硫磺制酸转化工段工艺的设计说明

合集下载

年产20万吨硫磺制酸工艺设计

年产20万吨硫磺制酸工艺设计

年产20万吨硫磺制酸工艺设计目录1.1.1设计规模设计规模:20万吨/年1.1.2 产品及规格:原料: 硫磺规格: 含水:0.24% 灰分:0.72%产品:98%的浓硫酸规格:产品质量标准执行中华人民共和国工业硫酸标准(GB / T 534-2002)一等品规格,硫酸质量符合下表要求。

表1.1 硫酸质量指标表指标名称浓硫酸1 硫酸(H2so4)≥98.02 灰粉%≤0.033 铁(Fe)含量≤0.014 砷(As)含量%≤0.0055 透明度mm≥506 色度ml≤ 2.01.1.3 硫酸的性质及基本用途硫酸纯品为无色油状液体。

工业品因含杂质而呈黄、棕等色。

密度(液态)1.831g/cm3。

凝固点10.36。

沸点(330±0.5)℃。

98.3%的硫酸水溶液为恒沸混合物,沸点339℃。

一种活泼的二元无机强酸。

能与许多金属、金属氧化物或其他酸的盐类反应生成硫酸盐。

浓硫酸具有强烈的脱水作用和氧化性。

能使木材、纸张、棉麻织物等强烈脱水而炭化。

与水混合反应激烈,放出大量热。

用水稀释时应在不断搅拌下将硫酸缓缓注入水中,切勿将水注入酸中造成溅酸伤人。

低于76%的硫酸与金属反应放出氢气。

生产方法有接触法和硝化法。

主要用于生产磷酸,磷肥,各种硫酸盐,二氧化钛(硫酸法),洗涤剂,染料,药物,合成纤维等。

也可用作搪瓷、金属的酸洗剂,有机合成的磺化剂和脱水剂,以及用于金属冶炼,石油精制和电子工业等。

用工业硫酸在石英设备中蒸馏提纯,或以去离子水吸收三氧化硫制成纯品,再经微孔过滤膜进行超净过滤而得半导体及硫酸。

超净高纯试剂。

是半导体工业用量最大的化学品。

一般和过氧化氢一起用于除去晶体上已完成屏蔽作用的光刻胶,或作腐蚀剂。

还可用作电子产品的清洗剂和腐蚀剂。

用纯净水吸收洁净三氧化硫气体制得蓄电池硫酸。

也可用蒸馏法、吹出法对工业硫酸提纯制得。

用作铅酸蓄电池中的电解液和电镀等。

1.1.4 我国硫酸工业的发展状况【1】我国硫磺制酸工业随着国民经济的发展得到了快速发展。

硫磺制酸(30万吨)和硫铁矿制酸(35万吨)工艺流程图及说明

硫磺制酸(30万吨)和硫铁矿制酸(35万吨)工艺流程图及说明

硫磺制酸(30万吨)和硫铁矿制酸(35万吨)工艺流程图及说明硫磺制酸(30万吨/年)生产线工艺流程说明:硫磺制酸生产原理:①硫磺燃烧生成SO2,其反应为:S + O2→SO2②SO2 经“转化”和“吸收”可得硫酸,一般用98.3%的浓硫酸吸收SO3 制硫酸,其反应为:2SO2 + O2→ 2SO3SO3 + H2O →H2SO4(1)熔硫工段原料硫磺室内储存,由带式输送机送入快速熔硫槽内熔融,加热介质为低压蒸汽,生成的粗制液硫经预涂槽、预涂槽泵送入叶片式液硫过滤器制取精制液硫并贮入地下精硫槽,再由液硫输送泵输入液硫贮罐储存,由精硫泵送至焚硫炉内的雾化磺枪。

(2)焚硫和SO2转化工段液硫由精硫泵加压后经硫磺喷枪机械雾化而喷入焚硫炉,空气经干燥塔干燥并经空气鼓风机加压后与液硫一起燃烧,出焚硫炉的是含10~10.5%SO2、1000~1050℃左右的高温炉气,该高温炉气首先进入余热锅炉回收热量,温度降至425℃再进入转化器的第一段触媒层进行转化。

经反应后,温度升至约600~610℃进入高温过热器回收热量,高温过热器换热后温度降至440℃的炉气进入转化器第二段触媒层进行催化反应,转化器后的温度510℃左右的烟气进入第二热交换器(II换)的管程空间,与来自第一吸收塔经过第三热交换器(III换)预热的SO2气体进行换热,温度降至440℃后进入转化器三段触媒层继续转化,转化后的烟气温度约在457℃左右,进入III换管程空间,与来自一吸塔出口含SO2的工艺烟气换热,降至240℃后进入第一省煤器与余热锅炉给水进行换热,再继续降温至165℃后进入第一吸收塔进SO3吸收,以上的工艺为SO2气体的第一次转化。

完成了第一次转化和吸收的含SO3的工艺烟气,进入转化器四段触媒层继续进行转化,但需要依次进入III换、II换的管程空间进行换热并升温至430℃进入转化器第四段触媒层进行第二次转化,至此,SO2的最终转化率可达到99.8%。

硫磺制酸原理及工艺过程解读

硫磺制酸原理及工艺过程解读

三 吸收工艺(SO3+H2O=H2SO4)
转化气依次通过浓硫酸吸收塔,用98.3%H2SO4浓硫 酸吸收SO3后,气相中SO3含量为0.021~0.4%。然后由 浓硫酸的吸收塔出口引至尾气处理部分或直接经过捕沫后 放空。各塔喷淋用硫酸均由塔的上部进入,经过喷淋装置 均匀分布在塔截面上,与来自塔下部的转化气逆流接触。 吸收SO3的硫酸从塔底引出时,其浓度可以提高了。为维 持入塔喷淋酸浓度的稳定,可在干燥塔和吸收塔之间进行 串酸,必要时加入补充水。
硫磺制酸原理及工艺过程
化工1201班 第四组
目录
• 一二三四五六 主 工 三 能 工 原 理 艺 艺 量 要废 流 流 的 设处 程程利 理 图 用备
原理
• 1. S+O2=SO2(雾化蒸发) 2. SO2+O2=SO3(转化反应 钒触媒的催化) 3. SO3+H2O=H2SO4(吸收塔) 1.雾化蒸发
气体换热器
• 气体换热器的设计主要是解决好管板变形、设备热应 力和气流分布等问题。一般采用盘环形挡板管壳式换 热器,换热器壳体采用低合金钢和碳钢制作壳程部分 采用扩大型管口并加气体导流板以使气流分布均匀。 换热器底部衬耐酸砖, 防止冷凝酸腐蚀。换热管采用 渗铝钢管, 管子与管板采用强度焊接。上、下管箱均 喷铝, 以有效避免高温氧化腐蚀。换热器的壳体设置 膨胀节, 以吸收高温操作状态下管、壳程热膨胀差异 引起的变形, 降低设备内应力。设备上的人孔与工艺 接管均采用焊接连接形式, 以确保高温操作状态下的 密封, 避免在高温下材料蠕变而发生泄漏。
空气鼓风机 • 空气鼓风机是磺制酸装置最为关键的设备,其 运行的好坏直接影响到整个装里的稳定性和可靠 性,是装置开车率最重要的保证。 • 大型空气鼓风机主要有轴流式和离心式两种结构 类型。 轴流式鼓风机采用透平压缩原理,风 机效率稍高叶片运转的线速度低于离心风机,可 以减少磨蚀另外可以利用静叶角度来调节风量。 但这种风机结构复杂, 造价高,与其配套的土建费 用高。

