动力学中的临界与极值问题

合集下载

力学 临界与极值问题

力学     临界与极值问题

1 /2 临界与极值问题在应用牛顿运动定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词句时,往往会有临界现象。

此时要用极限分析法,看物体不同加速度时,会有哪些现象发生,找出临界点,求出临界条件。

解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况。

在解决临办极值问题注意以下几点:1.许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。

2.临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。

3.临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。

4.确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。

典例1如图所示,一轻绳上端系在车的左上角的A 点,另一轻绳一端系在车左端B 点,B 点在A 点正下方,A 、B 距离为b ,两绳另一端在C 点相结并系一质量为m 的小球,绳AC 长度为2b ,绳BC 长度为b 。

两绳能够承受的最大拉力均为2mg 。

求:(1)绳BC 刚好被拉直时,车的加速度是多大?(2)为不拉断轻绳,车向左运动的最大加速度是多大?(要求画出受力图)【精析】对物体受力分析,从而确定在各个临界点的情况,是解决本题的关键。

(1)绳BC 刚好被拉直时,小球受力如图所示因为AB=BC=b ,AC=2bABmgC2 / 2 故 绳BC 方向与AB 垂直,22cos =θ θ=450 由牛顿第二定律,得 mgtanθ=ma可得 a=g(2)小车向左加速度增大,AB 、BC 绳方向不变,所以AC 绳拉力不变,BC 绳拉力变大,BC 绳拉力最大时,小车向左加速度最大,小球受力如图由牛顿第二定律,得 T m + mgtanθ=ma m因这时 T m =2mg ,所以最大加速度为 a m =3g.典例2如图所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。

动力学中的临界状态、极值问题

动力学中的临界状态、极值问题

动力学中的临界状态、极值问题1、如图所示,在倾角为θ=30°的光滑斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量均为m ,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态.现开始用一沿斜面方向的力F 拉物块A 使之向上做匀加速运动,当物块B 刚要离开C 时F 的大小恰为2mg .求从F 开始作用到物块B 刚要离开C 的时间.2、如图所示,细线的一端系一质量为m 的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行.在斜面体以加速度a 在水平方向做匀变速直线运动的过程中,要保证小球始终与斜面相对静止,则加速度a 的取值范围为(重力加速度为g )( )A 、若向右匀加速运动,则a ≤gtan θB 、 若向右匀减速运动,则a ≤gtan θC 、若向右匀减速运动,则a ≤g/tan θD 、若向右匀加速运动,则a ≤g/tan θ;3、如图所示,一质量m=0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t=2s 的时间物块由A 点运动到B 点,A 、B 之间的距离L=10m 。

已知斜面倾角θ=30o ,物块与斜面之间的动摩擦因数。

(重力加速度g 取10 m/s 2)(1)求物块加速度的大小及到达B 点时速度的大小。

(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?4、如右图所示,光滑水平面上放置质量分别为m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力为µmg ,现用水平拉力F 拉B ,使A 、B 以同一加速度运动,则拉力F 的最大值为( )A、µmg B、2µmg C、3µmg D、4µmgv5、木块A,B的质量分别为m1, m2 ,紧挨着并排放在光滑的水平面上,A与B间的接触面垂直于图中纸面且与水平面成θ角,A与B间的接触面光滑,使A,B一起向右运动且A,B不发生相对运动,求F的最大值。

小专题4.5 动力学中临界与极值问题(解析版)

小专题4.5 动力学中临界与极值问题(解析版)

第四章 力和运动的关系小专题5 动力学中临界与极值问题【知识清单】1.临界与极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点;(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;(3)若题目中有“最大”、“最小”、“至少”、“至多”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。

