小学数学奥数解题技巧(44)几何图形的计数

合集下载

四年级奥数第二讲图形的计数问题含答案

四年级奥数第二讲图形的计数问题含答案

四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。

练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。

四年级奥数—几何中的计数问题

四年级奥数—几何中的计数问题

几何中的计数问题
例1、数一数下列图形中各有多少条线段。

例2、数一数下图中共有多少个角。

例3、数一数下图中共有多少个角。

例4、下图中,各有多少个三角形。

例5、如下图中,数一数共有多少条线段,多少个三角形。

例6、如下图中,共有多少个角。

例7、如下图,数一数共有多少个长方形。

例8、数一数下图中长方形的个数。

例9、数一数下面各图中所有正方形的个数。

例10、数一数下图中有多少个正方形。

例11、数一数下图三角形的个数。

例12、数一数下图中三角形的个数。

例13、数一数下图中三角形的个数。

例14、数一数下图中三角形的个数。

练:1、数一数下面各图中有多少条线段。

2、数一数下面各图中有多少个角。

3、数一数下面各图中,各有多少条线段。

4、数一数下面各图中,各有多少条线段,各有多少个三角形。

5、下面图中有多少个正方形。

6、下图中有多少个长方形。

7、下图中有多少个三角形。

8、下图中有多少个长方形。

9、下图中各有多少个三角形。

小学数学 奥数讲义计数专题几何计数

小学数学 奥数讲义计数专题几何计数

小学数学奥数讲义计数专题几何计数小学数学奥数讲义计数专题几何计数在小学数学的教学中,奥数讲义是一本非常重要的学习资料。

其中计数专题是数学学习的基础,也是几何计数的重要内容之一。

本文将对小学数学奥数讲义中的几何计数进行详细介绍。

一、几何计数的概念几何计数是指通过观察几何形状,根据一定的规律和方法进行计数的过程。

它主要包括图形的边数、顶点数和对称性等方面的计数。

二、图形的边数的计数计算图形的边数是几何计数的重要内容之一。

对于任何一条直线,它没有边,因为它是无限长的。

对于一个封闭的图形,它的边数等于它的边界线的线段数。

例如,一个三角形有三条边,一个正方形有四条边。

三、图形的顶点数的计数计算图形的顶点数也是几何计数的重要内容之一。

顶点是指图形的两条边交汇的点。

对于一个封闭图形,它的顶点数等于它的边界线上的交点数加上中心点(如果存在的话)。

例如,一个三角形有三个顶点,一个正方形有四个顶点。

四、图形的对称性的计数计算图形的对称性也是几何计数中的重要内容。

对称性是指图形的某一部分与另一部分关于某个轴线对称,这个轴线称为对称轴。

对称轴的数量可以通过观察图形的特点来确定。

例如,一个正方形有四条对称轴,分别是两条对角线和两条垂直于边的中垂线。

五、实例演示为了更好地理解几何计数的概念和方法,我们举一个实例来演示。

假设有一个五角星形的图形,我们来计算它的边数、顶点数和对称性。

首先,观察图形,我们可以看到它有五条边,所以边数为5。

接下来,我们继续观察图形,可以看到它有五个顶点,所以顶点数为5。

最后,我们观察图形的对称性。

五角星形图形有五条对称轴,分别是五条连结顶点的线段。

六、总结通过以上的介绍和实例演示,我们了解了几何计数在小学数学奥数讲义中的重要性。

几何计数包括图形的边数、顶点数和对称性等内容,通过观察和计数,我们可以更深入地理解图形的特点和性质。

在小学数学教学中,几何计数是培养学生观察、分析和计算能力的一种重要方法。

四年级奥数.计数综合.几何计数

四年级奥数.计数综合.几何计数

几何计数知识结构一、公式计算法几何计数内容很广,包括数线段的条数,角的个数,长方形、正方形、三角形、平行四边形、梯形等图形的个数,也包括数立体图形的个数。

图形的计数一般有两种思考方法:公式计算法和分类计数法。

三年级学习的线段、长方形和正方形的计数就属于公式计算法。

(1)一条线段有两个端点,若这条线段上有n个点,那么线段总数是(n-1)+(n+2)+…+3+2+1(2)如果一个长方形的长边上有n个小格,宽边上有m个小格,那么长方形的总数是(1+2+3+…+n)×(1+2+…+m)(3)如果把正方形各边都n等分,那么正方形的总数是n2+(n-1)2+(n-2)2+…+32+22+12上面计算线数的方法也可用于计算角的个数,而且,根据这些计数方法在以后还可以类推出立体图形的计算方法。