年产30万吨硫磺制硫酸工艺设计

年产30万吨硫磺制硫酸工艺设计

年产30万吨硫磺制硫酸工艺设计第一章综述1.1物质的性质1.1.1硫磺的性质硫磺一般呈块状或粉末状,浅黄色,带杂质者为灰绿色。

条痕黄白色,脂肪光泽,晶体透明或半透明。

硬度1.2,不完全解离,性脆。

硫磺的比重2.05-2.09。

摩擦生负电,易溶(180℃),燃烧时生淡蓝色火焰,并放出SO2气体。

硫磺外观为淡黄色脆性结晶或粉末,有特殊臭味。

分子量为32.06,蒸汽压是0.13KPa,闪点为207℃,熔点为119℃,沸点为444.6℃,相对密度为2.0。

硫磺不溶于水,微溶于乙醇、醚,易溶于二硫化碳。

作为易燃固体,硫磺主要用于制造染料、农药、火柴、橡胶、人造丝等。

1.1.2稀硫酸化学性质(1)可与多数金属(比铜活泼)氧化物反应,生成相应的硫酸盐和水;(2)可与所含酸根离子对应酸酸性比硫酸根离子弱的盐反应,生成相应的硫酸盐和弱酸;(3)可与碱反应生成相应的硫酸盐和水;(4)可与氢前金属在一定条件下反应,生成相应的硫酸盐和氢气;(5)加热条件下可催化蛋白质、二糖和多糖的水解。

(6)强电解质,在水中发生电离H2SO4=2H+ + SO41.1.3浓硫酸的性质脱水性⑴就硫酸而言,脱水性是浓硫酸的性质,而非稀硫酸的性质,即浓硫酸有脱水性且脱水性很强。

⑵脱水性是浓硫酸的化学特性,物质被浓硫酸脱水的过程是化学变化的过程,反应时,浓硫酸按水分子中氢氧原子数的比(2∶1)夺取被脱水物中的氢原子和氧原子。

⑶可被浓硫酸脱水的物质一般为含氢、氧元素的有机物,其中蔗糖、木屑、纸屑和棉花等物质中的有机物,被脱水后生成了黑色的炭(炭化)。

浓硫酸如C12H22O11=12C + 11H2O(4)黑面包反应在200mL烧杯中放入20g蔗糖,加入几滴水,搅拌均匀。

然后再加入15mL质量分数为98%的浓硫酸,迅速搅拌。

观察实验现象,可以看到蔗糖逐渐变黑,体积膨胀,形成疏松多孔的海绵状的炭。

强氧化性⑴跟金属反应①常温下,浓硫酸能使铁、铝等金属钝化;②加热时,浓硫酸可以与除金、铂之外的所有金属反应,生成高价金属硫酸盐,本身一般被还原成SO2Cu + 2H2SO4(浓) =加热)=CuSO4+ SO2↑+ 2H2O2Fe + 6H2SO4(浓) = Fe2(SO4)3+ 3SO2↑ + 6H2O在上述反应中,硫酸表现出了强氧化性和酸性。

硫磺制酸设计说明书

硫磺制酸设计说明书

目录1概述 (1)1.1系统组成 (1)2技术规范 (1)2.1工艺条件 (1)2.2余热锅炉规范 (1)2.3余热锅炉受热面积和全水容积 (1)3系统说明 (2)3.1烟气流程 (2)3.2汽水流程 (2)4主要结构说明 (2)4.1火管锅炉 (2)4.2高温过热器1B (3)4.3低温过热器4A、省煤器4A/4C (4)4.4省煤器3B (5)5安全附件及阀门 (5)6锅炉控制系统 (6)6.1过热蒸汽压力控制 (6)6.2过热蒸汽温度控制 (6)6.3锅炉汽包液位控制 (6)6.4汽包紧急放水联锁 (7)6.5锅炉汽包压力控制 (7)6.6声光报警 (7)7公用工程条件 (7)7.1工业冷却水用量 (7)7.2电源 (7)8锅炉型号编制说明 (8)9锅炉的水质要求 (8)10排放和清理要求 (8)11设计和制造标准规范 (8)12检验和试验 (9)1概述本套余热锅炉适用于80万吨/年硫磺制酸系统。

回收制酸系统热量生产中压过热蒸汽(3.82MPa、450℃),供汽轮发电机组发电。

1.1系统组成1.1.1火管锅炉,设在焚硫炉出口;1.1.2高温过热器1B,设在转化器一段出口;1.1.3省煤器3B,设在转化器三段出口;1.1.4低温过热器4A、省煤器4A/4C,设在转化器四段出口;2技术规范2.1工艺条件表1 余热锅炉工艺条件表2.2余热锅炉规范表2 余热锅炉规范2.3余热锅炉受热面积和全水容积表3 余热锅炉受热面积和全水容积3系统说明3.1烟气流程来自焚硫炉出口烟道的1056℃左右高温烟气进入火管锅炉的进口烟箱,由进口烟箱分流,通过锅壳的烟管,冷却到385℃,再经焚硫炉的高温烟气混合到420℃进入转化一段;转化一段出口的烟气经高温过热器1B从617℃左右冷却到445℃后进转化器二段;转化三段出口的烟气通过热交换器冷却到280℃,再经省煤器3B冷却到170℃引出;转化四段出口的烟气依次通过低温过热器4A、省煤器4A/4C从430℃冷却到140℃进一吸塔。

年产20万吨硫磺制酸工艺的设计说明

年产20万吨硫磺制酸工艺的设计说明

目录1.1.1设计规模设计规模:20万吨/年1.1.2 产品及规格:原料: 硫磺规格: 含水:0.24% 灰分:0.72%产品:98%的浓硫酸规格:产品质量标准执行中华人民共和国工业硫酸标准(GB / T 534-2002)一等品规格,硫酸质量符合下表要求。

表1.1 硫酸质量指标表指标名称浓硫酸1 硫酸(H2so4)≥98.02 灰粉%≤0.033 铁(Fe)含量≤0.014 砷(As)含量%≤0.0055 透明度mm≥506 色度ml≤ 2.01.1.3 硫酸的性质及基本用途硫酸纯品为无色油状液体。

