偏最小二乘方法

合集下载

偏最小二乘法

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。

近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。

由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。

本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。

偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。

该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。

如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。

在PLS 方法中用的是替潜变量,其数学基础是主成分分析。

替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。

在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。

§§ 6.3.1 基本原理6.3 偏最小二乘(PLS )为了叙述上的方便,我们首先引进“因子”的概念。

一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。

偏最小二乘回归方法

偏最小二乘回归方法

偏最小二乘回归方法偏最小二乘回归(PLSR)方法是一种用于建立两个或多个变量之间的线性关系模型的统计技术。

这种方法是回归分析的变种,特别适用于处理高维数据集或变量之间具有高度相关性的情况。

PLSR方法的目标是找到一个最佳的投影空间,以将自变量和因变量之间的关系最大化。

PLSR方法首先将自变量和因变量进行线性组合,然后通过最小二乘法来拟合这些组合和实际观测值之间的关系。

通过迭代过程,PLSR方法会削减每个变量的权重,并选择最相关的变量组合来构建模型。

PLSR方法使用最小二乘回归来估计模型参数,并通过交叉验证来确定模型的最佳复杂度。

一般而言,PLSR方法需要满足以下几个步骤:1.数据预处理:包括数据中心化和标准化操作。

中心化是指将数据的平均值平移到原点,标准化是指将数据缩放到相同的尺度,以便比较它们的重要性。

2.建立模型:PLSR方法通过迭代过程来选择最相关的变量组合。

在每次迭代中,PLSR方法计算每个变量对自变量和因变量之间关系的贡献程度。

然后,根据这些贡献程度重新计算变量的权重,并选择最重要的变量组合。

3.确定复杂度:PLSR方法通常通过交叉验证来确定模型的最佳复杂度。

交叉验证可以将数据集划分为训练集和测试集,在训练集上建立模型,并在测试集上评估模型的性能。

根据测试集上的性能表现,选择最佳的复杂度参数。

PLSR方法的优点在于可以处理高维数据集,并能够处理变量之间的高度相关性。

它可以找到自变量与因变量之间的最佳组合,从而提高建模的准确性。

此外,PLSR方法还可以用于特征选择,帮助研究人员找到对结果变量具有重要影响的变量。

然而,PLSR方法也存在一些限制。

首先,PLSR方法假设自变量和因变量之间的关系是线性的,因此无法处理非线性模型。

其次,PLSR方法对异常值非常敏感,可能会导致模型的失真。

此外,PLSR方法也对样本大小敏感,需要足够的样本数量才能获得可靠的结果。

总的来说,偏最小二乘回归方法是一种用于建立变量之间线性关系模型的统计技术。

偏最小二乘回归方法(PLS)

偏最小二乘回归方法(PLS)

偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。

多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。

而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。

为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。

最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。

它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。

近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。

偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。

它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。

偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。

下面将简单地叙述偏最小二乘回归的基本原理。

偏最小二乘方法

偏最小二乘方法

75 152 102 91
X2
63 96
132 218
82 176
36 74
69 157 124 51
2 7 5
Y
4
3
3
9 12 3
6
8
2
由此得到的B矩阵为:
0.71 0.18 0.42
B2
0.42 0.24
0.19 0.20
0.20 0.03
0.12 0.03
0.01
对于此模型,Err=0.07。它比前者为小,这就意味着对于矩 阵Y,第二个数学模型比第个要更有效,这是一种假象。由 于X中引入最后一列,使得B2中上部3*3部分与前边所提B不 相等(B为真实模型)。由B2计算所得Y尽管误差要小,但其 数学模型所描述的自变量与因变量间的关系并不真实。其原 因主要为多元线性回归方法是采用整个X矩阵来建立数学模 型,而并不顾及在X中的信息与真实模型相关与否。很显然 ,若所得结果偏离了其实际数学模型,则对于未知试样的预 测也是错误的。
事实上,完全满足上述条件比较困难。当噪声较强,或干 扰较严重时,有可能导致所得数学模型失真,如下例:
75 152 102
X
63
132
82
96 218 176
69
157
124
2 7 5
Y
4
3
3
9 12 3
6
8
2
运用式(6.3)则可得B矩阵:
0.71 0.55 0.48 B 0.42 0.41 0.24
为了克服多元线性回归的不足,在数学方法上引进了主 成分回归方法(PCR)。
§ 6.2 主成分回归
主成分回归可分为两步: 测定主成分数,并由主成分分 析将X矩阵降维; 对于降维的X矩阵再进行线性回归分析。

