植被遥感
植被遥感的原理和应用

植被遥感的原理和应用1. 植被遥感的原理植被遥感是指利用遥感技术获取关于植被的信息。
主要通过感知、识别和解译植被的光谱、空间和时间特征,从而实现对植被生态系统的监测和评估。
植被遥感的原理可以概括为以下几点:•光谱反射特性:植被对不同波段的电磁辐射有不同的反射特性。
通过测量植被对可见光和红外辐射的反射率,可以获取与植被生理和结构特征相关的信息。
•植被指数:植被指数是通过计算植被光谱特征之间的关系得到的一种指标。
常用的植被指数有归一化植被指数(NDVI)、差值植被指数(DVI)等。
植被指数可以反映植被的生长状况和叶绿素含量等信息。
•植被分类:通过分析植被光谱特征的差异,可以将植被进行分类和识别。
常用的植被分类方法包括基于光谱特征的有监督分类和无监督分类等。
•时序变化:植被在不同季节和年份的生长状态存在差异,通过观测植被的时序变化,可以获取植被的生长过程和季节变化规律。
2. 植被遥感的应用植被遥感可以广泛应用于农林牧渔、环境保护、地质勘察和城市规划等领域。
以下是一些植被遥感的具体应用:•农业管理:植被遥感可以用于农作物的监测和评价。
通过监测植被生长状况和叶面积指数变化,可以实现农作物的施肥、灌溉和病虫害防治等管理工作。
•生态环境监测:植被遥感可以用于湿地、森林和草原等生态系统的监测和评估。
通过监测植被覆盖度、植被类型和植被退化状况等指标,可以了解生态系统的健康状况和环境变化趋势。
•火灾监测:植被遥感可以通过监测植被的温度和湿度等指标,实现对火灾的预警和监测。
及时发现火点并采取措施可以有效减少火灾的危害和损失。
•城市绿化规划:植被遥感可以用于城市的绿化规划和管理。
通过分析城市植被覆盖度和类型分布,可以优化城市绿地布局和植被种植结构,改善城市环境质量。
•土地利用变化:植被遥感可以用于监测土地利用变化和评估土地资源的可持续利用。
通过比较不同时间段的遥感影像,可以分析土地利用类型的变化和转移。
3. 总结植被遥感是一种重要的环境监测和资源管理技术。
植被信息遥感提取方法

植被信息遥感提取是一种利用遥感技术来获取地表植被信息的方法。
这种方法通过卫星或无人机拍摄地表图像,然后利用图像处理技术和计算机视觉技术,提取出植被的特征信息,如植被覆盖率、植被类型、植被生长状态等。
以下是植被信息遥感提取的基本方法:
1. 图像获取:使用卫星或无人机拍摄地表图像,获取不同分辨率、不同光谱特性的图像数据。
这些图像数据可以提供丰富的植被信息,为后续的植被信息提取提供基础。
2. 图像预处理:对获取的图像进行预处理,包括去噪、增强、裁剪等操作,以提高图像的质量和可读性,为后续的植被信息提取提供更好的基础。
3. 特征提取:利用图像处理技术和计算机视觉技术,从图像中提取植被的特征信息。
常用的特征包括植被覆盖率、植被类型、植被生长状态等。
这些特征可以通过不同的算法和方法进行提取,如基于光谱特征的方法、基于纹理特征的方法、基于机器学习的方法等。
4. 分类识别:将提取的特征进行分类识别,确定植被的类型和生长状态。
常用的分类方法包括监督学习、非监督学习等。
通过对图像中的植被进行分类,可以得到各种植被的信息,如草地的面积、森林的覆盖率等。
5. 结果评估:对植被信息提取的结果进行评估,以确保提取结果的准确性和可靠性。
评估的方法包括人工目视检查、统计分析等。
评估结果可以用于优化植被信息提取的方法和算法,提高结果的准确性和可靠性。
总的来说,植被信息遥感提取是一种综合利用遥感技术、图像处理技术和计算机视觉技术的方法,可以快速、准确地获取地表植被的信息。