工业品因含杂质而呈黄、棕等色。

密度(液态)1.831g/cm3。

凝固点10.36。

沸点(330±0.5)℃。

98.3%的硫酸水溶液为恒沸混合物,沸点339℃。

一种活泼的二元无机强酸。

能与许多金属、金属氧化物或其他酸的盐类反应生成硫酸盐。

浓硫酸具有强烈的脱水作用和氧化性。

能使木材、纸张、棉麻织物等强烈脱水而炭化。

与水混合反应激烈,放出大量热。

用水稀释时应在不断搅拌下将硫酸缓缓注入水中,切勿将水注入酸中造成溅酸伤人。

低于76%的硫酸与金属反应放出氢气。

生产方法有接触法和硝化法。

主要用于生产磷酸,磷肥,各种硫酸盐,二氧化钛(硫酸法),洗涤剂,染料,药物,合成纤维等。

也可用作搪瓷、金属的酸洗剂,有机合成的磺化剂和脱水剂,以及用于金属冶炼,石油精制和电子工业等。

用工业硫酸在石英设备中蒸馏提纯,或以去离子水吸收三氧化硫制成纯品,再经微孔过滤膜进行超净过滤而得半导体及硫酸。

超净高纯试剂。

是半导体工业用量最大的化学品。

一般和过氧化氢一起用于除去晶体上已完成屏蔽作用的光刻胶,或作腐蚀剂。

还可用作电子产品的清洗剂和腐蚀剂。

用纯净水吸收洁净三氧化硫气体制得蓄电池硫酸。

也可用蒸馏法、吹出法对工业硫酸提纯制得。

用作铅酸蓄电池中的电解液和电镀等。

1.1.4 我国硫酸工业的发展状况【1】我国硫磺制酸工业随着国民经济的发展得到了快速发展。

年产30万吨硫磺制硫酸工艺设计定稿(可编辑)

年产30万吨硫磺制硫酸工艺设计定稿(可编辑)

