初中几何基本图形归纳(基本图形+常考图形)

合集下载

初中几何知识点总结归纳

初中几何知识点总结归纳

初中几何知识点总结归纳初中几何知识点总结归纳在年少学习的日子里,很多人都经常追着老师们要知识点吧,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

哪些才是我们真正需要的知识点呢?下面是小编为大家整理的初中几何知识点总结归纳,欢迎大家分享。

初中几何知识点总结归纳11过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n—2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R—r﹤d﹤R+r(R﹥r)④两圆内切d=R—r(R﹥r)⑤两圆内含d﹤R—r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n—2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n—2)180/n=360化为(n—2)(k—2)=4 144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d—(R—r)外公切线长=d—(R+r)初中几何知识点总结归纳2什么是几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。

初二数学必考知识点归纳最新

初二数学必考知识点归纳最新

初二数学必考知识点归纳最新
一、代数基本知识
1.代数式的定义与性质
2.方程与不等式的概念
3.一元一次方程的解法(如去分式法、加减消去法等等)
4.二元一次方程的解法(如联立消元法、代入法等等)
5.等式的基本性质
6.二次根式的化简方法
二、平面几何基础
1.基本图形的面积计算(如矩形、三角形、梯形等等)
2.基本图形的周长计算(如矩形、三角形、梯形等等)
3.计算线段的长度
4.平行线与垂线的性质
5.相似三角形的判定与性质
6.图形的旋转与对称性
7.圆的相关概念与性质
三、立体几何基础
1.空间图形的投影
2.空间图形的计算
3.空间直角坐标系的使用
4.空间向量的计算(如加减、数量积、等等)
5.空间中的平面与直线
6.空间图形的重心与质心
四、三角函数的基本概念
1.角度的概念与弧度制的转换
2.正弦、余弦、正切等三角函数的定义
3.各种三角函数的性质
4.三角函数的图像与周期性
五、统计学的基本知识
1.数据的采集与整理
2.数据的中心与散布度量(如平均数、中位数、众数、标准差等等)
3.数据的分布形式(如正态分布、偏态分布等等)
4.数据的统计推断(如置信区间、假设检验等等)
六、概率的基本概念
1.随机事件、试验与样本空间
2.概率的定义与性质
3.条件概率的定义及其应用
4.独立事件的概念与性质
以上是初二数学必考知识点的归纳总结,希望对初中学生们的学习有所帮助。

初中数学几何知识点和题型归纳总复习

初中数学几何知识点和题型归纳总复习

49
一.平行线的定义: 在同一平面内,不相交的两条直线 叫做平行线。
结论:在同一平面内,两直线的位置 关系有平行与相交两种。
经过直线外一点,有且只有一条 直线与这条直线平行.(平行公理)
整理ppt
50
平行公理的推论:
如果两条直线都和第三条直线平行, 那么这两条直线也互相平行
几何语言表达:
a//c , c//b(已知) a c b
正方体
长方体
三棱柱
四棱锥
三棱柱
整理ppt
五棱锥
8
归纳:正方体 的表面展开图 有以下11种。你能看 出有什么规律吗?











整理ppt
9
当将这个图案折起来组成一 个正方体时,数字____会3 与数字2 所在的平面相对的平面上。
12 34 56
整理ppt
10
点和线
A 点A — 用一个大写字母表示。
AB
C
整理ppt
24
探究二:画一画,数一数,再找规律
1.在平面内有n个点(n≥3),其中没有任 何三个点在一条直线上,如果过任意两点 画一条直线,这n个点可以画多少条直线?
n(n-1)/2 (n2+n+2)/2
2.一条直线将平面分成两部分,两条直 线将平面分成四部分,那么三条直线将 平面最多分成几部分?四条直线将平面 最多分成几部分?n条直线呢?
离。(垂线段) A.
.
B
l
整理ppt
47
交两 条 直 线 相
况一 般 情
对顶角:相等 邻补角:互补
特殊
情况 垂线 相交成

32华东师大版初中数学七年级上册 几何图形(基础)知识讲解

32华东师大版初中数学七年级上册 几何图形(基础)知识讲解

华东师大版初中数学七年级上册几何图形(基础)知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2. 掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3. 理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2) 常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系. 此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是()A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3.已知一个几何体的三视图如图所示,则该几何体是( )A.棱柱 B.圆柱 C.圆锥 D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D类型三、展开图4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是()A.B. C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【答案】 A .类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个? 如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3) 9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是( ).【答案】A。

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)