这种方法在农业、林业、环境监测等领域具有广泛的应用价值。
森林植被遥感图像分类及目标识别

森林植被遥感图像分类及目标识别植被遥感图像分类及目标识别是利用遥感技术进行森林植被研究和保护的重要手段。
它通过获取植被信息,实现对植被类型分类和目标识别的精准分析,为森林生态系统的管理、保护和可持续发展提供科学依据。
一、植被遥感图像分类森林植被遥感图像分类是指将遥感图像中的植被区域按照物种、功能和结构等特征进行分类。
这一过程需要借助计算机视觉和机器学习等技术手段,从遥感图像中提取有关植被的特征信息,并根据这些特征进行分类和识别。
在植被遥感图像分类中,常用的方法包括基于像元和基于对象两种方式。
基于像元的分类方法是指将每个像素点视为分类单元,通过像素点的光谱信息、纹理信息和形状信息等进行分类。
而基于对象的分类方法是将一组相连的像素点或区域视为一个分类单元,利用连接关系和形状特征进行分类。
常用的遥感图像分类算法包括支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest)、卷积神经网络(Convolutional Neural Network,CNN)等。
这些算法在特征提取、模型训练和分类决策等方面都有不同的优势,可以根据实际情况选择合适的算法进行植被遥感图像分类。
二、目标识别森林植被遥感图像目标识别是指在植被图像中准确识别出目标,如森林火灾、病虫害、盗伐等,以及其他与植被有关的人为活动。
目标识别的目的是及时监测和预警植被异常情况,为森林生态环境的保护提供依据。
目标识别的关键技术包括特征提取、目标检测和目标分类。
特征提取是从植被图像中提取与目标相关的特征信息,可以包括颜色、纹理、形状、结构等特征。
目标检测是在植被图像中寻找目标的位置和边界,常用的方法包括边缘检测、区域生长和模板匹配等。
目标分类是将检测到的目标进行分类和识别,可以利用机器学习和深度学习等技术进行分类模型的训练和应用。
在实际应用中,为了提高目标识别的准确性和效率,可以将植被遥感图像与其他数据源相结合,如地理信息系统(Geographic Information System,GIS)、气象数据和传感器数据等,进行多源数据融合分析。
论述植被的遥感波段特征

论述植被的遥感波段特征植被遥感是利用遥感技术获取地表植被信息的一种手段,通过对地球表面反射或辐射的电磁波进行探测,获取植被的空间分布、生理状况等信息。
在植被遥感中,不同的波段对于植被的反射和吸收呈现出独特的特征,对于理解和监测植被的生态、生理和空间分布具有重要意义。
本文将深入论述植被的遥感波段特征,涵盖可见光、近红外、红外和微波等波段,以及这些波段在植被遥感中的应用。
一、可见光波段特征可见光波段主要包括蓝、绿、红三个波段,它们的波长分别为0.45-0.50μm、0.50-0.60μm和0.63-0.70μm。
植被在可见光波段的特征主要表现在叶绿素的吸收和叶片的反射。
1.1 叶绿素吸收特征植物中的叶绿素对于蓝光和红光的吸收较高,而在绿光波段的吸收较低。
这是因为叶绿素A和B主要吸收波长为430-450nm和640-680nm 的光,而在绿光波段的吸收较小。
1.2 叶片反射特征植物的叶片在可见光波段表现出不同的反射特性。
通常,植被的叶片在绿光波段的反射较高,因为叶绿素对于绿光的吸收相对较低,而在红光波段的反射相对较低,因为叶绿素对于红光的吸收较高。
可见光波段主要应用于植被的视觉监测,通过对植被在不同波段的反射特性进行分析,可以识别植被类型、监测植被覆盖度以及研究植被的生长状态。
二、近红外波段特征近红外波段的波长范围为0.70-1.00μm,植被在近红外波段的特征主要表现在叶绿素的吸收和细胞结构的散射。