年产30万吨硫磺制硫酸工艺设计定稿毕业设计论文化工系题目年产30万吨硫磺制硫酸工艺设计专业 XXXX班级 XXXX姓名 XXXX学号 XXXX 指导教师 XXXX 完成日期 XXXX第一章综述11物质的性质111硫磺的性质硫磺一般呈块状或粉末状浅黄色带杂质者为灰绿色条痕黄白色脂肪光泽晶体透明或半透明硬度12不完全解离性脆硫磺的比重205-209摩擦生负电易溶180℃燃烧时生淡蓝色火焰并放出SO2气体硫磺外观为淡黄色脆性结晶或粉末有特殊臭味分子量为3206蒸汽压是013KPa闪点为207℃熔点为119℃沸点为4446℃相对密度为20硫磺不溶于水微溶于乙醇醚易溶于二硫化碳作为易燃固体硫磺主要用于制造染料农药火柴橡胶人造丝等112稀硫酸化学性质1可与多数金属比铜活泼氧化物反应生成相应的硫酸盐和水2可与所含酸根离子对应酸酸性比硫酸根离子弱的盐反应生成相应的硫酸盐和弱酸3可与碱反应生成相应的硫酸盐和水4可与氢前金属在一定条件下反应生成相应的硫酸盐和氢气5加热条件下可催化蛋白质二糖和多糖的水解6强电解质在水中发生电离H2SO42H SO4 2-113浓硫酸的性质脱水性⑴就硫酸而言脱水性是浓硫酸的性质而非稀硫酸的性质即浓硫酸有脱水性且脱水性很强⑵脱水性是浓硫酸的化学特性物质被浓硫酸脱水的过程是化学变化的过程反应时浓硫酸按水分子中氢氧原子数的比2∶1夺取被脱水物中的氢原子和氧原子⑶可被浓硫酸脱水的物质一般为含氢氧元素的有机物其中蔗糖木屑纸屑和棉花等物质中的有机物被脱水后生成了黑色的炭炭化浓硫酸如C12H22O1112C 11H2O4黑面包反应在200mL烧杯中放入20g蔗糖加入几滴水搅拌均匀然后再加入15mL质量分数为98的浓硫酸迅速搅拌观察实验现象可以看到蔗糖逐渐变黑体积膨胀形成疏松多孔的海绵状的炭强氧化性⑴跟金属反应①常温下浓硫酸能使铁铝等金属钝化②加热时浓硫酸可以与除金铂之外的所有金属反应生成高价金属硫酸盐本身一般被还原成SO2Cu 2H2SO4浓加热CuSO4 SO2↑ 2H2O2Fe 6H2SO4浓 Fe2SO43 3SO2↑ 6H2O在上述反应中硫酸表现出了强氧化性和酸性⑵跟非金属反应热的浓硫酸可将碳硫磷等非金属单质氧化到其高价态的氧化物或含氧酸本身被还原为SO2在这类反应中浓硫酸只表现出氧化性C 2H2SO4浓加热 CO2↑ 2SO2↑ 2H2OS 2H2SO4浓 3SO2↑ 2H2O2P 5H2SO4浓 2H3PO4 5SO2↑ 2H2O⑶跟其他还原性物质反应浓硫酸具有强氧化性实验室制取H2SHBrHI等还原性气体不能选用浓硫酸H2S H2SO4浓 S↓ SO2↑ 2H2O2HBr H2SO4浓 Br2↑ SO2↑ 2H2O2HI H2SO4浓 I2↑ SO2↑ 2H2O难挥发性高沸点制氯化氢硝酸等原理利用难挥发性酸制易挥发性酸如用固体氯化钠与浓硫酸反应制取氯化氢气体NaCl固H2SO4浓NaHSO4HCl↑常温2NaCl固H2SO4浓Na2SO42HCl↑加热Na2SO3H2SO4Na2SO4H2OSO2↑再如利用浓盐酸与浓硫酸可以制氯化氢气体酸性制化肥如氮肥磷肥等2NH3H2SO4NH42SO4Ca3PO422H2SO42CaSO4CaH2PO42稳定性浓硫酸亚硫酸盐反应Na2SO3H2SO4Na2SO4H2OSO2↑113稀硫酸化学性质1可与多数金属比铜活泼氧化物反应生成相应的硫酸盐和水2可与所含酸根离子对应酸酸性比硫酸根离子弱的盐反应生成相应的硫酸盐和弱酸3可与碱反应生成相应的硫酸盐和水4可与氢前金属在一定条件下反应生成相应的硫酸盐和氢气5加热条件下可催化蛋白质二糖和多糖的水解6强电解质在水中发生电离H2SO42H SO4 2-12硫酸的用途1用于肥料的生产硫酸铵俗称硫铵或肥田粉和过磷酸钙俗称过磷酸石灰或普钙这两种化肥的生产都要消耗大量的硫酸2NH3H2SO4 NH42SO4每生产一吨硫酸铵就要消耗硫酸折合成100计算760kg每生产一吨过磷酸钙就要消耗硫酸360kg2用于农药的生产许多农药都要以硫酸为原料如硫酸铜硫酸锌可作植物的杀菌剂硫酸铊可作杀鼠剂硫酸亚铁硫酸铜可作除莠剂最普通的杀虫剂如1059乳剂45和1605乳剂45的生产都需用硫酸前者每生产1t需消耗20发烟硫酸14t后者每生产1t需消耗硫酸36kg为大家所熟悉的滴滴涕每生产1t需要20发烟硫酸12t3用于冶金工业和金属加工在冶金工业部门特别是有色金属的生产过程需要使用硫酸4用于石油工业汽油润滑油等石油产品的生产过程中都需要浓硫酸精炼以除去其中的含硫化合物和不饱和碳氢化合物每吨原油精炼需要硫酸约24kg 每吨柴油精炼需要硫酸约31kg石油工业所使用的活性白土的制备也消耗不少硫酸5在浓缩硝酸中以浓硫酸为脱水剂氯碱工业中以浓硫酸来干燥氯气氯化氢气等无机盐工业中如冰晶石Na3AlF6硼砂Na2B4O710H2O磷酸三钠Na3PO4磷酸氢二钠Na2HPO4硫酸铅PbSO4硫酸锌硫酸铜硫酸亚铁以及其他硫酸盐的制备都要用硫酸许多无机酸如磷酸硼酸铬酸H2CrO4有时也指CrO3氢氟酸氯磺酸ClSO3H 有机酸如草酸[COOH2]醋酸CH3COOH等的制备也常需要硫酸作原料此外炼焦化学工业用硫酸来同焦炉气中的氨起作用副产硫酸铵电镀业制革业颜料工业橡胶工业造纸工业油漆工业有机溶剂的制备工业炸药和铅蓄电池制造业等等都消耗相当数量的硫酸6用于化学纤维的生产为人民所熟悉的粘胶丝它需要使用硫酸硫酸锌硫酸钠的混合液作为粘胶抽丝的凝固浴每生产1t粘胶纤维需要消耗硫酸12t15t 每生产1t维尼龙短纤维就要消耗98硫酸230kg每生产1t卡普纶单体需要用16t20发烟硫酸此外在尼龙醋酸纤维聚丙烯腈纤维等化学纤维生产中也使用相当数量的硫酸7用于化学纤维以外的高分子化合物生产塑料等高分子化合物在国民经济中越来越占有重要的地位每生产1t环氧树脂需用硫酸268t号称塑料王的聚四氟乙烯每生产1t需用硫酸132t有机硅树胶硅油丁苯橡胶及丁腈橡胶等的生产也都要使用硫酸8用于染料工业几乎没有一种染料或其中间体的制备不需使用硫酸偶氮染料中间体的制备需要进行磺化反应苯胺染料中间体的制备需要进行硝化反应两者都需使用大量浓硫酸或发烟硫酸所以有些染料厂就设有硫酸车间以配合需要9用于日用品的生产生产合成洗涤剂需要用发烟硫酸和浓硫酸塑料的增塑剂如苯二甲酸酐和苯二甲酸酯赛璐珞制品所需的原料硝化棉都需要硫酸来制备玻璃纸羊皮纸的制造也需要使用硫酸此外纺织印染工业搪瓷工业小五金工业肥皂工业人造香料工业等生产部门也都需要使用硫酸10用于制药工业磺胺药物的制备过程中的磺化反应强力杀菌剂呋喃西林的制备过程中的硝化反应都需用硫酸此外许多抗生素的制备常用药物如阿斯匹林咖啡因维生素B2B12及维生素C某些激素异烟肼红汞糖精等的制备无不需用硫酸11与原子能工业及火箭技术的关系原子反应堆用的核燃料的生产反应堆用的钛铝等合金材料的制备以及用于制造火箭超声速喷气飞机和人造卫星的材料的钛合金都和硫酸有直接或间接的关系从硼砂制备硼烷的过程需要多量硫酸硼烷的衍生物是最重要的一种高能燃料硼烷又用做制备硼氢化铀用来分离铀235的一种原料由此可见硫酸与国防工业和尖端科学技术都有着密切的关系13硫酸生产的工艺比较目前硫酸生产的主要方法有硫磺制酸硫铁矿制酸冶炼烟气制酸及其他制酸四种生产方法下面对硫磺制酸和硫铁矿制酸两种制酸方法进行工艺比较突出硫磺制硫酸的工艺和理性131 