光电材料与器件实验指导书

合集下载

半导体光电器件实验指导书

半导体光电器件实验指导书

半导体光电器件实验指导书实验一半导体光电探测材料的吸收系数和光学禁带宽度的计算1.实验目的1)通过对半导体材料透射光谱的测试,理解半导体材料对入射光子的吸收特性,计算半导体材料的光吸收系数随波长的变化;2)理解如何通过调整材料的组分实现在特定波段对光子的探测,计算半导体材料的光学禁带宽度。

2.实验内容1)测试半导体光电探测材料的透射光谱;2)根据测试数据计算材料的光吸收系数随入射波长的变化,并由此推算材料的光学禁带宽度。

3.实验器材(设备、元器件)1)紫外—可见光分光光度计一台;2)实验样品3个;3)空白基片1个。

4.基于透射光谱的光吸收系数及光学禁带宽度计算原理当物体受到外来光波的照射时,光子会和物体中的微粒发生相互作用。

由于组成物体的分子和分子间的结构不同,使入射光分成几个部分:一部分被物体吸收(吸收),一部分被物体反射(反射),还有一部分穿透物体而继续传播(透射)。

透射是入射光经过折射穿过物体后的出射现象。

被透射的物体为透明体或半透明体,若透明体是无色的,除少数光被反射外,大多数光均透过物体。

为了表示透明体透过光的程度,通常用入射光通量与透过后的光通量之比T来表征物体的透光性质,T称为光透射率。

常用的分光光度计能精确测量材料的透射率,测试方法具有简单、操作方便、精度高等突出优点,是研究半导体能带结构及其它性质的最基本、最普遍的光学方法之一。

当一定波长的光照射半导体材料时,电子吸收能量后会从低能级跃迁到能量较高的能级。

对于本征吸收,电子吸收足够能量后将从价带直接跃迁入导带。

发生本征吸收的条件是:光子的能量必须等于或大于材料的禁带宽度E g ,即0g h v h v E ≥= (1)而当光子的频率低于0ν,或波长大于本征吸收的长波限时,不可能发生本证吸收,半导体的光吸收系数迅速下降,这在透射光谱上表现为透射率的迅速增大。

光波透过厚度为d 的样品时,吸收系数同透射率的关系如式(2):2(1)d T R e α-=- (2) 即:21(1)ln R d Tα-= (3) 其中d 为样品厚度,R 是对应波长的反射率,T 是对应波长的透射率。

光电技术原理实验指导书V

光电技术原理实验指导书V

内容简介光电信息技术以其极快的响应速度、极宽的频宽、极大的信息容量以及极高的信息效率和分辩率推动着现代信息技术的发展,从而使光电信息产业在市场的份额逐年增加。

在技术发达国家,与光电信息技术相关产业的产值已占国民经济总产值的一半以上,从业人员逐年增多,竞争也越来越强烈。

为适应形势的发展需求,不少高等学校相继增开设了光电信息类专业或院系,以改变光电信息类人才短缺的现实。

基于这样的形势,我司为满足所有学校新增光电信息专业的教学需求,在参考了《光电技术与实验》(北京理工大学出版)、《光电技术》(浙江大学出版)等教材后开发出本套适用于《光电技术》课程的实验仪器设备,来提高我国光电信息人才的实际应用能力。

本实验系统与理论紧密结合,注重实用,可作为测控技术与仪器、物理电子技术、仪器仪表、自动控制、精密仪器及办公自动化等专业本科生、研究生和有关科技人员课堂实验和研究。

