PV battery cycle life test光伏电池生命周期测试

合集下载

太阳能光伏系统的生命周期分析

太阳能光伏系统的生命周期分析

太阳能光伏系统的生命周期分析太阳能光伏系统作为一种可再生能源技术,近年来受到了广泛关注和应用。

然而,为了评估和比较不同的能源系统,我们需要对其生命周期进行全面的分析。

本文将探讨太阳能光伏系统的生命周期,包括生产制造、运输安装、运营维护和废弃处理等各个阶段。

1. 生产制造阶段在制造太阳能光伏系统的过程中,主要涉及到材料的开采、加工和组装等环节。

光伏电池的制造过程中需要大量使用能源,并伴随着一定的环境污染。

加工废水、废气和废弃物等都需要得到妥善处理,以减少对环境的负面影响。

同时,制造过程中的能源消耗也需要考虑在整个生命周期中的影响。

2. 运输安装阶段太阳能光伏系统的组件需要从制造工厂运送到安装地点。

长距离的运输会涉及到一定的能源消耗和环境负荷。

此外,安装阶段还需要考虑建筑工人和设备对环境的影响,以及安装过程中产生的废弃物的处理方式。

3. 运营维护阶段太阳能光伏系统的运营维护阶段是系统的主要存在期,也是能源生产的阶段。

系统的运行需要定期的维护和清洁,以保持其高效的能量转换率。

同时,电线、支架和其他组件的维护也需要考虑能源消耗和对环境的影响。

此外,系统的运营还需要考虑到电池的更换和后续维护等因素。

4. 废弃处理阶段太阳能光伏系统在使用寿命结束后,需要进行废弃处理。

光伏电池和其他组件可能会产生有害的废弃物,需要进行适当的处理和处理以减少对环境的污染。

回收和再利用太阳能光伏系统的材料和组件也是一个重要的环节,以减少资源的浪费和环境的负担。

综上所述,太阳能光伏系统的生命周期分析需要考虑到从生产制造到废弃处理的各个阶段。

在每个阶段中,减少能源消耗、优化材料使用和处理、减少环境污染等都是重要的考虑因素。

通过全面的生命周期分析,我们可以评估太阳能光伏系统的环境影响,为可持续能源发展提供科学的依据和指导。

太阳能光伏电池组件的可靠性与寿命评估

太阳能光伏电池组件的可靠性与寿命评估

太阳能光伏电池组件的可靠性与寿命评估随着全球对可再生能源的需求不断增加,太阳能光伏电池成为了一种重要的能源选择。

然而,太阳能光伏电池组件的可靠性和寿命一直是人们关注的焦点。

本文将探讨太阳能光伏电池组件的可靠性评估方法以及如何评估其寿命,以促进太阳能光伏电池产业的可持续发展。

一、太阳能光伏电池组件的可靠性评估方法实际工作中,太阳能光伏电池组件的可靠性评估主要通过以下几个方面进行:1. 性能参数测试:对太阳能光伏电池组件进行电性能参数测试,包括开路电压、短路电流、最大功率点等。