偏最小二乘法原理(一)

偏最小二乘法原理(一)

偏最小二乘法原理(一)偏最小二乘法什么是偏最小二乘法?偏最小二乘法(PLS),是一种回归分析方法,主要用于多元多品种属性向量,特别适用于变量间共线性较强,样本数据量少的情况下。

PLS主要通过特征提取的方式进行建模,从而提高了建模的精度和准确性。

偏最小二乘法原理偏最小二乘法主要是从两个方向出发:1.最大化自变量的方差,同时找到与因变量具有最大相关性的新变量2.在新变量上建立回归模型PLS的具体步骤1.数据预处理:对原始数据进行标准化处理或中心化处理2.选取潜在变量(Latent Variable):通过对原始数据进行特征提取,得到与自变量具有最大相关性的新变量3.建立回归模型:通过对新变量进行回归模型拟合,得到最终模型4.模型验证:通过对样本外数据进行预测和验证,评估模型泛化能力PLS与其他回归方法的比较1.与PCA的比较对于相同的数据集,PCA和PLS都可以进行降维处理,但其目的不同。

PCA的目的是最大化变量之间的协方差,而PLS的目的是最大化自变量与因变量之间的相关性。

因此,PLS通常比PCA更适合解决回归问题。

2.与传统回归模型的比较传统回归模型主要依靠自变量与因变量之间的线性关系来建立模型,但这种模型很容易出现过度拟合的情况。

在自变量之间存在共线性的情况下,PLS可以通过特征提取的方式减少冗余信息,从而提高模型的泛化能力。

总结偏最小二乘法是一种很有用的回归分析方法,尤其在多元多品种属性向量、变量之间共线性较强、样本数据量少的情况下,PLS具有很好的优化效果。

但是,在应用过程中需要注意数据预处理、潜在变量的选取和数据验证等方面的问题,才能保证模型的精度和准确性。

PLS的应用领域PLS主要应用于以下方面:1.化学领域:如药物分析、食品工业等2.生物医学领域:如疾病诊断、蛋白质研究等3.工业领域:如质量控制、过程优化等4.土木工程领域:如工程设计、性能预测等PLS的优点1.PLS可以通过特征提取的方式解决变量间共线性的问题,从而提高模型的泛化能力2.PLS可以在有限的数据量下得到较为准确的预测结果,尤其适用于数据样本量较少,但变量较多的情况3.PLS可以采用交叉验证的方法对模型进行评估,从而提高模型的鲁棒性PLS的缺点1.PLS需要对数据进行预处理,特别是当数据存在噪声、异常点等问题时,可能会影响模型的准确性2.PLS需要考虑潜在变量的选取和合适的回归模型建立,因此需要一定的专业知识和经验3.PLS在处理大量变量时,可能会导致过拟合问题,因此需要对模型进行调整和优化结语偏最小二乘法是一种非常实用的回归分析方法,在多种领域有广泛的应用。

偏最小二乘算法

偏最小二乘算法

偏最小二乘算法偏最小二乘算法(Partial Least Squares Regression,简称PLS 回归)是一种常用的统计分析方法,用于处理多变量数据集中的回归问题。