二、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.重难点(1)分类数图形。

(2)对应法数图形。

例题精讲一、分类数图形【例 1】下图的两个图形(实线)是分别用10根和16根单位长的小棍围成的.如果按此规律(每一层比上面一层多摆出两个小正方形)围成的图形共用了60多根小棍,那么围成的图形有几层,共用了多少根小棍?【巩固】如图所示,用长短相同的火柴棍摆成3×1996的方格网,其中每个小方格的边都由一根火柴棍组成,那么一共需用多少根火柴棍?【例 2】图中有______个正方形.【巩固】数一数:图中共有________ 个正方形。

【例 3】 右图中三角形共有 个.【巩固】 数一数图中有_______个三角形.【例 4】 图中共有多少个三角形?CB A【巩固】 下图是由边长为1的小三角形拼成,其中边长为4的三角形有_____个。

【例 5】 如图,每个小正方形的面积都是l 平方厘米。

则在此图中最多可以画出__________个面积是4平方厘米的格点正方形(顶点都在图中交叉点上的正方形)。

小学奥数标准版巧数图形详解

小学奥数标准版巧数图形详解

段3线总段条条段共数4 ×3 ÷=12=条6条线
练一练
AB
C
D
E
AB C D E F
① 5+4+3+2+1=15(条)
FG ① 6+5+4+3+2+1=21(条) ② 7 ×6 ÷2=21(条)
② 6 ×5 ÷2=15(条)
线段条数=(端点数-1)+(端点数-2)+(端点
数-3)+……+1
或者
线段条数=端点数×(端点数-1) ÷2
分类数图形
认识基本的几何图形
AB
左端点 右端点
直线
线 段
AB
A
端点
线 段 射线
三角形
长方形

先自己独立数一数,再与同桌交流数的方法!
A
B
C
D
一共有多少条线段?
请跟我一起来数一数吧!
A
B
C
D
下图中有几条 线段呢?
以A为左端点的线 段条数 3以条B为左端点的线 段2以段条条条C为数数左1条端点的线
思路导航:数图形中有多少个长方形和数 三角形的方法一样,长方形是由长宽两对线 段围成,线段 CD上有4+3+2+1=10条线段, 其中每一条与 AC中一条线段对应,分别作 为长方形的长和宽,这里共有 6×1=6个长方 形 ; 而 AC 上 共 2 + 1=6 条 线 段 也 就 有 10×6=18个长方形。
二图叠加后总共有2+8=10个正方形,16+28=44个三角形。
或直接数三角形16+16+8+4=44
8组合 4组合 单个 2组合

图形计数的方法

图形计数的方法

2 . 数角.
至 E宦
是9 O 一1 8 = 7 2 .
田 田
在使用分类计数法时 , 一定要注意是 正 方形 : 如左 、 中、 右 三图 , 各 包含 多
否有遗漏或重复计 数的 !
少 个 正 方 形?
数 角与数线段相似 , 角 图形 中的边类 似 于线段 图形 中的点.
由分 类法知 D E上有 1 5条线 段 , 每
条线段 的两端点 与点 A相连 , 可构成一个 B C上 的三 角形也有 1 5 个, 所 以图中共有
3 0个 三 角形 .
如最右侧 的图形 中也有 3 0 个平行 四
是3 X 3 0 = 9 0 7
那么原图 中平行四边形 的个数是 否 三 角形 ,共有 l 5个三角形 ,同样一边在 边形 ,
合计有 5 + 4 + 3 + 2 + 1 = 1 5 ( 条) 如 果一条线段上有 n +1个点 ( 包括 两个端点 ) ( 或含 有 n个 “ 基本线段 ” ) , 那 么这 n +1个点 把这 条线段分成 的线段总 数为 , + ( n 一 1 ) + . . . + 2 + 1 ;旦
DO E共 1个
四边 形 ) , 若其横边 上共有 n条线段 , 纵 边
上共 有 m条线段 , 则图 中共 有长方形 ( 平
行 四 边形 ) mn个 .
套 计数的方法 ,否则越数头绪越杂乱 ,
很难得 出准确 的结果. 本文就谈谈 简单的 图形计数的方法. 关键词 : 图形