2.1 叶绿素吸收特征在近红外波段,叶绿素A和B对光的吸收较小,因此近红外波段的反射较高。
2.2 细胞结构散射特征植物细胞中的细胞壁和细胞质等结构在近红外波段对光表现出较强的散射,导致近红外波段的反射相对较高。
近红外波段主要应用于植被的生理监测,通过近红外波段的反射特性,可以推测植被的叶绿素含量、植被的生长状况以及植被的健康状态。
三、红外波段特征红外波段通常包括短波红外(SWIR)和中波红外(MWIR),波长范围分别为1.00-3.00μm和3.00-5.00μm。
遥感第九章 植被遥感

荒漠化是发生在上述气候区内的土地退化,按 成因分为:
风蚀荒漠化 沙化、沙漠化
水蚀荒漠化 劣地或石质坡地,如浙江常山大塘溪 福建长汀 县河田,西南诸省的山区。也有以泥石流方式呈 现土地砂石化景观分布在河谷中,如滇东北的 东川市小江流域等;或以石山荒漠化景观分布 在岩溶山区,如广西西部及云南东部等地。
三.城市生态环境 1.定义;经过人类充分改造过的人工环境,属于人类生态系统
的范畴(社会生态系统)。
阳光 空气 水资源 森林 气候 岩石 动物 植物 微生物 自然景观
城市自然生态子系统
利用遥感技术调查、分析
城市经济生态子系统
城市生产、分配、流通与消 费的各个环节
物质
居住 饮食 服务 供应 医疗 旅游 人们心理状态
传感器 NOAA/AVHRR 波段 用途
LANDSAT/TM SPOT/HRV CBERS/CCD 红色、近红外-远红外 大中小比例尺 土地利用研究 中大比例尺土 地利用监测
全球、大洲、区域等 尺度环境资源研究
2.植被 植被遥感调查中经常用植被指数区分不同植被类型。 通常利用植物光谱中的近红外与可见光红波段两个典型波 段值。 近红外波段是叶子健康状况最灵敏的标志,对植被长 势差异敏感,指示光合作用能否正常进行; 可见光红波段被植被叶绿素强吸收,进行光合作用制造 干物质,是光合作用的代表性波段。 植被指数便于植物专题研究、绿色植物的遥感监测、 病虫害监测及生物量估算等。 目前植被监测的遥感数据有: NOAA/AVHRR LANDSAT/TM/ETM CBERS/CCD
SPOT/HRV
3.湿地 水域与陆地间的交互区域,是地球上具有多功能的独特的 生态系统,是自然界最富有生机的生态景观和人类最重要 的生存环境之一。 森林 ————————地球之“肺” 湿地 ————————地球之“肾” 湿地巨大的经济效益、极丰富的生物多样性和极高的 生物生产力为人类生存创造了重要条件。在我国,湿地占 国土面积的1.65%,湿地能吸收CO2等温室气体,降解污染 物,其生态系统效益价值高达2.67万亿元,在全国陆地生 态系统总价值中占47.71%,是最昂贵的生态系统。 利用遥感技术研究湿地包括湿地景观格局调查、湿地景 观破碎化程度调查、湿地景观变化分析、湿地类型遥感解 译等。 --------------------------------------------------------------------------------
植被遥感_精品文档

叶绿素a和叶绿素b导致以0.45μm和0.67μm为中心形成两 个强烈的吸收带。
不同生长状态的橡树叶子
不同橡树叶子的反射特性
2. 叶子的组织构造
绿色植物的叶子是由上表皮、叶绿素颗粒组成的栅 栏组织和多孔薄壁细胞组织(海绵组织)构成的。
遥感地学分析
Geography Analysis for Remote Sensing
第5章 植被遥感
主要内容