硫磺与硫铁矿的工艺比较采用矿石制酸工艺若装置生产能力为年产15万t硫酸矿石经提取矿中有效成分硫元素后产出的大量矿渣部分处理到钢铁厂作为炼铁原料大部分作为水泥厂生产中的添加料以调整水泥原料成分增加水泥强度矿石制酸工艺存在的最大问题是对环境污染大大量的污水粉尘及矿渣严重影响着周围环境另外操作环境恶劣操作强度高同时能耗也高环保费用无法承受而在人们对环境质量要求越来越高政府对环境整治决心越来越大的现状下上硫厂的硫酸生产到了非采取行动不可的时候了是保留原生产工艺矿石制酸而加大环保治理投入还是选择从工艺流程上改进措施从根本上解决问题经过认真深入的分析研究最终上硫厂选择了工艺改进的方案由矿石制酸改为硫磺制酸工艺即以液体硫磺为原料来生产硫酸从根本上解决了矿石制酸生产时产出的大量污水粉尘矿渣对环境的污染问题使上硫厂从沉重的环保困境中得以解脱使生产经营步入良性循环硫磺制酸与矿石制酸工艺比较1减少工序消除污染源硫磺制酸工艺少了粉碎水洗净化两道复杂的工序同时也消除了大量污染源粉尘污水矿渣2能源消耗下降1 工艺过程改进后动力设备投用量大幅减少动力消耗明显下降矿石制酸电耗为110 kWht 硫磺制酸为70 kWht 下降了36 深井水用量从100 万 ta 下降到20万 ta2 硫磺制酸工艺能源利用更加合理硫磺炉出口的1000℃温度的二氧化硫气体经中压锅炉过热器省煤器充分利用热量后二氧化硫气体降温至420℃进入转化器3 生产场地缩小为企业提供了发展空间由于工艺过程改进后工艺路线大幅缩短生产用地大幅缩小现生产装置占地仅不到原装置的十分之一且节省了大量矿料和矿渣堆场这对企业的发展和充分利用土地资源极为重要4 工艺改造前后的效果表 1-1 矿石工艺与硫磺工艺比较悬浮物吨年砷吨年氟吨年污水量万吨年排污费万元年矿石工艺670 101 12 430 87硫磺工艺116 0 0 168 27 综上所述硫磺制酸工艺相对矿石制酸工艺有许多的改进之处它是一条清洁生产的工艺更节能环保只有这样的生产工艺才能使化工企业生存和发展得更好走好可持续发展之路利国利民132冶炼烟气冶炼烟气制酸前冶炼烟气收尘需用收尘用的电除尘器电除尘器内部结构较复杂体积较大需要较高的能耗且需定期的维护保养增加了设备费用表1-2各种制酸方法消耗定额的比较消耗定额硫磺法硫铁矿法冶炼烟气法硫磺S995tt 0333硫铁矿含硫35tt 0957电kw h t-1 5506 9396 12612综上所述硫铁矿制酸生产工艺复杂管理要求高操作环境差及需要处理大量的固体和液体废物此工艺存在一定的局限性因此本设计采用硫磺制硫酸第二章硫磺制硫酸的工艺流程与操作指标21 原料及反应原理211原料硫磺制硫酸的主要原料为硫磺氧气其主要原料及规格见表2-1表2-1硫磺的成分及其含量含S ≥985含灰分≤04酸度以H2SO4 ≤003含As ≤005含有机物≤080含水分≤100机械杂质无表2-2 空气成分氮气079氧气021212 反应原理将硫磺经熔融焚烧产生二氧化硫气体经废热锅炉过滤器再通入空气氧化转化成三氧化硫再经冷却酸吸收制得成品硫酸其反应方程式如下 SO2SO2Q2SO2O22SO3QSO3H2OH2SO4Q22 工艺流程1鼓风机 2透平 3干燥塔 4最终吸收塔 5 硫酸循环槽 6烟囱 7中间吸收塔8发烟硫酸吸收塔 9发烟硫酸泵槽 10 SO3蒸发器 11冷却器 12发烟硫酸循环罐13发烟硫酸循环罐 14液态SO3 储罐 15皮带机 16熔硫槽 17熔硫储槽18过滤器19液硫储槽 20焚硫炉 21废热锅炉 22汽包 23过热器 24转化器 25热换热器 26冷换热器27最终省煤器 28中间省煤器 29硫酸储罐 30发烟硫酸储罐31发烟硫酸储罐221熔硫过滤及液硫储存工序1 流程描述原料固体硫磺通过带有称重设施的皮带机送至熔硫槽在皮带机上将石灰加入固体硫磺中中和硫磺中可能存在的酸性物质液体硫磺从熔硫槽流至带液下泵的储槽然后被送去过滤过滤在一个有预涂层的过滤器中进行经过滤后的液硫自流至熔硫储槽主要控制点过滤过程中熔硫储槽的液位由两个液位开关控制a 高高液位开关停硫磺皮带机b 高液位开关开硫磺皮带机3 工艺特点a ω灰分03的硫磺通过液硫过滤器滤能够使ω灰分0006灰分这样就省掉了热气体滤器并且过滤效果更好延长了催化剂的更换期b 熔硫槽加热盘管可以每组单独取出修理不影响正常生产c 过滤器设有液压抽芯和振动除渣装置作方便d 熔硫槽和带液下泵的熔硫储槽设有混凝顶并且在设备和管线上方开口处装有可移动的钢顶盖环境清洁安全可靠222焚硫转化及吸收工序2221 流程描述硫酸生产采用32两转两吸工艺流程液硫通过硫磺泵送至磺枪喷入焚硫炉喷硫量由变频电机调节雾化后的硫磺与经ωH2SO4985 硫酸干燥的空气反应生成ωSO2115 的气体SO2 气体经过废热锅炉后进入转化器一段转化后的气体经过蒸汽过热器后进入二段转化出二段的气体经过热换热器后进入三段转化出三段的气体经过冷换热器和中间省煤器后去发烟硫酸吸收塔吸收后的贫气再进入中间吸收塔继续吸收出中间吸收塔的气体一部分经过冷换热器和热换热器后进入四段转化四段出口气体与从中间吸收塔来的另一部分冷气体混合后进入五段转化五段出口气体经过最终省煤器后进入最终吸收塔干燥塔中间吸收塔和最终吸收塔公用一个循环槽2222主要控制点焚硫转化吸收工序主要的联锁控制有a 风机停车→焚硫炉进料泵停→注入循环酸罐的稀释水阀关闭b 锅炉汽包液位太低干吸塔流量太小仪表风压力太低透平和风机的安全条件不满足→风机停车装置开车时焚硫炉设置了燃料气升温系统这部分设置了以下联锁a 风机停车燃料气阀门关闭b 焚硫炉内无火焰燃料气阀门关闭2223 工艺特点a焚硫炉装有两个高压雾化喷嘴根据生产负荷选择投用一个或两个从而保证雾化效果b焚硫炉设置了煤气燃烧器操作简单燃烧完全c焚硫炉出口气体ψSO2控制在 115如此高的SO2含量降低了生产吨酸所耗的气体量减小了设备尺寸和投资从而最大程度地降低了生产成本 d为了缩短系统升温时间废热锅炉出口至转化器的第四催化剂床层设置了一条副线使第四五催化剂床层和第一二三催化剂床层能同时升温e 采用火管锅炉入口设有刚玉保护套管和耐火浇料防冲刷层f第一催化剂床层位于转化器的底部有利于催化剂的筛分其它四层的布置既考虑管道布置的经济性又要使隔板的温差降至最小g采用了四种型号催化剂分别是LP110LP120Cs110和Cs120型第一层加入部分低温催化剂Cs120第五层全部使用低温催化剂Cs110这样在390℃的低温下也具有良好的反应活性h 中间吸收塔和最终吸收塔内装有 ES型除雾器干燥塔内装有双层丝网除沫器干吸塔均采用SX槽式合金钢分酸器i 