因时间仓促,书中有不当之处,殷切希望广大老师给予批评指正!目录实验一 LD/LED的P-I-V特性曲线测试......................... - 4 -实验二光电探测原理实验 ................................... - 13 -光电探测原理实验仪说明 (13)实验指南 (15)实验(一)光照度测试实验 (15)实验(二)光敏电阻特性测试实验单元 (18)实验(三)光电二极管特性测试实验单元 (24)实验(四)光电三极管特性测试实验单元 (32)实验(五)光电池特性测试实验单元 (37)实验三光电探测器直流特性测试............................. - 44 -实验四光纤端面处理、耦合及熔接........................... - 48 -实验五光纤衰减系数的测试 ................................ - 54 -实验六光电倍增管特性参数的测试........................... - 58 -实验七 CCD原理及应用实验................................. - 63 -实验(一)CCD驱动测试实验.. (64)实验(二)CCD特性测试实验 (70)实验(三)CCD输出信号的二值化处理实验 (72)实验(四)线阵CCD的AD数据采集 (73)实验(五)线阵CCD软件二值化及物体宽度的测量 (75)实验八电光调制 .......................................... - 78 -实验九红外光电检测创新实验平台........................... - 84 -实验(一)主动式光电报警系统实验 (85)实验(二)被动式光电报警系统实验 (91)实验(三)锁相环实验 (93)实验(四)主动式光电报警系统电路搭建实验 (96)实验(五)被动式光电报警系统电路搭建实验 (102)实验(六)锁相环电路搭建实验 (105)实验十光电定向实验 ...................................... - 108 -实验十一偏振光原理及应用实验............................. - 119 -实验(一)偏振光的产生与鉴别.. (120)实验(二)椭圆偏振光和圆偏振光 (123)实验(三)测量布儒斯特角 (128)光电技术原理 ......................................... - 130 -ZY-YSLD3125型LD激光二极管. (131)ZY-YSLED3215型LED发光二极管 (133)ZY-LDT-5412型LD/LED温控器 (135)ZY-GY-7A型亮度可调卤素灯 (136)ZY-WDX型棱镜单色仪 (137)ZY-WGD-3型组合式多功能光栅光谱仪 (147)ZY-CJQ型积分球 (148)ZY-AV33012型光纤切割刀 (150)ZY-AV6491E型光纤熔接机 (153)ZY-CFS-2型光纤剥皮钳 (157)ZY-AD/B-FC型裸纤转接器 (158)ZY-GT111/112型四象限光电探测器 (159)ZY606型LD/LED电流源 (160)ZY-931A型光电倍增管 (163)ZY12208C型电光调制器 (165)实验一 LD/LED 的P-I-V 特性曲线测试一、实验目的1、通过测量LD 半导体激光器阈值电流、LED 发光二极管和LD 半导体激光器的输出功率-电流(P-I )特性曲线和电压-电流(V-I )特性曲线,计算阈值电流(Ith )和外微分量子效率,从而对LED 发光二极管和LD 半导体激光器工作特性有个基本了解。

光电子器件物理实验指导书(修改)精品

光电子器件物理实验指导书(修改)精品

图2.1-5 棱镜对白光的分光实验装置光电子器件物理实验实验1 光源与光度辐射度参数的测量实验目的:通过用棱镜等器件对发白光的LED (发光二极管)发出的光进行分光的测量和对光电综合实验平台上所用光源发出光进行照度测量的实验。

学习光本性的基本常识,巩固“光电技术”教科书中第一章关于光的度量内容,并掌握光电综合实验平台所用光源的发光特性;通过对光源照度的调节与测量,熟悉进行光电实验过程中所用数字仪表使用方法,为后面实验做技术准备。

实验仪器:① 光电综合实验平台主机系统1台;② 60°分光棱镜及其夹持装置各1个;③ 焦距f =50mm 的透镜及其支架1只;④ 发白光的LED 平行光源(远心照明光源)及其夹持装置各1个;⑤ 狭缝及其夹持装置各1个;⑥ 像屏及其夹持装置各1个;⑦ 磁性表座4个;实验内容:1) 棱镜对“白光”的分光特性;2) 掌握分光光谱的分布规律;3) 测量远心照明光源在不同位置上的照度;实验步聚:1) 棱镜分光实验① 认识实验所用器件从光电综合实验平台备件箱中取出如图2.1-4所示的分光棱镜、棱镜安装调整机构、发白光的LED 远心照明光源、可调狭缝与像屏。

将这些器材按如图2.1-5所示的方式安装在光学实验台上。

打开实验平台上的电源开关,将远心照明光源的电源线接到平台的+5V(VCC)电源上(注意其极性,红插头接VCC ),使LED光源发出一束白色平行光,然后,在光路中插入可调宽度的狭缝,使通过狭缝形成的窄条白光投射到分光棱镜的工作面上,调整(旋转)分光棱镜,改变白光的入射角,再移动像屏位置,观察窄条白光被分光的现象,将有彩色条形光带从棱镜的另一个工作面发射出去。