一、植被遥感原理 二、植被分类 三、植被生态参数 四、植被指数与地表参数的关系 五、中国及中亚地区荒漠化遥感监测研究
一、植被遥感原理
植被遥感不仅依赖于对单张植物叶片的光谱特性的 认识,还需要进一步认识植被冠层的光谱特性。
冬季多数植物凋零----长年常绿植被 同种植被在不同季节的波谱特征差异 不同植物生长期的不同,光谱特征也有差异
植物季节性规律
各种作物的生 长期和收获期 的差异
3. 根据植物的生态条件的不同来区分植被
不同种类的植物有不同的适宜生态条件,如温度、 水分、土壤、地貌等。 比如:(我国北方山坡的阴阳面差异性)
低植被覆盖度时(<15%),植被NDVI值高于裸土NDVI 值,植被可被检测出来,但因植被覆盖度很低(如干旱、 半干旱地区),其 NDVI很难指示区域生物量;
中植被覆盖度时(25—80%), NDVI值 随生物量的增 加呈线性迅速增加;
高植被覆盖度时(>80%), NDVI值 增加延缓而呈现 饱和状态,对植被检测灵敏度下降。
被指数饱和为代价来减少大气影响; (2)根据蓝光和红光对气溶胶散射存 在差异的原理。采用“抗大气植被 指数(ARVl)对残留气溶胶做进一步 的处理;(3)采用“土壤调节植;波 指数(SAVl)”减弱了树冠背景土壤变 化对植被指数的影响;(4)综合 ARVI和SAVI的理论基础。形成 “增强型植被指数(EVI)”。它可以 同时减少来自大气和土壤噪音的影 响。
遥感地学分析课件——第7章 植被遥感

7.4 资源遥感调查
7.4.1 草场资源调查 7.4.2 林业资源调查
7.1 植被的光谱特性
7.1.1 健康植被的,不同的植物各有其自身的波谱特征, 从而成为区分植被类型、长势及估算生物量的依据。
健康植物的波谱曲线有明显的特点,在可见光的 0.55µm附近有一个反射率为10%~20%的小反射峰。在 0.45µm和0.65µm附近有两个明显的吸收谷。在 0.7~0.8µm是一个陡坡,反射率急剧增高。在近红外波 段0.8~1.3µm之间形成一个高的,反射率可达40%或更 大的反射峰。在1.45µm,1.95µm和2.6~2.7µm处有三个 吸收谷。
(NIR)对绿色植物的光谱响应十分不同,且 具倒转关系。两者简单的数值比能充分表达两 反射率之间的差异。 比值植被指数可表达为:
RVI=DN NIR/ DN R (简单表示为NIR/R)
7.2 植被生态参数的估算
RVI是绿色植物的一个灵敏的指示参数。研究表明, 它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素 含量相关性高,被广泛用于估算和监测绿色植物生物量。 在植被高密度覆盖情况下,它对植被十分敏感,与生物 量的相关性最好。但当植被覆盖度小于50%时,它的分 辨能力显著下降。此外,RVI对大气状况很敏感,大气效 应大大地降低了它对植被检测的灵敏度,尤其是当RVI值 高时。因此,最好运用经大气纠正的数据,或将两波段 的灰度值(DN)转换成反射率(ρ)后再计算RVI,以消 除大气对两波段不同非线性衰减的影响。
不同颜色叶子的反射光谱
7.1 植被的光谱特性
不同水分含量对玉米叶子反射率的影响
7.1 植被的光谱特性
植物遭受不同程度损害的反射光谱曲线
植被遥感指数公式及简介

可编辑ppt
1
植被指数类型
比值植被指数(RVI) 归一化植被指数(NDVI) 差值植被指数(DVI) 缨帽变换中的绿度植被指数(GVI) 垂直植被指数(PVI)
可编辑ppt
2
比值植被指数(Ratio Vegetation Index)
由于可见光红波段(R)与近红外波段(NIR)对绿色 植物的光谱响应十分不同。两者简单的数值比能充分 表达两反射率之间的差异。