干燥塔中间吸收塔最终吸收塔公用一个酸循环槽这样简化了管道和设备安装且使开车和正常操作更加容易公用的酸循环槽中间有分隔板将槽分成最终吸收塔进料和另外两塔进料两部分分隔板上部有一个开口是两部分气相连通口下部有一个开口使最终吸收塔一侧到另外两塔一侧保持连续流动状态j 采用Alfa Laval板式酸冷却器Lewis液下泵k自控方案合理先进可靠DCS是引进Bialy公司的技术重要位置靠联锁控制转化系统催化剂床层温度通过遥控阀在DCS室控制循环酸罐液位汽包液位均采用自调l 充分利用系统的高中温废热生产382MPa和784MPa饱和蒸汽不仅能满足本装置蒸汽透平加热器以及保温伴热使用还可外供2224 转化工序热能利用流程本设计的热能利用流程与一般硫磺制酸装置相同出焚硫炉的高温炉气人废热锅炉产生39 MPa蒸汽发电出废热锅炉的SO2入转化器一段进行反应各转化段的反应热用于熔硫或提高废热锅炉的给水温度并尽量使系统多产蒸汽除用于发电及熔硫的蒸汽外尚有少量低压蒸汽供附近厂外用户使用其转化工序的热利用流程如图2 所示图2-2 转化工序热利用流程23工艺设计采用快速熔硫液硫精制液硫焚烧和32两转两吸工艺用次中压锅炉2台低压锅炉1台和省煤器2台回收焚硫与转化系统的高中温位热能生产25MPa10MPa 的次中压和低压蒸汽经减压后供公司内部的MAP和NPK装置生产使用设备选型既要节省投资又要运行稳定可靠经过全面论证一吸塔除雾器ES210型柱状纤维除雾器和转化催化剂LP-110和LP-120型钒催化剂选用美国孟山都环境化学公司生产的产品操作自动控制采用美国FOXBORO公司生产的集散控制系统DCS 一次仪表全部进口24工艺指标1 熔硫蒸气压力 05MPa06MPa2 保温蒸气压力 035MPa045MPa3 液硫温度 135℃145℃4 过滤器操作压力 075Mpa 压差 03Mpa5 液硫酸度≤20ppm6 液硫灰份≤30ppm7 各槽液硫液位 60-8025不正常现象及处理方法表2-3 不正常现象及处理方法现象原因处理方法干燥率低喷酸不均2淋酸浓度低3进气水量高4上塔酸量小1检查酸泵2提酸浓3分酸槽4增加上塔量吸收率低1淋洒酸量不够2进塔气温高3酸温酸浓高4气速过快或过低有短路现象1检查酸泵及分酸槽2加大淋洒量3加大冷却水量增加串酸量4降低气速停车检查酸泵不上酸或量小1管道有堵塞2泵体故障1设法疏通管道或找钳工处理2酸泵振动大泵轴套间隙或叶轮腐蚀找钳工更换备用泵循环酸和成品酸的浓度偏差很大1循环酸浓不稳忽高忽低2酸浓度计失灵3分析误差1稳定操作2联系仪表工处理3重新分析产酸量降低现象1漏酸2流量计失灵3系统阻力增大4吸收率降低1查明漏点堵漏2联系仪表工处理3视情况停车处理4查明原因处理酸浓低 1加水量大2分析误差1停止或调整加水量2重新分析酸温过高1循环冷却水泵跳闸2冷却风扁坏3热换器换热面积不够4系统负荷过大1查明原应因后处理2停车修复3增加换热面积4适当降低负荷尾气冒大烟1酸浓过高或过低2吸收塔上酸量不足3 酸温过高4 塔内气体走短路5 酸泵跳闸1调节浓度在控制范围2查明原因后处理3降低酸温4查明原因后停车处理5立即起泵和停车处理酸泵电流低1酸槽液位低2酸泵叶轮腐蚀严重3电器故障1提高液位2停车检修酸泵3查明原因处理酸泵电流波动有杂音 1 轴承烧坏2泵进口漏气3循环液体量太少1停车更换2查清漏点停车处理3查清漏点停车处理第三章主要设备31 主要设备311熔硫工段包括原料工段熔硫工段的主要设备有输送机熔硫槽过滤助虑槽液硫过滤机液硫贮槽精硫槽硫磺泵等主要管道为夹套管该工段的非标设备和管道均需保温熔硫槽为衬有耐酸砖的圆柱形混凝土槽设有6组双螺旋同心加热蛇管和搅拌器换热面积936搅拌器带有4叶螺旋桨叶片和6叶平板涡轮生石灰靠螺杆挤压机加入设计能力为050 h硫磺皮带机的坡度为57°设计能力为1100016000h 过滤器是预涂带压过滤器有一个带夹套的卧式外壳在壳内有分布在固定滤框上的竖直滤板过滤器用特殊的合成橡胶垫密封滤芯靠液压系统抽出设有一台往复式液压油泵滤饼靠风动装置排出壳体回收熔硫储罐是带保温的圆柱形容器配有5个翅片管式加热器在罐的四周有4个空气入口中心有一个放空口且带有蒸汽伴热以防堵塞四周入口和中心出口的高度差保证了气体的流动312焚硫转化工段焚硫转化工段的主要设备有焚硫炉热力设备废热锅炉过滤器省煤器等转化器热换热器冷换热器主要管道为烟气管道大部分管道可现场卷制或是直接购买的螺旋管该工段的焚硫炉要砌耐火砖热力设备转化器换热器和管道均需保温焚硫炉焚硫炉为卧式圆筒形内有耐火衬里设有3层竖直隔板焚硫炉一端直接废热锅炉相连另一端为空气联箱上面装有两个硫磺喷嘴焚硫炉装有开工煤气燃烧器该炉的设计功率最大值为5700KW 提供的操作弹性为51 主要包括炉前煤气集合管总阀控制进入燃烧器煤气与风的比例火焰监视系统具有自动切断煤气进料阀的功能电子打火器图3-1 焚硫炉结构省煤器两台省煤器均为立式碳钢壳体盘管为铸铁翅片管水走管程中间省煤器只有一组盘管最终省煤器则有两组盘管其中一组为锅炉给水预热盘管另一组为饱和蒸汽预热盘管饱和蒸汽预热盘管位于最终省煤器的顶部温度较高部位锅炉给水及饱和蒸汽依次流经 3组盘管其先后顺序由工艺气体的温度决定省煤器底部壳体有耐酸衬里并带一密封罐防止由于烟气冷凝而引起的腐蚀废热锅炉废热锅炉为火管型正常操作压力为38003900 KW锅炉气体旁路设有一个柱塞阀柱塞阀的阀杆处于大约345℃气流中免受热气体的损坏另外旁路柱塞阀的填料箱上接有一条仪表风管线这样便能在轴密封周围形成一个平衡的压力有效地防止了硫酸盐在轴密封上结晶保证了柱塞阀的灵活转动旁路柱塞阀前设有手动蝶阀在低负荷生产情况下如果全开旁路柱塞阀都不行则需通过调节此蝶阀来提高旁路气体的影响催化剂加热升温期间热气体需要全部走旁路时也会用手动蝶阀调节此阀的阀杆处也通有仪表风废热锅炉的出口管箱上接有一段开工用的可拆卸烟囱通过此烟囱可排放烘炉时燃料气燃烧所产生的废气废热锅炉的壳程上还接有一根从装置界区外来的高压蒸汽管线用于开工时锅炉的预热图3-2 第一废热锅炉水管废热锅炉结构图图3-3 第二废热锅炉低温过热器结构图图3-4 第三废热锅炉高温过热器结构图313干吸工段干吸工段的主要设备有干燥塔第一吸收塔槽酸冷却器硫酸泵等酸管为不锈钢管道一般需带阳极保护干燥塔和吸收塔干燥塔中间吸收塔和最终吸收塔均是立式筒形内有砖衬的结构其中的陶瓷填料由陶瓷支撑板支撑整塔竖立在水泥框架上在填料上部是合金钢循环酸分布器分布器由安装在竖直降液管上的左右排列的几条支管构成以获得理想的分布形式在填料层上部降液管的喷射点均匀排列着180厚的 50矩鞍填料干燥塔和中间吸收塔内填料层高度为2130 而最终吸收塔填料层高度为2440中间吸收塔和最终吸收塔内装有 ES型除沫器干燥塔内装有双层丝网除沫器图3-5 吸收塔结构示意图314成品工段成品工段的主要设备有硫酸贮槽输送泵主要管道为普通碳钢或不锈钢管道图3-6 转化器结构示意图表3-1转化器内钒催化剂的用量及分配比例段型号体积 m3 占总体积比例一上 108 50 6下 101 100 11二 101 180 20三a 101 100 11。