若像屏位置合适,在像屏上将观测到彩色条带。

分析各种彩条带的颜色分布规律,记录各色彩条的排列顺序。

若将50mm焦距的透镜安装在棱镜与像屏之间,并适当调整透镜与棱镜之间的距离L,与透镜与像屏之间的距离L`,观察像屏上彩条的变化。

光电仪器实验指导书

光电仪器实验指导书

实验一简单光控电路的设计及光电传感器技术参数的测定(设计性实验)[实验目的]1.掌握常规光功率计,光电探测器等光电仪器的使用。

2.了解光敏电阻、光敏二极管、光敏三极管、光耦的光电特性。

3.掌握简单的光电控制电路的设计。

[实验原理]光敏电阻:是一种当光照射到材料表面上被吸收后,在其中激发载流子,使材料导电性能发生变化的内光电效应器件,受光照后其阻值会减少。

光敏二极管:是一种光生伏特器件,用高阻P型硅作为基片,然后在基片表面进行掺杂形成PN结。

N区扩散得很浅为1um左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗层内。

光子入射到耗层内被吸收而激发电子-空穴对,电子-空穴对在外加反向偏压V BB的作用下,空穴流向正极,形成了二极管的反向电流即光电流。

光电流通过外加负载电阻后产生电压信号输出,在使用时一般加反向偏置,可以当光控开关管来使用。

光敏三极管:是一种光生伏特器件,用高阻P性硅作为基片,然后在基片表面进行掺杂形成PN结。

N区扩散得很浅为1um左右,而空间电荷区(即耗尽层)较宽,所以保证了大部分光子入射到耗层内。

光子入射到耗层内被吸收而激发电子-空穴对,电子-空穴对在外加反向偏压V CB的作用下,空穴流向正极,形成了三极管的反向电流即光电流。

光电流通过外加负载电阻后产生电压信号输出,可以当光控开关管来使用。

光电耦合器:常用的三极管型光电耦合器原理图如图1.1所示,当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。

对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“0”。

图1.1 三极管型光电耦合器原理图[实验仪器及配件]光敏电阻、面包板、光电二极管、光电三极管、普通电阻、发光二极管、普通三极管、开关、直流稳压电源、万用表、光功率计、光探头、光源、导线。

光电材料与器件实验指导书

光电材料与器件实验指导书

《光电材料与器件》实验指导书何宁编桂林电子科技大学信息与通信学院2008年12月实验一光电池及LED光源特性测试一.实验目的1 理解光电池的光电转换机理及主要特性参数。

2 理解LED光源的电光转换机理、驱动方式及主要特性参数。

3 掌握两种器件的应用及参数的测试方法。

二.实验内容1 测量光电池的开路电压、短路电流和伏安特性。

2 测量LED光源的驱动特性及电光转换效率。

三.实验原理光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。

光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。

图1 光谱特性图2 光电特性图1中硅光电池的光谱响应范围是波长4000Å——12000Å,在波长为8000Å时达到峰值,而硒光电池的峰值出现在5000 Å左右,波长的范围是3800——7500Å,1埃=0.1nm。

图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。

而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。

需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。

实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。

经实验证明外负载越小线性度越好。

不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。

《光电功能材料与器件》教学大纲

《光电功能材料与器件》教学大纲

光电功能材料与器件》课程教学大纲课程代码(五号黑体):MCHM3042课程性质:专业必修课程授课对象:材料化学、功能材料等专业开课学期:总学时:54学时学分:3学分讲课学时:52学时实验学时:0学时实践学时:2学时指定教材:王筱梅,《有机光电材料与器件》,化学工业出版社,2014年参考书目(五号黑体)5-20部左右(五号宋体)刘恩科,《半导体物理学》,电子工业出版社,2007年黄昆半,《导体物理基础》,科学出版社,1999年李晔,《光化学基础与应用》,化学工业出版社,2000年刘亟须,《物理光学基础教程》,北京理工大学出版社,2000年朱建国,《电子与光电子材料》,国防工业出版社,2007年刘云圻,《有机纳米与分子器件》,科学出版社,2010年李文连,《有机光电子器件的原理、结构设计及其应用》,科学出版社,2012年教学目的:(五号黑体)本课程为材料化学专业和功能材料专业的专业必修课。