可编辑ppt
同植被与土壤亮度线的距离不同。于是 Richardson(1977)把植物象元到土壤亮度线的垂 直距离定义为垂直植被指数(Perpendicular Vegetation Index)。
PVI是一种简单的欧几米得(Euclidean)距离。 表示为:
PVI= (SRVR)2(SVI RSVI)R 2
可编辑ppt
9
缨帽变换(TC变换)是以陆地卫星MSS各波段的辐度 亮度值作为变量。经线性变换后,组成4个新变量:
TC10.433MSS40.632MSS50.586MSS60.264MSS7 TC2-0.290MSS4-0.562MSS5-0.600MSS60.491MSS7 TC3-0.829MSS40.522MSS50.039MSS60.194MSS7 TC4 0.233MSS40.021MSS5-0.543MSS60.810MSS7
NDVI的一个缺陷在于,对土壤背景的变化 较为敏感。
实验表明,作物生长初期NDVI将过高估计 植被覆盖度,而在作物生长的结束季节,NDVI 值偏低。因此,NDVI更适用于植被发育中期或 中等覆盖度的植被检测。
可编辑ppt
6
差值植被指数 (Difference Vegetation Index)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 植被覆盖度
一般而言,植 被覆盖程度越 大,光谱特征 形态受背景下 垫面的影响越 小
二、不同类型植被区分
植被具有典型的波谱特征,将其余其它典型地 物,如人工建筑、裸土、水域等区分容易,但 对植被类型划分却有一定难度。
不同植被类型,因组织结构、季相、生态条件 等不同而具有不同的光谱特征和冠层形态特征。 如:
植物群落
山地草甸 云松、红桦 华北落叶松、云杉、白桦、杨树 刺槐、蒙古栎、辽东栎、杨 杨、栎树
4. 根据植被冠层形态区分植被
在高分辨率的遥感影像上,根据植被顶部及部 分侧面形状、阴影、群落结构等区分植被类型。
草本植物表现为大片均匀的色调,因其低矮无 阴影;
灌木呈不均匀细颗粒结构,灌木一般不高,阴 影不明显;
在高覆盖度时提高了敏感性。
MODIS—EVI改善表现在:(1)大气 校正包括大气分子、气溶胶、薄云、 水汽和臭氧。而AVHRR—NDVI仅 对瑞利散射和臭氧吸收做了校正; 这样MODIS—EVI可以不采用基于 比值的方法。因为比值算式是以植
被指数饱和为代价来减少大气影响; (2)根据蓝光和红光对气溶胶散射存 在差异的原理。采用“抗大气植被 指数(ARVl)对残留气溶胶做进一步 的处理;(3)采用“土壤调节植;波 指数(SAVl)”减弱了树冠背景土壤变 化对植被指数的影响;(4)综合 ARVI和SAVI的理论基础。形成 “增强型植被指数(EVI)”。它可以 同时减少来自大气和土壤噪音的影 响。
山地阴坡---易生长适应温度变化不大,湿度较大的环 境的生物
山地阳坡---易生长适应温度变化不大,湿度要求不高 的环境的生物
同一地理环境植被的垂直分带性
(以山西省太原以南地区植物的垂直分带性为例)
海拔
2500m以上 2200~2500m 1600m~2200m 1200m~1600m 700m~1200m
景影响的缺点,一种新型的植被指数——增强性植被指 数(Enhanced Vegetation Index,EVI)被发展,该植被 指数引入了蓝光波段降低了大气的影响。
EVI
G
NIR
NIR R C1R C2 B
L