硫磺制酸工艺规程与操作规程要点

硫磺制酸工艺规程与操作规程要点

硫磺制酸工艺规程与操作规程第一部分:工艺规程:一:产品说明:硫酸是三氧化硫(S03)和水(H20)的化合物,硫酸的分子式:H2SCK 纯硫酸的分子量为98.08,是无色、无臭而透明的油状液体。

工业上生产的硫酸都是纯硫酸(100% )的水溶液。

其性质如下:(一)硫酸的浓度与比重:商品硫酸的浓度为》92.5%,浓度较高的硫酸比重与浓度对照表见下表。

在同一温度下,硫酸水溶液的比重随着它的浓度的增加而增加,当浓度达到97%时比重达到最大值,过此则递减至100%时为止。

同一浓度的硫酸,它的比重随温度的升高而降低。

20 C时硫酸的比重与浓度对照表(二)硫酸的结晶温度:在浓硫酸(指浓度在90%以上)范围内,98%硫酸结晶温度-0.7C, 93% 硫酸结晶温度-27E。

因此,商品硫酸为93%的硫酸。

(三)硫酸的沸点和蒸汽压:当硫酸浓度在98.3%以下时,它的沸点随浓度的升高而增加,浓度为98.3%的硫酸,沸点最高(3366C),以后则开始下降。

100%硫酸的沸点为2962C。

硫酸水溶液上面的总蒸汽压,随其浓度的增加而逐渐下降,当浓度增加到98.3%时,蒸汽压降至最小值。

硫酸上面的蒸汽是由H2O、H2SO4和SO3分子的混合物所组成。

在这种情况下,仅98.3%硫酸的蒸汽成分与液体成分相同。

水蒸汽压小是硫酸的重要性质。

温度越低、浓度越高,酸液面上的水蒸气平衡分压越小。

用浓硫酸来干燥气体就是利用了这一性质。

(四)硫酸的稀释热:硫酸能以任何比例与水混合。

硫酸中加入水就有热量放出,用水稀释的浓度越低,放出的热量越多。

如果将硫酸无限稀释下去,直到再加水也不会有热量发生,这样整个过程放出热量的总和称为溶解热或无限稀释热,它等于22000卡/摩尔。

由于浓硫酸的稀释热很大,同时由于酸、水比重上的差异,因此,在实验室中稀释浓硫酸时,不能将水倒入硫酸,必须将硫酸慢慢注入水中,同时不断搅拌,以防反应过剧造成酸沫飞溅伤人。

在生产过程中,需要往浓硫酸中加水时应当用密闭设备,上设足够大的水汽排出口,而且加水不可过猛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

200kt/a硫磺制酸转化工段工艺设计目录第一章绪论 (1)1.1.硫酸的性质与用途 (1)1.2.硫酸的工业发展史 (2)1.3.硫酸的工业概况及其发展趋势 (3)1.3.1.国外硫酸工业概况及其发展趋势 (3)1.3.2.中国硫酸工业概况及其发展趋势 (4)第二章厂址的选择 (7)第三章原料的选择 (9)3.1.原料的选择 (9)3.2.硫磺制酸的优点 (9)3.3.硫磺的来源 (10)第四章转化工段工艺设计 (12)4.1.基本原理 (12)4.1.1.二氧化硫氧化热力学 (12)4.1.2.二氧化硫氧化动力学 (12)4.2.工艺流程 (14)4.2.1.工艺流程的确定 (14)4.2.1.1.二转二吸与一转一吸 (14)4.2.1.2."3+1"与"3+2"转化工艺的主要区别 (15)4.2.1.3.工艺流程的确定 (17)4.2.2.工艺条件 (18)4.2.2.1.转化器一段入口条件中二氧化硫含量 (18)4.3.工艺设备 (20)4.3.1.转化工段的主要工艺设备 (20)4.3.2.自动控制方案 (22)4.4工艺计算 (23)4.4.1.物料衡算 (24)4.4.2.能量衡算 (26)第五章环境保护与安全生产 (33)5.1.环境保护 (33)5.2.安全生产 (33)第六章总结 (34)致 (36)参考文献 (38)第一章 绪论1.1 硫酸的性质和用途[1,2]硫酸(H 2SO 4)相对分子质量98.078,是指SO 3与H 2O 的摩尔比等于1的化和物,或指100% H 2SO 4。

外观为无色透明油状液体,密度(20℃)为1.8305g/cm 3。

工业上使用的硫酸是硫酸的水溶液,即SO 3与H 2O 摩尔比≤1的物质。

发烟硫酸是SO 3的硫酸溶液,SO 3与H 2O 的摩尔比≥1的物质,亦为无色油状液体,因其暴露于空气中,逸出的SO 3与空气中的水分结合形成白色酸雾,固称之为发烟硫酸。

硫酸或发烟硫酸的浓度均可用H 2SO 4质量分数表示。

但发烟硫酸的浓度常用其中所含游离SO 3(即除H 2SO 4也外的SO 3)或全部的SO 3质量分数表示。

不同表达方式的硫酸浓度可用也下公式相互换算:C H 2SO 4=1.225C SO 3 (t)=100+0.225C SO 3 (f)C H 2SO 4——H 2SO 4的质量分数,%;C SO 3 (t)——SO 3的质量分数,%;C SO 3 (f)——游离SO 3质量分数,%。

