弦)图像的受迫振动。

参考文献:
1、漆安慎杜蝉英《力学》高等教育出版社1997年7月第1版
2、张大昌等普通高中课程标注实验教科书《物理选修3-4》人民教育出版社2007年4月第2版
3、范小辉《新编高中物理奥赛指导》南京师范大学出版社2006年4月第4版。

相关文档
最新文档