C1: 红光波段的大气纠正因子;C2:蓝光波段的大气纠正 因子;L: 冠层背景纠正因子;G: 增益因子。 根据经验,参数C1 =6.0,C2 =7.5和L=1.0,G=2.5
正常针叶林为红到品红,枯萎为暗红色,即将枯死时 为青色。
故可根据植被光谱、季相、生态环境、冠层形 态进行植被类型识别。
1. 根据植被光谱划分
不同植物由于叶子的组 织结构和所含色素的不 同,具有不同的光谱特 征。
在近红外光区,草本植 物的反射高于阔叶树, 阔叶树高于针叶树
2. 根据植物的物候差异来区分植物
2. 归一化植被指数(NDVI)
计算公式
NDVI DNIR DR 或NDVI NIR R
DNIR DR
NIR R
➢ NDVI介于-1和1之间,负值表示地面覆盖为云、水、 雪等,对可见光高反射;0表示岩石或裸土等,
NIR和R近似相等;正值表示有植被覆盖,且随覆
盖度增大而增大
1. 叶绿素 植被叶子中含有 多种色素,如叶 青素、叶红素、 叶绿素等,在可 见光范围内,其 反射峰值落在相 应的波长范围内 。
叶绿素a和叶绿素b导致以0.45μm和0.67μm为中心形成两 个强烈的吸收带。
不同生长状态的橡树叶子
不同橡树叶子的反射特性
2. 叶子的组织构造
绿色植物的叶子是由上表皮、叶绿素颗粒组成的栅 栏组织和多孔薄壁细胞组织(海绵组织)构成的。
(一)单张叶片光谱特性
单张叶片分为表皮 、叶脉和叶肉组成
单张叶片的反射、吸收和透射特性
反射辐射
入射辐射-散射辐射=吸收辐射,用于增加植物体温和光合作用
植物叶片的反射、透射和吸 收特性随种类、生长期、病 害及入射波长不同而变化, 故可依据此识别植被、诊断
病害及估产。
(二)影响植被叶片光谱的因素
植被指数类型
在植被指数中,通常选用对绿色植物强吸收的可见光红 波段和对绿色植物高反射的近红外波段构建。
植被指数类型
比值植被指数(RVI) 归一化植被指数(NDVI) 土壤修正植被指数(SAVI) 转换土壤调整植被指数(TSAVI) 修改型二次土壤调节植被指数 (MSAVI) 差值植被指数(DVI) 绿度植被指数(GVI) 垂直植被指数(PVI)
Dபைடு நூலகம்I—差值植被指数
差值植被指数(DVI)又称环境植被指数( EVI),被定义为近红外波段与可见光红波段 数值之差。即:
差值植被指数的应用远不如RVI、NDVI。它对土壤 背景的变化极为敏感,有利于对植被生态环境的监 测。另外,当植被覆盖浓密(≥80%)时,它对植 被的灵敏度下降,适用于植被发育早-中期,或低 -中覆盖度的植被检测。
(1)针叶林(云杉、松树林)
在比例尺为1:1万或1:15000的影片上,针叶林一般 是深灰色颗粒状图型,随比例尺进一步变小,表现为 暗色调均匀的细粒状影纹
(2)阔叶林(山杨、白桦)
其影像色调比针叶林浅,一般呈灰色或浅灰色颗粒状 或粗圆粒状图型,在秋季影片上,不同树种的树冠颜 色有较大差异,因而形成色调混杂的影像。
比值植被指数可提供植被反射的重要信息,是植被长 势、丰度的度量方法之一
同理,可见光绿波段(叶绿素引起的反射)与红波段 之比G/R,也是有效的。
比值植被指数可从多种遥感系统中得到。
但主要用于Landsat的MSS、TM和气象卫星的 AVHRR。
RVI是绿色植物的一个灵敏指示参数
它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素 含量相关性高,被广泛用于估算和监测绿色植物生物量。
随着人们对于全球变化研究的深入,以遥感信息 推算区域尺度乃至全球尺度的植被指数日益成为 令人关注的问题。
植被指数的概念
遥感图像上的植被信息,主要通过绿色植物叶子 和植被冠层的光谱特性及其差异、变化而反映的, 不同光谱通道所获得的植被信息可与植被的不同 要素或某种特征状态有各种不同的相关性,