通过本课程的学习使学生了解和掌握各种光电材料的基本原理、基本性质、制备技术,及光电子材料的现状及发展趋势有。

了解和掌握光电子器件相关理论与器件物理,掌握有机发光二极管、有机太阳能电池、有机场效应晶体管、生物传感器等分子材料器件的基本类型、结构、工作机理、电学特性、电学特性参数表征及其应用,为光电器件的研究、设计及应用奠定理论基础。

第一章物质吸收光谱与颜色(五号黑体)课时:2.5周,共8课时(五号宋体)教学内容第一节光的基本性质光的波粒二象性第二节电子跃迁一、基态与激发态分子的基态与激发态的性质比较二、电子跃迁类型有机分子电子能级跃迁三、跃迁允许与跃迁禁阻电子跃迁允许与跃迁禁阻示意图第三节紫外-可见吸收光谱一、吸收光的条件能量要大于一定值二、朗伯-比耳定律样品对光波的吸光能力与该溶液的浓度和吸收层厚度成正比。

三、紫外-可见吸收光谱在近紫外-可见-近红外光谱区域内,某一样品对不同波长单色光的吸收强度的变化情况,简称吸收光谱。

光电原理实验指导书

光电原理实验指导书

内容简介本实验系统从了解和熟悉光电系统的角度出发,讨论光电系统中的主要技术问题。

主要知识点包括:光电系统中常用的光源及其特性;常用光电探测器的工作原理、特性参数及光电信号检测的基本线路;光学调制器;光电探测方法及光电信号处理方法;CCD电荷耦合器原理及其应用等。

本实验系统与理论紧密结合,注重实用,可作为测控技术与仪器、物理电子技术、仪器仪表、自动控制、精密仪器及办公自动化等专业本科生、研究生和有关科技人员课堂实验和研究。

目录实验一 LD/LED的P-I-V特性曲线测试......................... - 3 -实验二光电探测原理实验 ................................... - 12 -实验三光电探测器直流特性测试............................. - 23 -实验四光纤端面处理、耦合及熔接........................... - 27 -实验五光纤衰减系数的测试 ................................ - 33 -实验六光电倍增管特性参数的测试........................... - 37 -实验一 LD/LED 的P-I-V 特性曲线测试一、实验目的1、通过测量LD 半导体激光器域值电流、LED 发光二极管和LD 半导体激光器的输出功率-电流(P-I )特性曲线和电压-电流(V-I )特性曲线,计算阈值电流(Ith )和外微分量子效率,从而对LED 发光二极管和LD 半导体激光器工作特性有个基本了解。

2、了解温度(T )对阈值电流(Ith )和光功率(P )的影响。

二、实验内容1、测试YSLED3215型LED 发光二极管的电压-电流(V-I )特性曲线。

2、测试YSLED3215型LED 发光二极管的输出功率与电流(P-I )特性曲线。

3、测试YSLD3125型半导体激光器电压-电流(V-I )特性曲线。

《光电技术》课程实验指导书

《光电技术》课程实验指导书

《光电技术》课程实验说明课程实验计划进行四次第一次:实验一第二次:实验二第三次:实验三、四第四次:实验五、六其中第一次、第二次实验需要同学自己进行实际测量;第三次、第四次实验属于演示实验。

实验一光电探测原理实验一、实验目的1、了解光照度基本知识、光照度测量基本原理,学会光照度的测量方法。

2、了解光电二极管和光电池的工作原理和使用方法3、掌握光电二极管和光电池的光照特性及其测试方法4、理解光电二极管和光电池的的伏安特性并掌握其测试方法二、实验仪器1、光电探测原理实验箱2、光照度计3、光电二极管和光电池4、光源三、实验原理1、光照度基本知识(1)光照度是光度计量的主要参数之一,而光度计量是光学计量最基本的部分。