表1.1 硫酸的组成几种典型浓度硫酸的组成如上表1.1所示。

硫酸是强酸之一,具有酸的通性。

但浓酸有其特殊的性质。

物理性质方面,有相对密度大,沸点高,液面上水蒸汽的平衡分压极低等特性;化学方面,有氧化,脱水和磺化的特性,有关物理,化学性质及有关数据可查阅文献。

硫酸的用途非常广泛,无论在工业部门,还是在发展农业生产,满足人民物质生活需要,加强国防力量,都起非常重要作用。

硫酸在大宗生产的化学品中产量居于前列,最重要的是化工原料之一。

硫酸最主要用途是生产化学肥料,用于生产磷铵,重过磷酸钙,硫铵等。

在中国,硫酸产量的60%以上用于生产磷肥和复肥。

在化学工业中,硫酸是生产各种硫酸盐的主要原料,是塑料,人造纤维,染料,油漆,药物等生产中不可缺少的原料。

在农药,除草剂,杀鼠剂的生产中亦需要硫酸。

在石油工业中,石油精练需使用大量硫酸作为洗涤剂,以除去石油产品中不饱和烃和硫化物等杂质。

在冶金工业中,钢材加工及成品的酸洗要用硫酸;电解法精练铜,锌,镉,镍时,电解液需使用硫酸;某些贵金属的精练亦需用硫酸液去夹杂的其它金属。

在火炸药及国防工业中,浓硫酸用于制取硝化甘油,硝化纤维,三硝基甲苯等炸药。

原子能工业中用于浓缩铀。

运载火箭所用燃料亦离不了硫酸。

1.2 硫酸的工业发展简史[1,2]8世纪左右,阿拉伯人干馏绿矾(FeSO4·7H2O)得到一种腐蚀性液体,该液体即为硫酸。

15世纪后半叶,有人将硫磺与硝石一起在潮湿的空气中焚烧,制得稀硫酸。

16世纪初,在波西米亚(Bohemia)开始以硫酸铁干馏法制造发烟硫酸。

1570年,G •窦纳阿斯(Donaeus)阐明了硫酸的多种性质,此后人民才真正认识了硫酸。

1740年前后,英国人J •沃德(Ward)在玻璃器皿中燃烧硫磺和硝石混合物,并将产生的含二氧化硫,氮氧化物及氧气的混合气体与水反应制成了硫酸。

1746年,英国人J ·罗巴克(Roebuck)依照以上方法,在伯明翰建成一座6英尺见方的铅室,以间歇方式制造硫酸。

成为世界上最早的铅室法制酸工厂。

1810年,英国人金·赫尔克开始采用连续方式焚硫,这是连续法生产硫酸的开端。

此后,铅室法在发展中不断得到完善。

其中,法国著名科学家盖·吕萨克(Gay lussac)于1827年提出在铅室后设置吸硝塔;英国人J·格洛弗(Glover)于1859年提出在铅室前设置脱硝塔。

这两项技术的结合使用实现了氮氧化物的循环,至此铅室法工艺基本成熟。

早期的铅室制酸厂,所用原料为硫磺。

19世纪30年代,英国和德国相继开发成功以硫铁矿为原料的制酸技术。

之后,利用冶炼烟气制酸亦获成功。

1911年,奥地利人C·奥普尔(Opl)以塔替代铅室,在赫鲁绍建成了世界上第一套塔式法制酸装置。

自此,硫酸工业的发展进入塔式法时代。

1923年,H·彼德森(Peterson)在匈牙利乌扎罗尔建成1塔脱硝,2塔成酸,4塔吸硝的七塔式装置,并对酸循环流程和塔气液接触方式进行了改进,使生产效率有较大的提高。

铅室法和塔式法制酸均以氮氧化和物为媒介,使SO2在O2及H2O存在的情况下生成硫酸,因此又称之为硝化法。

硝化法制得的硫酸(H2SO4)含量低(< 78%H2SO4),杂质含量高(主要含有尘及氮氧化合物),且需耗用大量硝酸或硝酸盐,远远满足不了染料、化纤、有机合成、石油化工等部门的要求。

因此,此法的发展受到限制。

1831年,英国人P·菲利普斯(Philips)提出在铂丝过铂粉上进行SO2转化制SO3的方法,后人称之为接触法。

1875年开始在工业上应用。

19世纪末20世纪初,相继建成一些接触法制酸装置。

但是,以铂为催化剂的接触法,酸成本较高,尽管酸的需求量日益增大,限于经济原因,该项技术的发展较为缓慢,硝化法仍占优势。

钒化合物作为SO2转化催化剂是由R.·耶尔斯(Meyers)于1899年提出的。

1913年,德国BASF公司开发出添加碱金属盐的钒催化剂,使催化剂达到了铂催化剂的水平,而且价格低、不易中毒。

此后,在世界围,钒催化剂很快取代了铂催化剂的地位。

在硝化法和接触法的竞争中,由于钒催化剂的广泛应用,接触法占明显优势,从此硝化法逐渐被淘汰。

第二次世界大战后,硫酸需求量迅速增加,硫酸工业发展逐渐加快。

生产技术的发展主要表现为:生产装置的大型化,开发和采用生产强度更高的新型反应技术和新型单元操作设备,生产控制自动化,节能与废热利用,新型材料的采用等。

20世纪50年代初,德国和美国同时开发成功硫铁矿沸腾焙烧技术;1964年,德国拜耳公司首先采用两转两吸技术;1971年,德国拜耳公司又首先建成一座直径4m的沸腾床转化器;1972年,法国尤吉纳-库尔曼公司建成第一座以硫磺为原料的加压法装置,装置操作压力为0.5Mp,日产酸550t(100%H2SO4);20世纪80年代初,前联学者提出非稳态转化器,1982年实现工业化。

其它还有:低温位废热利用的发展,环状及含铯低起活温度新型催化剂的应用,三废治理及综合利用等,都标志着硫酸生产技术的进展。

1.3 硫酸工业概况及其发展趋势1.3.1 国外硫酸工业概况及其发展趋势[3,4,5]接触法制硫酸几乎是目前世界上硫酸工业的唯一生产方法。

其原料为能够产生二氧化硫的含硫物质,一般有硫磺、硫化物、硫酸盐、含硫化氢的工业废气(包括冶炼烟气)等。

在不同国家中,由于本国含硫资源的不同,生产硫酸的原料路线有很大的差异,且所用原料的比重随硫资源的供给情况也有所调整。

相对而言,硫磺资源较丰富,制酸过程简单,且经济效益好,以硫磺为原料制酸占总酸量的绝大多数。

近年来全世界的硫酸产量中,硫磺制酸约占65%,硫铁矿制酸约占16%,其它原料制酸约占19%。

自从接触法硫酸生产工艺出现两转两吸技术以来,硫铁矿制酸的基本工艺过程没有大的改变,仍为沸腾焙烧、电除尘、酸洗净化、电除雾、塔式干吸、两转两吸。

硫酸工业提高劳动生产率、降低成本、减少污染的进展主要在以下几方面:①装置的大型化。

装置的大型化可以显著降低成本和提高劳动生产率。

因此,小型工厂正逐渐被大型工厂取代,发达国家新建装置的规模一般为300~900kt/a.目前,硫酸大部分的产量是由300kt/a以上的装置生产。

②设备结构和材质的改进。

改进设备结构可增强设备生产强度、减小设备尺寸、降低损耗、延长寿命,降低建设投资和运行费用。

其中新材质的应用为设备性能的提高,结构的改进和新技术应用提供了保证。

这方面的进展是近20年硫酸工业技术发展的主要表现。

③节能与废热利用。

20世纪70年代广泛利用了含硫原料燃烧热,以及SO2转化的反应热产生蒸汽发电,其电量出、除满足本身需要外,一半左右的电能向外输送。

对于硫磺制酸装置,热利用率可达到65%~70%。

80年代初开发了 HRS 低温位热量回收系统,使废热利用率达到90%以上。

为了节省系统动力,普遍提浓度,广泛采用了环状催化剂、大开孔率填料支承结构、新兴高了原料气中SO2填料等技术。

④生产的计算机管理。

在新建厂中,普遍采用计算机集散控制系统(DCS)和计算机管理系统,以确保装置运行稳定和达到最优操作状态。

⑤减少污染物排放,保护环境。

目前,国外除了广泛采用两转两吸工艺提高SO2的转化率,以及净化几乎全部为酸洗外,为进一步使转化率达到99.9%以上,愈来愈多的装置使用高活性含铯催化剂和“3+2”五段催化层。

据称,该工艺既能降低成本又能达到严格的排放标准。

可以预见,接触法硫酸生产将向增加能量回收、减少排放和降低成本的方向发展,其手段仍然主要依赖以上五个方面。

此外,多年来在SO2沸腾转化、加压转化、非稳态转化等方面的研究成果,为接触法硫酸生产技术的发展提供新的契机。

引人注目的是,新近美国拉尔夫-帕森斯(Ralph-Parsons)公司开发的纯氧非催化法生产工艺和俄罗斯等国开发的利用核能同时H2SO4和H2的工艺为硫酸生产开辟了新天地。

1.3.2 中国硫酸工业概况及发展趋势[1,3,4,6]硫酸工业是中国化学工业中建立较早的一个部门。

1874年机器制造局三分厂建成中国较早的铅室板装置,1876年投产,日产硫酸约2吨,用于制造无烟火药。

相关文档
最新文档