根据叶子的结构可分为结构稀疏(典型的双子叶 植物)和结构紧凑(典型的单子叶植物)。
苹果、棉花、向日葵 小麦、水稻、竹子
近红外波段的变化
不同类型植物光谱曲线的差异
叶子年龄的增长
随着叶龄的增长,背腹性叶子的叶肉间空隙增多
新叶
成熟叶片
衰老叶片
近红外波段反射率的变化
3. 叶片含水量
叶子在1.45μm、1.95μm和2.6~2.7μm处各有一 个吸收谷,这主要是由于叶子的细胞液、细胞膜 及吸收水分子所形成的。
4)评价生长期和变干期的长短
NDVI的局限性
NDVI 对土壤背景的变化较为敏感。 实验证明:
低植被覆盖度时(<15%),植被NDVI值高于裸土NDVI 值,植被可被检测出来,但因植被覆盖度很低(如干旱、 半干旱地区),其 NDVI很难指示区域生物量;
中植被覆盖度时(25—80%), NDVI值 随生物量的增 加呈线性迅速增加;
遥感地学分析
Geography Analysis for Remote Sensing
第5章 植被遥感
主要内容
一、植被遥感原理 二、植被分类 三、植被生态参数 四、植被指数与地表参数的关系 五、中国及中亚地区荒漠化遥感监测研究
一、植被遥感原理
植被遥感不仅依赖于对单张植物叶片的光谱特性的 认识,还需要进一步认识植被冠层的光谱特性。
1. 比值植被指数
根据可见光红波段(R)和近红外波段(NIR)对绿 色植物的光谱响应的不同,且具有倒转关系。两者 的数值比能充分表达两反射率之间的差异
或
对于绿色植物叶绿素引起的红光吸收和叶肉组织引起的 近红外强反射,RVI值高(一般大于2)。而对于无植被 的地面包括裸土、人工特征物、水体以及枯死或受胁迫 植被,因不显示这种特殊的光谱响应,则RVI值低(一 般等于1)。因此,比值植被指数能增强植被与土壤背 景之间的辐射差异。
在Landsat 7快速格式产品的头文件辐射记录段中含有与辐射校正有关的 参数,用户可利用这些参数将图象象元的亮度值转换成地物的辐射值或 反射率。 辐射记录段以“gains and biases in ascending band number order” 开始,逐行、按波段顺序记录了辐射校正有关的参数,每行中按bias、 gain的顺序排列,其中bias的单位是W/m2 . ster .μm,gain的单位是 (W/m2 . ster .μm)/DN。
高植被覆盖度时(>80%), NDVI值 增加延缓而呈现 饱和状态,对植被检测灵敏度下降。
实验表明,作物生长初期NDVI将过高估计植被覆盖 度,而作物生长结束季节,NDVI值偏低。
NDVI 更适用于植被发育中期或中等覆盖度植被检测。
增强型植被指数(EVI)
为了克服NDVI高植被区易饱和、低植被区易受土壤背
它用一种简单有效的形式来实现对植物状态信 息的表达,以定性和定量地评价植被覆盖、生 长活力及生物量等。
以美国陆地卫星Landsat TM传感器获取的遥 感数据为例,植被指数就是由第三波段的红 光波段(Red)和第四波段的近红外波段进行 运算而得到可以表征植被状况的植被指数。
植被指数的类型
如叶子光谱特性中,可见光谱段受叶子叶绿素含量的 控制
近红外谱段受叶内细胞结构的控制 中红外谱段受叶细胞内水分含量的控制
但是,对于复杂的植被遥感,仅用个别波段或 多个单波段数据分析对比来提取植被信息是相 当局限的。因而往往选用多光谱遥感数据经分 析运算(加、减、乘、除等线性或非线性组合 方式),产生某些对植被长势、生物量等有一 定指示意义的数值——即所谓的“植被指数”。