光度量是限于人眼能够见到的一部分辐射量,是通过人眼的视觉效果去衡量的,人眼的视觉效果对各种波长是不同的,通常用V(λ)表示,定义为人眼视觉函数或光谱光视效率。

因此,光照度不是一个纯粹的物理量,而是一个与人眼视觉有关的生理、心理物理量。

光照度是单位面积上接收的光通量,因而可以导出:由一个发光强度I的点光源,在相距L处的平面上产生的光照度与这个光源的发光强度成正比,与距离的平方成反比,即:2EI/L式中:E——光照度,单位为Lx;I——光源发光强度,单位为cd;L——距离,单位为m。

(2)光照度计的结构光照度计是用来测量照度的仪器,它的结构原理如图1.1。

图1光照度计结构图图中D为光探测器,图1.2为典型的硅光探测器的相对光谱响应曲线;C为余弦校正器,在光照度测量中,被测面上的光不可能都来自垂直方向,因此照度计必须进行余弦修正,使光探测器不同角度上的光度响应满足余弦关系。

余弦校正器使用的是一种漫透射材料,当入射光不论以什么角度射在漫透射材料上时,光探测器接收到的始终是漫射光。

余弦校正器的透光性要好;F为V(λ)校正器,在光照度测量中,除了希望光探测器有较高的灵敏度、较低的噪声、较宽的线性范围和较快的响应时间等外,还要求相对光谱响应符合视觉函数V (λ),而通常光探测器的光谱响应度与之相差甚远,因此需要进行V(λ)匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《光电材料与器件》实验指导书
何宁编
桂林电子科技大学信息与通信学院
2008年12月
实验一光电池及LED光源特性测试
一.实验目的
1 理解光电池的光电转换机理及主要特性参数。

2 理解LED光源的电光转换机理、驱动方式及主要特性参数。

3 掌握两种器件的应用及参数的测试方法。

二.实验内容
1 测量光电池的开路电压、短路电流和伏安特性。

2 测量LED光源的驱动特性及电光转换效率。

三.实验原理
光电池是由一个面积较大的PN结构成,它是一种直接将光能转换成电能的光电器件,这种器件是利用光生伏特效应,当光线照射到P-N结上时,就会在P-N结两端出现电动势(P区为正;N区为负),若负载接入PN结两端,光电池就有功率输出。

光电池对不同的波长的光反映的灵敏度是不同的,按制作材料不同可分为硅光电池和硒光电池,光谱特性如图1所示。

图1 光谱特性图2 光电特性
图1中硅光电池的光谱响应范围是波长4000Å——12000Å,在波长为8000Å时达到峰值,而硒光电池的峰值出现在5000 Å左右,波长的范围是3800——7500Å,1埃=0.1nm。

图2中硅光电池的开路电压与光照是一种非线性关系,当光照强度在200勒克斯时就趋向饱和。

而短路电流在很大的范围内与光照成线型关系,因此使用光电池作为测量元件使用时,应该把它当成电流源的形式来研究,因为短路电流与光强是线性的,处理起来比较方便,而不要当成电压源使用。

需要说明的是这里说的短路电流与开路电压与平时意义上不同,它是指外负载电阻相对与内阻非常小时候的电流值,以及外负载很大时的端电压。

实验时外负载电阻<15Ω时,就认为是短路电流,而>5.0K时,就认为是开路电压。

经实验证明外负载越小线性度越好。

不同颜色的光有不同的波长,因此光电池的光照频率也不同,光电池的频率特性是指输出电流随调制光的频率变化的关系,图3分别表示硅光电池与硒光电池的频率响应曲线,可见硅光电池有较好的频率特性,而硒光电池则较差。