初中几何基本图形归纳(基本图形+常考图形)初中几何常见基本图形1.基本图形及结论A、B、C、D分别为四边形的顶点,AC=BD,AD=BC,∠AOC=∠BOD,∠AOD=∠BOC。

2.直角三角形在直角三角形ABC中,∠C=90°,OA为斜边的中线,OD⊥XXX。

3.等腰三角形在等腰三角形ABC中,AB=AC,AD为角A的平分线,BD=CD。

4.三角形的面积公式在三角形ABC中,AB2=BD×BC,AC2=CD×BC。

5.三角形内角和公式在三角形ABC中,∠A+∠B+∠C=180°。

6.平行四边形在平行四边形ABCD中,∠A+∠B=∠C+∠D,AC平分∠BAD。

7.直角三角形的斜边中线在直角三角形ABC中,BD为斜边AC的中线,∠B=∠D。

8.直角三角形的高线在直角三角形ABC中,PA⊥AB,PB⊥AC,PC⊥BC,且PA=PB+PC,∠P=∠A/2.9.直角三角形的内心在直角三角形ABC中,∠P=∠A/2,PD为角A的平分线,AD=BD=AC=DC。

10.直角三角形的外心在直角三角形ABC中,∠P=90°-∠A/2,以AB的中点O为圆心,AB为半径作圆,交AC于点P,则P为三角形ABC的外心。

11.等腰三角形的中线在等腰三角形ABC中,AB=CB,BD为角B的平分线,且BC∥AD。

12.等边三角形在等边三角形ABC中,AB=AC=BC。

13.等角三角形在等角三角形ABC中,∠A=∠B=∠C。

14.三角形的相似在三角形ABC和DEF中,如果∠A=∠D,∠B=∠E,∠C=∠F,则称三角形ABC与DEF相似。

15.圆的基本性质在圆O中,AB为直径,则∠C=90°,且AC=BC=OD。

16.圆的切线在圆O中,以点A为圆心,AB为半径作圆,则CD为圆O的切线。

17.圆的割线在圆O中,以点A为圆心,AC为半径作圆,则BD为圆O的割线。

18.圆的弦在圆O中,AB为圆O的弦,R为圆O的半径,则弦长公式为AB2=BD×BC,且弦AB平分∠AOB。

初中数学几何图形知识点掌握归纳

初中数学几何图形知识点掌握归纳

初中数学几何图形知识点掌握归纳初一上册数学几何图形初步知识点归纳1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。

从实物中抽象出的各种图形统称为几何图形。

有些几何图形的各部分不在同一平面内,叫做立体图形。

有些几何图形的各部分都在同一平面内,叫做平面图形。

虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。

2.几何图形的分类:几何图形一般分为立体图形和平面图形。

3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的.交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。

常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。

5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。

线段有如下性质:两点之间线段最短。

6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。

7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。

其中AB表示直线上的任意两点。

8.直线、射线、线段区别:直线没有距离。

射线也没有距离。

因为直线没有端点,射线只有一个端点,可以无限延长。

9.角:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

初中数学基本几何图形大全

初中数学基本图形大全基本图形分析归类:类型一:圆中基本图形D⊥AB;弧BD;⑤弧AC=弧BCAB非直径。

、C、D四点共圆·2R(钝角△也适用)=(不能直接用,可构造R2)8、(弧AC=弧EC ) ⇒AM=CM=FM ;AC=EC;AE CD 21=; ABAD AE AM AC ⋅=⋅=2;BF OM 21=9∽CDE, △ABD ∽△AEC ∽BED,·AC=AD ·AE,AE ·DE=BE ·CEBAD ∠cos 2 关注∠BAC 为特殊角时图形的 10 AC 、AB 的对称点在⊙O 上,11DC 切⊙O 于C 点 知二推一12 ,BO ⊥DE , ∠DEF=90°-21∠A 13 14CE 切⊙O 于点E,知二推一15⇒C △PDE=PA+PB ∠DOE=)180(21P ∠-16 ①EA 切⊙O 于点A AE ∥CF ③AP=EP 知二推一17、 △ABD 、△ACE 为等边△⇒ BE=CD,BE 、CD 相交所成锐角为60° 18、正方形ABDE 、正方形ACFG ⇒EC=BG ,BG ⊥CE注:条件可为等腰Rt △19、①AD 平分∠CAB, ②DE ∥AC,③AE=DE 知二推一20、 △ABC 为等腰Rt △,AE 平分∠CAB ,BD ⊥AD⇒AE=2BD21、⇒C △ADE=AB+ACA B C DEA B C D E F G A B CD E A B C D E A B C D E M22、 △ACD 、△BCE 为等边△,A 、C 、B 三点共线⇒ △ACE ≌△DCB , △ACM ≌△DCN , △MCE ≌△NCB AE=BD,AM=DN,EM=BN,CM=CN,AE 、BD 相交所成锐角为60° AO=DO+CO,BO=EO+CO,OM+ON=OC,OC 平分∠AOB 注:△BCE 旋转时,结论有变化。