它是在被解释变量与解释变量之间存在复杂关系的情况下,通过降维和建立线性模型来解决回归问题的一种有效手段。

下面将详细介绍偏最小二乘算法的原理和应用。

一、原理介绍偏最小二乘算法的核心思想是通过寻找解释变量与被解释变量之间最大的协方差方向,将原始变量空间转换为新的综合变量空间,从而实现降维的目的。

具体步骤如下:1. 数据预处理:对原始数据进行中心化和标准化处理,以消除量纲和变量之间的差异。

2. 求解权重矩阵:根据解释变量和被解释变量的协方差矩阵,通过迭代的方式求解权重矩阵,使得新的综合变量能够最大程度地反映原始变量之间的关系。

3. 计算综合变量:将原始变量与权重矩阵相乘,得到新的综合变量。

4. 建立回归模型:将新的综合变量作为自变量,被解释变量作为因变量,通过最小二乘法建立回归模型。

5. 预测与评估:利用建立的回归模型对新的解释变量进行预测,并通过评估指标(如均方根误差、决定系数等)评估模型的拟合效果。

二、应用案例偏最小二乘算法在多个领域都有广泛的应用,下面以药物研究为例,介绍其应用案例。

假设我们需要研究一个药物的活性与其分子结构之间的关系。

我们可以收集一系列药物分子的结构信息作为解释变量,收集相应的生物活性数据作为被解释变量。

然后利用偏最小二乘算法,建立药物活性与分子结构之间的回归模型。

通过偏最小二乘算法,我们可以找到最相关的分子结构特征,并将其转化为新的综合变量。

然后,利用建立的模型,我们可以预测新的药物的活性,从而指导药物设计和优化。

三、优缺点分析偏最小二乘算法具有以下优点:1. 能够处理多变量之间的高度相关性,避免了多重共线性问题。

2. 通过降维,提高了模型的解释能力和预测精度。

3. 对于样本量较小的情况,仍能有效建立回归模型。

偏最小二乘方法优秀课件

偏最小二乘方法优秀课件

b12 ...
b1m
由此得到
b21
b22
...
b2
m
e11 e21
E (e1
e2
)
e12
...
e
22
...
e1n
e
2
n
Y = XB + E
对于2-P 个因变量的图形表示为: 2-p n 2-p 2-p
Y=X B+E
m 最小二乘的解为:
n
mn
B(XX)1XY
(6.3)
多元线性回归应用很广泛,因为在许多情况下该种方法具有 良好的性能。但是,此种方法也有固有的缺点。假若体系的响 应(即因变量)呈现线性,无干扰,无溶液间的相互作用,低 噪声无共线性,则多元线性回归是一种非常好的方法。
§ 6.1 多元线性回归(MLR)
若自变量为m个,xj (j=1,2,…,m),因变量为y,在y与xj间, 我们可以建立一线性模型,即
y b 1 x 1 b 2 x 2 . .b .m x m e (6.1a)
m
y bj xj e
(6.1b)
j1
yxbe
(6.1c)
在式中,bj为回归系数。 在式(6.1)中仅有一个试样,若有n个试样,即
为yi (i=1,2,…,n),它的列向量形式为y ,b与原来相同, 矢量xj’为矩阵X的行,则: y = Xb + e
若用图形表示,则为:
1
m1
1
y= X B+ e
n
nm n
在此情况下,n为试样数,m为自变量数。有如下三种情况:
(1) m>n,即变量数多于试样数,对于b来说,则有无穷多个解。
(2) m=n,变量数与试样数相等,若矩阵X满秩时,则矢量b有 唯一解。但是,在实际工作中,这种情况是极少能碰到的。 此时我们有:

《偏最小二乘方法》课件

《偏最小二乘方法》课件
建模步骤
首先对数据进行预处理和特征选择,然后利用偏最小二乘方法提取 主成分,最后建立预测模型并进行模型评估。
预测建模效果
通过偏最小二乘方法建立的预测模型具有较好的稳定性和泛化能力 ,能够为实际应用提供可靠的预测结果。
04
偏最小二乘方法在机器学习中的 应用
分类问题
偏最小二乘方法在分类问题中可以用于特征提取和模型训练。通过提取数据中的潜在特征,偏最小二 乘方法能够降低数据维度,同时保留分类信息,提高分类准确率。
提高可解释性 为了更好地理解模型的内在机制 ,未来研究可以进一步探索如何 提高偏最小二乘方法的结果可解 释性。
扩展应用领域
随着大数据和人工智能技术的不 断发展,偏最小二乘方法可以进 一步扩展到更多领域,如自然语 言处理、图像处理等。
结合其他算法
未来研究可以将偏最小二乘方法 与其他算法结合,如深度学习、 强化学习等,以获得更好的性能 和更广泛的应用。
金融数据分析
总结词
偏最小二乘方法在金融数据分析中广 泛应用于预测股票价格、评估投资组 合风险和回报等方面。
详细描述
通过分析历史股票数据和市场信息, 偏最小二乘方法能够建立有效的预测 模型,帮助投资者做出更明智的决策 。
市场细分分析
总结词
偏最小二乘方法在市场细分分析中用于识别不同消费者群体的特征和行为模式,从而制定更有针对性的营销策略 。
线性回归(Linear Regression)
PLS和线性回归都是预测模型,但PLS更适合处理具有复杂相关性和非线性的数据集, 而线性回归假设数据服从正态分布且变量独立。
支持向量机(SVM)
PLS和SVM都是监督学习算法,但PLS更适用于高维度和多因多果的问题,而SVM主要 应用于分类问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 偏最小二乘方法
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展 起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合 物结构-活性/性质相关性研究中是一种非常有用的手段。如美国 Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处 理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础 是主成分分析。替潜变量的个数一般少于原自变量的个数,所 以PLS特别适用于自变量的个数多于试样个数的情况。在此种 情况下,亦可运用主成分回归方法,但不能够运用一般的多元 回归分析,因为一般多元回归分析要求试样的个数必须多于自 变量的个数。
设矩阵X的阶为I*J,若T的阶与J相等,则主成分回归与 多元线性回归所得结果相同,并不能显示出主成分回归的优 越之处。选取的主成分数一般应该比J 小,而删去那些不重 要的主成分,因为这些主成分所包含的信息主要是噪声,由 此所得的回归方程稳定性较好。 另外,由X所定义的空间可以进一步来说明主成分回归 与多元线性回归的区别。多元线性回归应用了由X的列所定 义的全部空间,而主成分回归所占用的是一子空间。当X的J 列中,有一列可为其它J —1列的线性组合时,则X可用J -1列 的矩阵T来描述,而并不丢失信息。新的矩阵T定义了X的一 个子空间。
2 7 5 4 3 3 Y 9 12 3 6 8 2
运用式(6.3)则可得B矩阵:
0.48 0.71 0.55 B 0.42 0.41 0.24 0.08 0.28 0.05
所用数学模型有效性的量度可用Err:
相等(B为真实模型)。由B2计算所得Y尽管误差要小,但其
数学模型所描述的自变量与因变量间的关系并不真实。其原 因主要为多元线性回归方法是采用整个X矩阵来建立数学模
型,而并不顾及在X中的信息与真实模型相关与否。很显然
,若所得结果偏离了其实际数学模型,则对于未知试样的预 测也是错误的。 为了克服多元线性回归的不足,在数学方法上引进了主 成分回归方法(PCR)。
(3)q qold / qold ; new
§ 6.2 主成分回归
主成分回归可分为两步: 测定主成分数,并由主成分分 析将X矩阵降维; 对于降维的X矩阵再进行线性回归分析。 主成分分析的概念在前一章已经作了介绍。所谓主成分,
它为一新的变量,而该新变量是原变量xij的线性组合。第一 个主成分所能解释原变量的方差量最大,第二个次之,第三 个再次之,等等。也就是说,主成分是一种线性组合,用它 来表征原来变量时所产生的平方误差最小。运用主成分分析, 原变量矩阵X可以表达为得分(即主成分)矩阵T,而T由X在 本征矢量P上的投影所得。主成分与矩阵X的本征矢量一一对 应,即T = XP。
分别为X和Y的装载,E和F分别为运用偏最小二乘模型法去
拟合X和Y所引进的误差。
T = XP(主成分分析) TP’ = XPP’ PP’ = I X = TP’(因子分析)
在理想的情况下,X中误差的来源和Y中的误差的来源完全
相同,即影响X与Y的因素相同。但实际上,X中误差与Y中误差 并不相关,因而t≠u,但当两个矩阵同时用于确定因子时,则X 和Y的因子具有如下关系:
(1) m>n,即变量数多于试样数,对于b来说,则有无穷多个解。 (2) m=n,变量数与试样数相等,若矩阵X满秩时,则矢量b有 唯一解。但是,在实际工作中,这种情况是极少能碰到的。 此时我们有: e = y –Xb =0
(3)m<n,变量数小于试样数,尽管我们得不到准确解b,但 是可以使残差矢量e尽可能小而得到解, e = y – Xb 这就是我们所熟知的最小二乘法。其解为:
u = bt + e
式中b所表征的即为u和t间的内在关系。
(6.6)
为了使因子T既可描述X矩阵,同时又可描述Y矩阵,则需
采取折衷方案,即将T进行坐标旋转。显然,坐标旋转后的T 因子对于X矩阵的表达已不再是最优的状况。
如假设X矩阵和Y矩阵均为6*3, 即行为6,列为3。在列空间, X和Y矩阵的行分别示于图6.1 (上部)。PLS第一个因子 (t和u)方向在各自的空间均 可解释试样的最大偏差。若 PLS模型是正确的,将t对u作 图则可得一线性关系。事实 上,PLS要将各自空间中的因 子进行折衷以增加t对u的相关 性(图6.1下部)。由于这种 折衷才可使所得数学模型较 好地同时描述X和Y。在行空 间,情况与列空间类同。
应(即因变量)呈现线性,无干扰,无溶液间的相互作用,低
噪声无共线性,则多元线性回归是一种非常好的方法。
事实上,完全满足上述条件比较困难。当噪声较强,或干 扰较严重时,有可能导致所得数学模型失真,如下例:
75 63 X 96 69 152 102 132 82 218 176 157 124
(3) p pold / pold ; new (4)t Xp / pp ;
(5) 比较步(2)和步(4)中的t ,若二者相等,则停,否则转到(2)。
对于Y: (1)将某yj赋值给ustart即ustart=yi
(2)q uY / uu ( t Y / t t ) ;
综合上述,X可由它的得分矩阵T来描述(由于删去与小 的本征值相应的维,所以T的维小于X的维): T=XP 若用图形表示,则为: a T = n 由此可得多线性方程: Y=TB+E n m X m P a
其解为:
其图形表示为: n
B (T T ) 1 T Y
p Y = n a T a p B + n p E
在式中,bj为回归系数。 在式(6.1)中仅有一个试样,若有n个试样,即 为yi (i=1,2,…,n),它的列向量形式为y ,b与原来相同, 矢量xj’为矩阵X的行,则: y = Xb + e
若用图形表示,则为: m 1 1 y = X B + e n n m n
1
在此情况下,n为试样数,m为自变量数。有如下三种情况:
0.18 0.42 0.71 0.42 0.19 0.20 B2 0.24 0.20 0.03 0.12 0.03 0.01
对于此模型,Err=0.07。它比前者为小,这就意味着对于矩 阵Y,第二个数学模型比第个要更有效,这是一种假象。由 于X中引入最后一列,使得B2 中上部3*3部分与前边所提B不
b ( X X ) 1 X y
(6.2)
) 1 by x (bb
在上边的叙述中,因变量为1个,而事实上可以有多个因 变量。如有两个因变量y1和y2,我们可以简单地写成两个线性 方程: y1=Xb1+ e ; y2=Xb2+ e
若用矩阵标表示,则:
x11 x X 21 ... x n1 x12 x22 ... xn 2 x1n ... x2 n ... ... ... xnn ..
B (b1
b11 b b2 ) 12 ... b1m
E (e1
由此得到
Y = XB + E
对于2-P 个因变量的图形表示为: 2-p n 2-p 2-p
Y = X
m 最小二乘的解为: n m
B
+ E
n (6.3)
B ( X X ) 1 X Y
多元线性回归应用很广泛,因为在许多情况下该种方法具有 良好的性能。但是,此种方法也有固有的缺点。假若体系的响
主成分分析可以解决共线问题,同时由于去掉了不太 重要的主成分,因而可以削弱噪声(随机误差)所产生 的影响。但是,由于主成分回归为二步法,若在第一步 中消去的是有用的主成分,而保留的是噪声,则在第二
步多元线性回归所得结果就将偏离真实的数学模型。
§ 6.3 偏最小二乘(PLS)
§ 6.3.1 基本原理 为了叙述上的方便,我们首先引进“因子”的概念。一个 因子为原来变量的线性组合,所以矩阵的某一主成分即为一 因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一 定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X的本征矢量或因子数 测试中,所处理的仅为X矩阵,而对于矩阵Y 中信息并未考 虑。事实上,Y中亦可能包含非有用的信息。所以很自然的 一种想法是,在矩阵X因子的测试中应同时考虑矩阵Y的作 用。偏最小二乘正是基于这种思想的一种回归方法。
含量。
§ 6.3.2 偏最小二乘算法
1.校正模型的建立 首先我们从一最简单的模型开始,然后给出偏最小二乘的完 整算法。 若仅有二矩阵块(block),即X块和Y块。 对于X: (1) 将某xj赋值给tstart,即 tstart= xj ;
(2) p t X / t t ( uX / uu);
§ 6.1 多元线性回归(MLR)
若自变量为m个,xj (j=1,2,…,m),因变量为y,在y与xj间, 我们可以建立一线性模型,即
y b1 x1 b2 x2 ... bm xm e
(6.1a) (6.1b) (6.1c)
y bj x j e
j 1
m
y xb e
关性bi。 若有L个因子,则bl
为表达第l个因子相关性的系 数,其步骤为:由未知试样 的测定值x末通过校正模型 (式(6.4)计算出t末,进而
X TP E
u = bt + e
Y UQ F
(6.4) (6.6) (6.5)
由(式6.6)及bl可计算未知
试样的得分矢量u末,最后由 校正模型(式6.5)得未知试样
ˆ E rr ( yik yik )
2 k 1 i 1 K I
2 ik k 1 i 1
K
相关文档
最新文档