太阳能辐射能量主要集中在1.3-32um的波长范围,表面温度近6000K的太阳能辐射出的能量95%以上的部分分布在波长小于2um的光谱范围。

而对于温度为几百K的物体其辐
射能主要集中在2-50um的红外波谱范围。

LED光源的发光过程是在正向偏压下的载流子注入、复合辐射和光能传输。

微小的半导体晶片被封装在洁净的环氧树脂物中,当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。

电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。

光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。

由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。

白炽灯、卤钨灯光效为12-24流明/瓦,荧光灯50~70流明/瓦,钠灯90~140流明/瓦,大部分的耗电变成热量损耗。

LED光效经改良后将达到达50~200流明/瓦,而且其光的单色性好、光谱窄,无需过滤可直接发出有色可见光,光源光谱特性见图4。

图3 光电池的频率特性图4 LED光源光谱特性
四.实验步骤
1.光电池测量
(1)将光电池板放置在太阳光模拟装置上,通过调整交流调压器改变光照强度。

(2)光电池负载特性测量,将交流调压器输出电压置于置于220V,测出此时光照度值,调整W1,测量不同阻值下光电池输出V---I的关系,按表1数据测量并记录。

负载电阻在11---4100Ω改变。

(3)光电池开路电压测量,调整W1使阻值为4K(负载电阻大于4.1K相当于开路),改变光照强度,按表2数据测量并记录,测量开路电压与光强的特性曲线。

(4)光电池短路电流测量,调整W1使阻值为15Ω(负载电阻小于15Ω相当于短路),改变光照强度,按表3数据测量并记录,与光强的特性曲线。

(5)对比不同光源在同一照度下光电池能提供的电流(白炽灯、节能灯、日光灯、磨砂灯)。

表2(回路电阻为4K)
2. LED光源驱动测量
●直流驱动
(1)切换K3开关为直流驱动,调整W2使流过LED的电流按表4数据变化。

(2)测量LED端电压和发出的光强,并计算电光转换效率。

●脉冲驱动
(1)切换K2开关为外部信号输入,切换K3开关为脉冲驱动状态。

(2)设置信号源为B通道,波形为脉冲,频率为1KHz,幅度为3.5V。

(3)改变信号源脉冲占空比,使流过LED的电流按表4数据变化。

(4)用光照度计测量LED发出的光强,并计算电光转换效率。

(5)改变信号源频率,占空比为50%,按表6测量相应参数,分析各参数与频率变化的
趋势。

表5
图7 LED驱动电路测试图
五.实验仪器
稳压电源信号源示波器光照度计交流调压器毫安表万用表六.实验报告
1.分析处理实验数据,描绘特性曲线。

2.对比LED的两种驱动方式电光转换效率,说明其优缺点。

实验二 光开关控制及特性参数测试
一.实验目的
1.熟悉光开关的作用和类型。

2.理解光开关的特性参数。

3.掌握光开关典型参数的测试方法。

二.实验内容
1.1×4光开关光路切换驱动控制实验。

2.光通道插入损耗特性测试。

3.光通道消光比特性测试。

4.光开关的抖动特性测试。

三.实验原理
光开关是光纤通信系统中重要的无源光器件,它的主要任务是切换光路,在光交换和光网络中有许多应用。

光开关可分为机械式光开关、液晶光开关、电光式光开关和热光式光开关,机械式是通过机械的方法实现光路切换,它利用驱动机构带动活动的光纤(或微反射镜),使活动光纤(或微反射镜)根据指令信号控制要求与所需光纤连接。

目前使用得最成熟的是机械式光开关,它具有插入损耗小、串扰小、开关时间短(抖动)等优点。

光开关的主要参数有开关时间、插入损耗、消光比、串扰。

插入损耗是指光开关引入光路后导致的光能量损失,以dB 表示,即o
i
P P lg
10,此值越小越好。

消光比是指光开关处于通状态时输出的光功率和处于断状态时的输出光功率之比,此值越大越好,即0
1
OUT OUT P P EXT =。

四.实验框图

五.实验步骤
1.开启稳定光源,调整输出功率,用光功率计测量光源输出光功率为1mw 。

2.给定一1×4光开关,将光源与光开关输入端连接好,开启控制电路电源。

3.选择电路板上光路选择键,根据给定功能表参数,用万用表测试光开关相应控制位电压。

4.用光功率计测量对应光开关输出端口的光功率,并记入表1。

5.根据测试参数计算每一光通道的插入损耗。

6.测出没被选中的光通道的输出光功率,并计算其消光比。

7.连接光电探测器,用存储示波器测量光开关的上升和下降时间(过渡时间长度)。

表1
六.实验设备
稳定光源稳压电源光功率计万用表
七实验报告
1.处理实验数据
2.说明消光比大小对传输性能的影响。

3.画出光开关抖动曲线,并标注其开关时间。

4.实验体会。

相关文档
最新文档