图形的计数知识点总结

图形的计数知识点总结图形的计数是数学中的一个重要内容,它涉及到几何形状的种类、性质以及应用,是数学学习的一个基础知识点。

在初中阶段,学生开始系统学习图形的知识,包括基本图形的性质、图形的分类、图形的计数等内容。

本文将对图形的计数知识点进行总结,帮助学生更好地理解和掌握这一知识点。

1. 基本图形的性质在图形的计数中,首先要了解基本图形的性质。

基本图形包括点、线、线段、射线、角、三角形、四边形、多边形等。

这些图形有各自的定义、性质及特点,对于学生来说,需要对这些基本图形有一个清晰、完整的理解。

(1)点:点是几何中最基本的概念,它没有长度、宽度和高度,只有位置。

点在几何图形中起到连接线段、构建图形等作用。

(2)线:线是由一组点按照一定规律排列而成,没有宽度和厚度。

线在几何图形中起到连接点、构成图形等作用。

(3)线段:线段是由两个端点和这两个端点之间的所有点组成的,有一定的长度,但没有宽度和厚度。

(4)射线:射线是由一个端点和这个端点上的一条直线上的所有点组成的,有一定的长度,但在一个方向上是无限长的。

(5)角:角是由两条射线的公共端点所确定的,角的度量单位通常是度。

角分为锐角、直角、钝角等。

(6)三角形:三角形是一个有三个顶点和三条边的几何图形,根据边长和角度的不同,可分为等边三角形、等腰三角形、直角三角形、等腰直角三角形等。

(7)四边形:四边形是一个有四个顶点和四条边的几何图形,根据边长和角度的不同,可分为矩形、正方形、平行四边形、菱形、梯形等。

(8)多边形:多边形是一个有多个顶点和边的几何图形,根据边的个数和边长的不同,可分为五边形、六边形、七边形等。

以上是基本图形的性质和特点,这些知识是图形计数的基础,学生需要通过实际操作和练习,充分理解和掌握这些内容。

2. 图形的分类图形的分类是图形计数中的重要内容之一,它涉及到几何图形的形状、性质和特点,对于学生来说,需要对各种分类有一个清晰、准确的认识。

(1)按形状分类:常见的图形按照形状可以分为圆形、三角形、四边形、多边形等。

初中常见几何模型结论

初中常见几何模型结论全文共四篇示例,供读者参考第一篇示例:初中阶段学习几何模型是数学学习的一个重要组成部分,通过学习几何模型可以帮助学生理解几何概念,培养其逻辑思维和空间想象能力。