合计有 4 + 3 + 2 +i = 1 0 ( 个)
假设 分为如下图所示的两块 , 那么每 块中的平行四边形 的个数都是 2 O 个.
夜晚 , 我如往常一样认认真真地做着 的一种思想——转化思想的运用. 数学题 目.正 当进 行得一帆风顺 的时候 , 我 却被 一道 图形 计数 的题 目难倒 了 : “ 这 始 翻阅各种 书籍 , 搜寻解答此类题型 的种

图形的计数知识点总结

图形的计数知识点总结

图形的计数知识点总结图形的计数是数学中的一个重要内容,它涉及到几何形状的种类、性质以及应用,是数学学习的一个基础知识点。

在初中阶段,学生开始系统学习图形的知识,包括基本图形的性质、图形的分类、图形的计数等内容。

本文将对图形的计数知识点进行总结,帮助学生更好地理解和掌握这一知识点。

1. 基本图形的性质在图形的计数中,首先要了解基本图形的性质。

基本图形包括点、线、线段、射线、角、三角形、四边形、多边形等。

这些图形有各自的定义、性质及特点,对于学生来说,需要对这些基本图形有一个清晰、完整的理解。

(1)点:点是几何中最基本的概念,它没有长度、宽度和高度,只有位置。

点在几何图形中起到连接线段、构建图形等作用。

(2)线:线是由一组点按照一定规律排列而成,没有宽度和厚度。

线在几何图形中起到连接点、构成图形等作用。

(3)线段:线段是由两个端点和这两个端点之间的所有点组成的,有一定的长度,但没有宽度和厚度。

(4)射线:射线是由一个端点和这个端点上的一条直线上的所有点组成的,有一定的长度,但在一个方向上是无限长的。

(5)角:角是由两条射线的公共端点所确定的,角的度量单位通常是度。

角分为锐角、直角、钝角等。

(6)三角形:三角形是一个有三个顶点和三条边的几何图形,根据边长和角度的不同,可分为等边三角形、等腰三角形、直角三角形、等腰直角三角形等。

(7)四边形:四边形是一个有四个顶点和四条边的几何图形,根据边长和角度的不同,可分为矩形、正方形、平行四边形、菱形、梯形等。

(8)多边形:多边形是一个有多个顶点和边的几何图形,根据边的个数和边长的不同,可分为五边形、六边形、七边形等。

以上是基本图形的性质和特点,这些知识是图形计数的基础,学生需要通过实际操作和练习,充分理解和掌握这些内容。

2. 图形的分类图形的分类是图形计数中的重要内容之一,它涉及到几何图形的形状、性质和特点,对于学生来说,需要对各种分类有一个清晰、准确的认识。

(1)按形状分类:常见的图形按照形状可以分为圆形、三角形、四边形、多边形等。

小学奥数第五讲:图形的计数

小学奥数第五讲:图形的计数

小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。

在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。

例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。

可以采用数数的方法,按顺序数。

也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。

解:方法一:一个一个地数出8个正方体。

方法二:2×4=8(个)答:共有8个小正方体。

例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。

问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。

只有“粘在一起的”面没有涂色。

中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。

解:(1)2面涂成红色的小正方体只有1个。

(2)4面涂成红色的小正方体有4个。

(3)5面涂成红色的小正方体有4个。

例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。

应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。

解:10+10+1=21(个)答:共写21个。

例5:27个小方块堆成一个正方体。

如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。

3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学奥数解题技巧
44、几何图形的计数
【点与线的计数】
例1如图5.45,每相邻的三个圆点组成一个小三角形,问:图
中是这样的小三解形个数多还是圆点的个数多?
(全国第二届“华杯赛”决赛试题)
讲析:可用“分组对应法”来计数。

将每一排三角形个数与它的下行线进行对应比较。

第一排三角形有1个,其下行线有2点;
第二排三角形有3个,其下行线有3点;
第三排三角形有5个,其下行线有4点;
以后每排三角形个数都比它的下行线上的点多。

所以是小三角形个数多。

1。

相关文档
最新文档