2.动力力学中典型临界条件(1)接触与分离的临界条件: 。

(2)接触面间相对滑动的临界条件: 。

(3)绳子断裂的临界条件: 。

(4)绳子松弛的临界条件: 。

(5)变加速运动过程中速度达到极值时刻的临界条件: 。

【答案】2.(1)接触面间弹力为零(2)静摩擦力达到最大值(3)绳中张力等于它所能承受的最大张力(4)绳中张力为零(5)加速度为零【考点题组】【题组一】物理临界与极值问题1.如图所示,一细线的一端固定于倾角为450的光滑楔形滑块A 上的顶端O 处,细线另一端拴一质量为m=0.2kg 的小球静止在A 上。

若滑块从静止向左匀加速运动时加速度为a 。

(取g=10m/s2.)A . 当a =5m/s 2时,线中拉力为N 223 B . 当a =10m/s 2时, 小球受的支持力为N 2C . 当a =12m/s 2时, 经过1秒钟小球运动的水平位移是6mD . 在稳定后,地面对A 的支持力一定小于两个物体的重力之和【答案】A【解析】当小球对滑块的压力恰好等于零时,小球所受重力mg 和拉力T 使小球随滑块一起沿水平方向向左加速运动,由牛顿运动定律得小球和滑块共同的加速度为:200/1045tan s m g a ==。

当a=5m/s 2<a 0=10m/s 2时,斜面对小球有支持力,将小球所受的力沿加速度方向和垂直于加速度方向分解,有:Tcos450-Nsin450=ma ,Tsin450+Ncos450=mg ,联立解得:N T 223=,故A 正确;当a=10m/s 2=a 0=10m/s 2时,斜面对小球恰好没有支持力,故N=0,故B 错误;当a=12m/s 2>a 0=10m/s 2时,滑块的位移为m at x 6212==,而小球要先脱离斜面,然后保持与滑块相同的运动状态,故在这1s 内小球运动的水平位移小于6m ,故C 错误;在稳定后,对小球和滑块A 整体受力分析可知,在竖直方向没有加速度,故地面对A 的支持力等于两个物体重力之和,故D 错误。

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。

(4)速度达到最值的临界条件:加速度为0。

2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。

4.6动力学中的临界问题和极值问题

4.6动力学中的临界问题和极值问题

动力学中的临界问题和极值问题所谓临界问题是指当某种物理现象(或物理状态)变为另一种物理现象(或另一物理状态)的转折状态叫临界状态.可理解成“恰好出现”或“恰好不出现”.某种物理现象转化为另一种物理现象的转折状态称为临界状态。

至于是“出现”还是“不出现”,需视具体问题而定。

极值问题则是在满足一定的条件下,某物理量出现极大值或极小值的情况。

临界问题往往是和极值问题联系在一起的。

解决此类问题重在形成清晰的物理图景,分析清楚物理过程,从而找出临界条件或达到极值的条件,要特别注意可能出现的多种情况,在解决临办极值问题注意以下几点:1、许多临界问题常在题目的叙述中出现“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词句对临界问题给出了明确的暗示,审题是只要抓住这些特定词语其内含规律就能找到临界条件。

2、临界点的两侧,物体的受力情况、变化规律、运动状态一般要发生改变,能否用变化的观点正确分析其运动规律是求解这类题目的关键,而临界点的确定是基础。

3、临界问题通常具有一定的隐蔽性,解题灵活性较大,审题时应力图还原习题的物理情景,抓住临界状态的特征,找到正确的解题方向。

4、确定临界点一般用极端分析法,即把问题(物理过程)推到极端,分析在极端情况下可能出现的状态和满足的条件。

解题常用的思路用矢量法、三角函数法、一元二次方程判别式法或根据物理过程的特点求极值法等。

【例题1】:一个质量为m的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,求:(1)当斜面以多大的加速度运动时绳的拉力为零(2)当斜面以多大的加速度运动时斜面对小球的支持力为零【练习1】:一个质量为m的小球B,用两根等长的细绳1、2分别固定在车厢的A、C两点,已知两绳拉直时,如图所示,两绳与车厢前壁的夹角均为45°.试求:(1)当车以加速度a1=g向左做匀加速直线运动时1、2两绳的拉力.(2)当车以加速度a2=2g向左做匀加速直线运动时,1、2两绳的拉力.【例题2】:如图甲、乙所示,在光滑的水平面上叠放着A 、B 两物体,已知m A =6kg,m B =2kg , A 、B 之间的动摩擦因数 μ=0.2,要使A 、B 保持相对静止,求两种情况下F 的最大值【练习2】:跨过定滑轮的轻绳两端,分别系着物体A 和物体B ,物体A 放在倾角为θ的斜面上,如图所示。