在初中课本中,涉及到的常见几何模型有三角形、四边形、圆等,学生需要掌握这些模型的性质和结论。

本文将从几何模型的性质和结论入手,详细介绍初中常见几何模型的相关知识。

一、三角形三角形是几何学中的基本图形之一,包括等腰三角形、等边三角形、直角三角形等。

在初中阶段,学生主要需要掌握三角形的性质和定理,如三角形内角和为180度、三角形外角和等于其对应内角等。

还要掌握利用角平分线、垂直平分线等相关知识解决三角形问题。

常见的三角形结论包括:1.等腰三角形的底角相等,等边三角形的三个角都相等。

2.三角形内角和为180度,即三角形的三条边可以围成一个封闭的图形。

3.等腰直角三角形的斜边等于底边的平方和。

二、四边形四边形是指有四条边的多边形,包括矩形、正方形、菱形等。

在初中阶段,学生需要掌握四边形的性质和定理,如内角和、对角线交点的性质、边的性质等。

学生还需要学会利用平行线、垂直线等概念解决四边形问题。

1.矩形的对角线相等且互相垂直。

4.平行四边形的对角线相等、同一条对角线上的内角互补。

三、圆圆是一个重要的几何模型,具有许多独特的性质和特点。

在初中阶段,学生需要掌握圆的周长、面积计算方法,以及圆的心、弦、弧等概念。

学生还需要掌握切线和切于圆的定理,并能够运用这些知识解决有关圆的问题。

1.圆的周长等于其直径乘以π,面积等于半径的平方乘以π。

2.圆的直径、弧、弦之间的关系满足弧长公式、角度公式等。

3.相交圆中的两条切线互相垂直。

4.相交圆的切线与切点处的切线垂直。

总结:通过学习初中常见几何模型的相关知识,可以帮助学生建立对几何概念的深刻理解,培养其解决实际问题的能力和创造力。

在学习几何模型的过程中,学生需要不断巩固掌握相关的性质和定理,灵活运用这些知识解决各种几何问题。

初中几何基本知识汇总

初中几何基本知识汇总一、线和角1、线段、射线、直线(略)①过二点有且只有一条直线。

②所有连接二点的线中,线段最短,叫二点间的距离。

2、同位角、内错角、同旁内角(略)3、互为补角(两角的和是一个平角),互为余角(两角的和为直角)。

①同角或等角的补角相等。

②同角或等角的余角相等。

4、平行线:①平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

②推论:两条直线都和弟三条直线平行,则两直线平行性质①两直线平行,同位角相等②两直线平行,内错角相等③两直线平行,同旁内角互补判定:①公理:同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行5、线段的垂直平分:①定理:线段垂直平分线上的点到线段两个端点的距离相等②逆定理:到线段两个端点的距离相等的点在线段的垂直平分线上。

6、对称轴:定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、三角形、四边形、多边形6、三角形的内角和、外角、中线、中位线、高①三角形三个角平分线交于一点:内心(该点到三角形三边距离相等)②三条边的垂直平分线相交于一点:外心(该点到三角形三个顶点的距离相等)③三角形中线相交于一点:重心(这点到顶点的距离是它到对边中点距离的两倍)④三角形三条高交于一点:垂心7、三角形两边之和大于弟三边,两边之差小于弟三边8、三角形的一个外角等于与它不相邻的两个内角和,大于和它不相邻的恣意内角。

9、三角形的判定:①边角边(SAS)②角边角(ASA)③边边边(SSS)④斜边直角边公理(HL)10、角平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到角的两边的距离相等的点在角的平分线上。

11、等腰三角形:⑴性质定理:等边对等角(两底角相等)①推论1:等腰三角形顶角的平分线平分底边且垂直底边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何基本图形1、如图,正三角形ABC 中,AE=CD ,AD 、BE 交于F : ①△AEB ≌△ADC ②∠BFD=600③△AEF ∽△ABE2、如图,正三角形ABC 中,F 是△ABC 中心,正三角形边长为a : ①AF :DF :AD=2:1:3 ②内切圆半径DF=a 63 ③外接圆半径AF=a 33 3、如图Rt △ABC 中,∠C=900,∠B=300,AC=a ,D 是AC 上的点: ①内切圆半径为a 213 ②外接圆半径为a 4、如图Rt △ABC 中,∠C=900,AB=AC=a ,D 是AC 上的点:FEDB AFEDCB ADCBAEDCB A45ABC为a 25; ②当BD 是角平分线时,BD 长为a 224-。

①当D 是AC 中点时,BD 长5、如图,如图Rt △ABC 中,∠BAC=900,AB=AC=a ,E 、D 是BC 、AC 上的点,且∠AED=450:①△ABE ∽ECD ②设BE=x ,则CD=ax ax 22-。

6、如图AB=AC ,∠A=360,则:BC=215-AB 。

7、如图AB=AC ,D 是BC 上一点,AE=AD ,则:21∠BAD=∠EDC 。

8、 如图,D 、E 是△ABC 边BC 上两点,AC=CD ,BE=BA ,则当:①∠BAC=1000时,∠DAE=400;②当∠BAC=x 0时,∠DAE=2180x -0。

CBA300ABCEAB CED9、如图,△BCA 中,D 是三角形内一点, ①当点D 是外心时,∠BDC=21∠A ;②当点D 是内心时,∠BDC=2180A ∠+ 10、如图,∠ACB=900,DE 是AB 中垂线,则①AE=BE ,若AC=3,BC=4,设AE=x ,有()22234x x =+-; ②△BED ∽△BAC 。

11、如图,E 是正方形ABCD 对角线BD 上一点,AE 交BC 延长线于点F ,H 是FG 中点:①△ADE ≌△CDE ; ②△EGC ∽ECF ; ③EC ⊥CH ; ④EC 是以BG 为直径的圆的切线。