通过与标准数值进行比对,可以评估组件的性能稳定性和一致性。

2. 机械强度测试:太阳能光伏电池组件需要经受各种气候条件下的风、雨、雪等自然环境的考验。

机械强度测试可以模拟这些环境,评估组件在不同负载下的强度和抗风雪能力。

3. 环境适应性测试:组件的环境适应性评估是通过模拟不同气候条件下的温度、湿度、腐蚀等因素,来评估组件的耐候性和耐腐蚀性能。

4. 加速寿命测试:为了评估组件在正常使用寿命内的可靠性,需要进行加速寿命测试。

这种测试通过模拟组件在不同温度、湿度和光照等条件下的工作环境,来预测组件的可靠寿命。

二、太阳能光伏电池组件的寿命评估太阳能光伏电池组件的寿命评估是一个复杂的过程,需要综合考虑多个因素和长期的运行状况。

以下是几个常用的寿命评估方法:1. 组件参数退化率方法:通过对组件参数的长期监测和分析,计算出组件参数退化的速率,并以此评估组件的寿命。

通常,退化率较低的组件具有较长的寿命。

2. 应力裂纹扩展法:通过对组件材料的裂纹扩展和应力程度的分析,在组件的寿命评估中起到重要作用。

裂纹扩展分析可以帮助预测组件的疲劳寿命。

3. 加速实验方法:通过将组件放置在高温高湿等恶劣条件下进行加速实验,从而预测组件在正常使用条件下的寿命。

4. 可靠性模型方法:通过建立数学模型,结合组件的性能参数、环境因素、使用条件等多个因素,预测组件的寿命。

新能源汽车电池寿命延长技术的实验测试方法

新能源汽车电池寿命延长技术的实验测试方法

新能源汽车电池寿命延长技术的实验测试方法新能源汽车电池是电动车的重要组成部分,其性能和寿命直接影响着车辆的使用寿命和性能表现。

然而,电池的寿命是一个长期的问题,尤其是在频繁充放电和高温条件下,电池容易出现容量衰退和性能下降。

为了延长新能源汽车电池的寿命,科学家们一直在寻求各种技术手段,其中实验测试方法是很重要的一环。

1. 充电和放电试验:新能源汽车电池的寿命主要受到充电和放电循环次数的影响。

因此,一种常见的实验测试方法就是对电池进行充放电试验。

具体而言,将电池安装在恒温室中,以一定的电流进行充电和放电循环。

根据预定的充电和放电次数,观察电池容量的变化情况,进而评估电池的寿命。

2. 高温老化试验:高温是影响电池寿命的一个重要因素。

因此,高温老化试验可以模拟电池在高温环境下的使用情况,评估电池在该条件下的寿命表现。

在实验中,将电池放置在恒温箱中,将温度设置在高温区间内,并进行长时间的恒温老化测试。

通过观察电池容量衰退情况和循环性能变化,可以评估电池在高温环境下的耐久性和寿命。

3. 循环寿命测试:新能源汽车电池的循环寿命直接与其充电和放电循环次数有关。

为了评估电池的循环寿命,一种常见的测试方法是进行循环寿命测试。

在实验中,电池以一定的电流充放电,循环多次,直到电池的容量衰退到预定的程度或无法正常工作。

通过测试电池在不同循环次数下的容量变化和电池性能的衰退情况,可评估电池的循环寿命。

4. 充电和放电效率测试:电池的充电和放电效率是影响其寿命的重要指标之一。

为了评估电池的充放电效率,可以进行充放电效率测试。

在实验中,通过对电池进行充放电循环,测量电池在输入和输出能量之间的损失,计算充放电效率。

通过比较不同充放电条件下的效率变化,可以评估电池在不同工作状态下的寿命表现。

5. 温度循环测试:温度变化是电池寿命的关键因素之一,因此温度循环测试是评估电池寿命的重要实验方法之一。

在温度循环测试中,将电池置于不同温度环境中,进行循环加热与冷却。

常规电芯材料测试方法介绍

常规电芯材料测试方法介绍

常规电芯材料测试方法介绍1. 循环伏安测试(Cyclic Voltammetry,CV):CV测试是一种常用的电化学测试方法,用于评估电极材料的电化学性能。

该测试方法通过在一定电位范围内施加循环电压,以观察材料的电流响应来确定其电化学活性和稳定性。

2. 恒流充放电测试(Constant Current Charge/Discharge,CC):CC测试是评估电芯材料储能性能的重要方法。

通过在一定电流下进行充放电循环,可以确定材料的容量、循环稳定性和能量密度等关键参数。

3. 循环寿命测试(Cycle Life Testing):循环寿命测试是评估电芯材料使用寿命的关键方法。

该测试方法通过多次充放电循环,观察电芯容量的衰减情况,以确定材料的循环寿命和稳定性。

4. 热性能测试(Thermal Performance Testing):热性能测试是评估电芯材料热稳定性和安全性的重要方法。

该测试方法通过在不同温度和热循环条件下进行测试,以观察材料的热行为和热失控情况,以确保电芯材料在实际使用中的安全性。

5. 电化学阻抗谱测试(Electrochemical Impedance Spectroscopy,EIS):EIS测试是评估电芯材料电导性能和电化学界面特性的常用方法。