动力学中的临界与极值问题

动力学中的临界与极值问题

考点二 动力学中的临界与极值问题动力学中的临界问题一般有三种解法:1.极限法在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.2.假设法有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类题,一般用假设法.3.数学法将物理过程转化为数学公式,根据数学表达式求解得出临界条件.命题点1 接触与脱离的临界条件3.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)【解析】 设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2③ 由①式得x 1=(M +m )g k=0.15 m , 由②③式得a =6 m/s 2.F min =(M +m )a =72 N ,F max =M (g +a )=168 N.【答案】 F max =168 N F min =72 N命题点2 相对滑动的临界条件4.如图所示,12个相同的木块放在水平地面上排成一条直线,相邻两木块接触但不粘连,每个木块的质量m =1.2 kg ,长度l =0.5 m .木块原来都静止,它们与地面间的动摩擦因数均为μ1=0.1,在左边第一个木块的左端放一质量M =1 kg 的小铅块(可视为质点),它与各木块间的动摩擦因数均为μ2=0.5,现突然给小铅块一个向右的初速度v 0=9 m/s ,使其在木块上滑行.设木块与地面间及小铅块与木块间的最大静摩擦力均等于滑动摩擦力,重力加速度g =10 m/s 2.求:(1)小铅块相对木块滑动时小铅块的加速度大小;(2)小铅块下的木块刚发生运动时小铅块的瞬时速度大小.【解析】 (1)设小铅块相对木块滑动时加速度大小为a ,由牛顿第二定律可知μ2Mg =Ma解得a =5 m/s 2.(2)设小铅块最多能带动n 个木块运动,对n 个木块整体进行受力分析,当小铅块下的n 个木块发生运动时,则有μ2Mg ≥μ1(mgn +Mg )解得n ≤3.33即小铅块最多只能带动3个木块运动设当小铅块通过前面的9个木块时的瞬时速度大小为v ,由动能定理可知-μ2Mg ×9l =12M (v 2-v 20) 解得v =6 m/s.【答案】 (1)5 m/s 2 (2)6 m/s命题点3 数学方法求解极值问题5.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.求:(1)物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少?【解析】 (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得L =v 0t +12at 2① v =v 0+at ②联立①②式,代入数据得a =3 m/s 2③v =8 m/s ④(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得F cos α-mg sin θ-F f =ma ⑤F sin α+F N -mg cos θ=0⑥又F f =μF N ⑦联立⑤⑥⑦式得F =mg (sin θ+μcos θ)+ma cos α+μsin α⑧ 由数学知识得cos α+33sin α=233sin(60°+α)⑨ 由⑧⑨式可知对应F 最小的夹角α=30°⑩联立③⑧⑩式,代入数据得F 的最小值为F min =1335N. 【答案】 (1)3 m/s 2 8 m/s (2)30°1335N“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

专题动力学中的临界与极值问题

专题动力学中的临界与极值问题

专题:动力学中的临界与极值问题临界问题:是指物体的某种状态恰能维持而未被破坏的一种特殊状态,这种分界线,通常以临界值和临界状态的形式出现在不同的问题中。

解决这类问题时,应注意“恰好出现”或“恰好不出现”等条件。

极值问题:是指研究动力学问题中某物理量变化时出现的最大值或最小值,一. 动力学中的临界问题例1. 如图1所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A,槽的半径为R,且OA与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m,木块的质量为M,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽练习1.如图所示,质量为M的木板上放着一质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,加在小板上的力F为多大,才能将木板从木块下抽出?二.动力学中的极值问题例2. 如图3所示,质量为m=1kg 的物块放在倾角为的斜面体上,斜面质量为,斜面与物块间的动摩擦因数为,地面光滑,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,试确定推力F 的取值范围。