12、如图,ABCD 、CGFE 是正方形:①△DCG ≌CBCE ; ②BE ⊥DG 。

13、如图,正方形ABCD 对角线交于O ,E 是OB 上一点,EF ∥BC : ①△AOE ≌△BOF ; ②AE ⊥BF 。

14、如图,E 是正方形ABCD 对角线上一点,EF ⊥CD ,EG ⊥BC : ①AE=FG ;②AE ⊥FG 。

15、如图,将矩形ABCD 顶点B 沿某直线翻折可与D 点重合:①EF 是BD 中垂线; ②BE=DE ,若AB=3,AD=5,设DE=x ,则()22253x x =-+。

16、将矩形ABCD 顶点A 沿BD 翻折,A 落在E 处,如图: ①BD 是AE 中垂线,AB=BE ;②△BEF ≌△DCF ;③BF=DF 。

AB C DA BCDEABCD EFGHABCD EFGAAD EFACD E F17、如图,B 是直线DF 上一点,∠ABC=Rt ∠,过A 、C 做直线的垂线,D 、E 是垂足:①△ABD ∽△BCE ; ②当AB=BC 时,△ABD ≌△BCE 。

18、如图,以△ABC 两边向形外作正方形ABED ,ACFG ,H 是BC 中点: ①AH=21DG ;②E 、F 到BC 所在直线的距离和等于A 到直线BC 的距离;③当∠BAC=Rt ∠时,HA ⊥DG ;19、如图,E 是正方形对角线上一点,F 是BC 边上一点∠AEF=900:则EF=CE 。

20、如图,H 是矩形对角线BD 上一点E 、F 是矩形两边上的点,∠EHF=900,则过H 作HM ⊥BC ,HN ⊥AD ,就有17题基本图形。

21、如图,AD 是△ABC 角平分线,BE ⊥AD ,作出常用辅助线(延长BE 与AC 相交即可),并体会结果。

利用角平分线翻折。

22、如图,E 是AC 中点,F 是BE 中点,当AD=8时:则DF=2。

注:可作多种辅助线,ABCDEFOBFEDCAGHABCDEFAB CDE FH有利于提高转比能力。

23、如图,D 是△ABC 边上一点,BD :DC=1:2,E 是AD 中点: ①AF :FC=1:3 ②BE :EF=2:1 ③S CDEF :S ABC =7:1224、如图,D 是BC 中点,E 是AB 上一点AE :EB=3:2:①AF :FD=3:1 ②EF :CF=3:5 ③S AEF :S EFDB =9:11。

25、如图:梯形ABCD 中,AD ∥BC ,AC=BD ,则AB=CD ,可利用①平移——过D 作DM ∥AC 交BC 延长线于M ;②分割——过A 、D 作BC 垂线。

26、如图为对角线相等的四边形ABCD (例如矩形),则连结四边中点形成的四边形是菱形。

27、如图为对角线互相垂直的四边形ABCD (例如菱形),则该四边形中点围成的四边形是矩形。

28、如图,对边AB ,CD 相等的四边形中,E 、H 、F 是边对角线中点,则△EHF 是等腰三角形。

ABCDEA BCDEFEABCDFEADF A B CDABDOABCDOEA BCDF H29、如图Rt △ABC 中,∠BAC=900,AD ⊥BD ,则①AB 2:AD 2=BC :CD ;②222111ADAB AC += 30、如图,F 是正方形边CD 中点,CE=41BC :则 ①AF 2=AD ·AE ;②CF 2=CE ·BC 。

31、如图,CD 、BE 是△ABC 高线:①BC 中点在DE 中垂线上;②△ADE ∽△ACB ;③当∠A=600时,DE=21。

32、如图D 是BC 中点,AC=2CD ;①△CAD ∽CBA ;②ACCDBC AC AB AD ==33、如图,D 是Rt △ABC 直角边上中点,CE ⊥AD 则:△DBE ∽△DAB 。

34、如图,梯形ABCD 中,AD ∥BC ,已知AD :BC=2:3;①S △ADE :S △BEC =4:9 ②S ADE :S DEC =2:3;③S ADE :S ABCD =4:25。

35、如图,梯形ABCD 中,AD ∥BC ,EF 是中位线,已知AD :BC=2:3;①EG=FH ②GH :BC=1:6; ③S △OGH :S ABCD =1:100。

DCBAFEDCBA EDCBADCBAC36、如图,E 是平行四边形边BC 上一点,BE :CE=3:1,则S DFEC :S △ABCD =19:56。

37、如图,直角梯形ABCD 中,AB ⊥AD ,AD ∥BC ,CD=AD+BC ,E 是AB 中点:①DE 、CE 是角平分线 ②∠DEC=Rt ∠。

38、如图,Rt △ABC 中,∠BCA=900,点O 在直角边AC 上,当以O 为圆心的圆与BC 、AB 相切时:①BE=BC ②AE 2=AF ·AC ③△AEO ∽ACB ;④当BC=3,AC=4时,⊙O 半径为23;⑤当∠A=300,BC=a 时。

AF=OF=OC=a 33。

39、如图,∠C=Rt ∠,O 是斜边上一点,以O 为圆心的圆与AC 、BC 相切,r 是⊙O 半径:①1=+BC r AC r ;②当AC=4,BC=3时,r=712。

40、如图,∠C=Rt ∠,O 是斜边上一点,以O 为圆心的圆过点B ,且与AC 相切,r 是⊙O 半径:①tgA=AD OD AC BC =; ②当AC=4,BC=3时,OA=r 35,AF=r 32,AD 2=AF ·AB 。

41、如图⊙O 是Rt △ABC 内切圆,①AE=AD ,BD=BF ,CE=CF ,2cb a r -+=42、如图,⊙O 切Rt △ABC 直角边AC 与斜边AB 于C 、D ,DF ⊥BC ,CH 、EF 是AB 垂线,EDCB AGHE DC B F AO AF BCDEABCDEABCO EFG FEODCBABKE ⊥BC :①△DGE ≌△DFE ;②△DFC ≌△DHC ;③∠BDE=∠FDE ;④DF 是GE 、CH 比例中项;⑤OD 是KE 、AC 比例中项;⑥△DOK ≌△EOK ;⑦△AOD ≌△AOC ……43、如图,以AB 为直径的⊙O 切CD 于E ,AC 、BD 是CD 垂线:①CE=DE ;②CDBF 是矩形。

44、如图,以AB 为直径的⊙O 中,AC 、BD 是弦EF 的垂线:①CE=DF ;②CDBG 是矩形;③连结AE ,GF ,∠EAG=∠GFE=∠BED ……B ABCDOE FGH kC45、如图,AB 在直径所在直线上,AB ⊥CD :①∠A=∠FCO ;②△CFO ∽△AFE ∽△ACO ∽△AOD 。

46、如图,⊙O 是△ABC 外接圆,AE ⊥BC ,CD ⊥AB ,OE ⊥BC :①AHCG 是平行四边形;②OF=21AH 。

47、如图AB 是⊙O 切线,C 是AB 中点,CED 是割线,则△ACE ∽△DCA 。

48、如图,AD ∥BC ,AC 、BD 交于O ,EF ∥AD ,则OE=OF ,OEBC AD 111=+。

ABCD OEF GHABCD OEFGH AC DA BCDOE F49、如图,点B 在⊙O 上,以B 为圆心的圆与⊙A 的公切线是DE ,切点是D 、E ,若DE 交AB 于C ;当⊙B 半径是⊙A 的一半时;①∠C=300;50、如图,两圆内切于P ,大圆弦PC 、PD 交小圆于A 、B ,则AB ∥CD 。

51、如图,⊙O 与⊙O 1内切于P ,⊙O 的弦AB 切⊙O 1于C ,连结PC 交⊙O 于D ,则:PA •PB=PC •PD 。

52、已知⊙A 的圆心在⊙O 上,⊙O 的弦BC 与⊙A 切于P ,若两圆半径为R ,r ,则AB •AC=2Rr 。

53、如图,⊙O 1与⊙O 2内切于A ,⊙O 1的弦BC 经过O 2,交⊙O 2于D 、E ,若⊙O 1的直径为6,BD :DE :CE=3:4:2,则可设BD=3k ,在利用相交弦定理求⊙O 2半径。

54、如图,半圆O 与⊙O 1内切于E ,⊙O 1与半圆直径AB 切于D ,连结DO 1交半圆于C ,若AB=32,⊙O 1直径为12,可将半圆补全,利用相交弦定理求CD 长。

55、如图,两圆相交于A 、B ,一直线分别交⊙O 1,⊙O 2于D 、E 、F 、G ,与AB 交于C ,则DE :EC=GF :FC 。

56、如图⊙O 与⊙A 交于B 、C ,过点A 作直线交⊙O 于E ,交⊙A 于D ,交BC 于F ,则:AD 2=AF •AE 。

相关文档
最新文档