()点拨:此题有两个临界条件,当推力F 较小时,物块有相对斜面向下运动的可能性,此时物体受到的摩擦力沿斜面向上;当推力F 较大时,物块有相对斜面向上运动的可能性,此时物体受到的摩擦力沿斜面向下。

找准临界状态,是求解此题的关键。

练习2.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求:使物体在水平面上运动的力F 的取值范围图1—1【跟踪练习】1.质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列二种情况下,细线对小球的拉力和斜面对球的弹力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;2.如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多施加一个力作用而不改变它的加速度,问:
(1)可能吗?
F
(2)若有可能,应沿什么方向施力?
对该力的大小有何要求?(通过定量计算和必要的文字
说明回答)
可编辑ppt
8
例7、光滑小球恰好放在木块的圆弧槽中,它的左边接
触点为A,右边接触点为B,球心为O,且OA与水平线成
α角,小球质量为m,木块的质量为M,各种摩擦与绳和

3
例2、斜面光滑、倾角α、小球质量m
①要使小球对斜面无压力,求斜
面体运动的加速度范围并说明其
方向。
②要使小球对细绳无拉力,求
m
斜面体运动的加速度范围并说
明其方向。
α
③若已知α=60°,m=2kg,当斜面体以a=10m/s2向右做匀 加速运动时,绳对小球拉力多大?斜面对小球的支持力?
可编辑ppt
4
例3、如图,AB、AC为不可伸长的轻绳,小球m=0.4kg,
“极小”、“极左”、“极右”等),从而把比较隐蔽的 临
界现象暴露出来作出解答的可编分辑p析pt 法.
2
例1、m=10kg、θ=37°,M=2kg,斜面与物块的动摩擦因
数µ=0.2,地面光滑,要使物体m相对斜面静止,力F应多
大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g
取10m/s2)
m
F
M
θ
可编辑ppt
滑轮的质量均不计,拉力至少多大时,球才能离开圆弧
槽。
O Aα B
可编辑ppt
9
例8、如图所示,小车上放着由轻质弹簧连接的两物体A、
B,质量分别为mA=1kg、mB=0.5kg,两物体与小车间的
最大静摩擦力分别是FfA=4N、FfB=1N,弹簧的劲度系数
k=0.2N/cm,为了使两物体随车
B
A
一起向右加速运动,弹簧的伸长
3.4 动力学中的临界与 极值问题
可编辑ppt
1
✓临界现象: 当某种物理现象变化为另一种物理现象,或物体从
某种特性变化为另一种特性时,发生质的飞跃转折状态,
通常叫做临界状态,出现“临界状态”时,既可理解成 “恰
好出现”也可理解成“恰好不出现”的物理现象。 ✓分析方法——极限分析法
通过恰当地选取某个物理量推向极端(“极大”、
量最大是多少cm? 3.3cm
可编辑ppt
10
AB与竖直方向成θ=370角,试求小车分别以a=5m/s2;
a=10m/s2加速度向右匀加速运动时,
两绳的拉力分别为多大?
C
B
θa A
可编辑ppt
5
例4、把长方体割成A、B两斜面体,质量为分别为mA和 mB,切面与水平地面成θ角,切面光滑,地面也光滑, 现对A、B施加一水平推力F,则:F应在什么范围内,A
不相对B滑动?
F
A θB
可编辑ppt
6
例5、一质量为m的物体,置于动摩擦因数为µ的水平地
面上,现用与水平方向成θ角的水平拉力F拉物体,如
图所示,为使物体能沿水平面做
F
θ
匀加速运动,F的取值范围怎样?
可编辑ppt
7
例6、一质量为m的物体,在一动摩擦因数为µ的水平面
上,受水平力F的作用做匀加速直线运动,现对该物体
相关文档
最新文档