该测试方法通过在不同频率下施加小幅交流电压,并测量电流响应,以分析材料的电化学阻抗和界面特性。

6. 红外光谱测试(Infrared Spectroscopy,IR):IR测试是评估电芯材料结构和化学成分的常见方法。

通过测量材料在红外光谱范围内的吸收和散射特性,可以确定材料的化学键结构和组成。

7. X射线衍射测试(X-ray Diffraction,XRD):XRD测试是评估电芯材料晶体结构和晶格参数的重要方法。

通过测量材料对X射线的散射模式,可以确定材料的晶体结构和相变特性。

8. 扫描电子显微镜测试(Scanning Electron Microscopy,SEM):SEM测试是评估电芯材料形貌和微观结构的常用方法。

太阳能光伏电池性能测试与评估

太阳能光伏电池性能测试与评估

太阳能光伏电池性能测试与评估随着环保意识的日益提高,太阳能光伏电池作为一种清洁能源,越来越受到人们的关注。

但是,光伏电池的性能不仅仅受到制造商的影响,还受到环境因素的影响。

为了评估太阳能光伏电池的性能,需要进行一系列的测试和评估。

一、光伏电池性能测试1.光电转换效率测试光电转换效率是指太阳能光伏电池将光能转换为电能的效率。

实际应用中,通常采用标准测试条件下太阳光谱下的光电转换效率来衡量光伏电池性能。

标准测试条件是指太阳直射下的能量密度为1000瓦特/平方米,太阳光谱为航空航天工业所规定的AM1.5G光谱。

太阳能光伏电池在标准测试条件下的工作温度为25℃。

将电池暴露在标准测试条件下,记录电池产生的最大电流和最大电压,计算出光电转换效率。

(efficiency=Isc*Voc*FF/Pin)其中,Isc为电池在短路状态下的输出电流;Voc为电池在开路状态下的输出电压;FF为填充因子;Pin为光能输入功率密度。

2.电池周期性性能测试太阳能光伏电池在实际应用过程中,经常要面对连续使用多年的情况。

因此,要对光伏电池在长时期内的性能进行测试。

周期性性能测试的主要内容包括:温度循环测试、湿热循环测试、阳光模拟测试、机械应力测试、腐蚀测试等。

通过这些测试,可以评估太阳能光伏电池在长期使用过程中的性能稳定性和耐久性。

二、光伏电池性能评估1.性能可靠性太阳能光伏电池的性能可靠性是指在实际环境应用中,光伏电池能否保持原有性能。

性能可靠性取决于电池材料的质量、制造工艺、工作环境等各种因素。

在选择太阳能光伏电池产品时,应通过性能可靠性测试来评估电池的质量。

2.协同性能太阳能光伏电池应用于实际环境中,需要与其他太阳能设备进行协同工作。

协同性能评估主要是通过实际的工作环境来进行测试,例如在不同光照条件下测试光伏电池及其他设备的耦合效果。

3.经济性能评估太阳能光伏电池的经济性能是指在实际应用中,其发电成本是否低廉,是否具有可扩展性等。

锂电池 寿命 测试 标准

锂电池 寿命 测试 标准

锂电池寿命测试标准锂电池作为现代电子设备的核心能源,其性能和寿命至关重要。

近年来,随着科技的飞速发展,锂电池在消费电子、电动汽车以及储能等领域得到广泛应用。

然而,锂电池的寿命问题一直是业内关注的焦点。

如何正确测试锂电池的寿命,以及如何提高其使用寿命,成为行业迫切需要解决的问题。

锂电池寿命测试主要包括以下几个方面:1.充放电循环测试:通过测量锂电池在一定次数的充放电循环后的容量变化,评估电池的寿命。

一般来说,锂电池的寿命是用充放电循环次数来衡量的,当电池容量衰减到原有容量的80%时,即可认为电池寿命结束。

2.容量保持率测试:在不同的存储条件下,如温度、湿度等环境因素变化,测试锂电池的容量保持率。

这一指标可以反映电池在实际使用过程中的性能稳定性。

3.温度循环测试:通过在不同温度条件下对锂电池进行充放电循环测试,观察电池性能的变化。

温度是影响锂电池寿命的重要因素,因此了解电池在不同温度下的性能表现,有助于优化电池设计和提高使用寿命。

4.存储寿命测试:在特定的存储条件下,如温度、湿度等环境因素,测试锂电池的存储寿命。

存储寿命是指电池在未经使用的情况下,其性能衰减到一定程度所需的时间。

要提高锂电池寿命,可以从以下几个方面着手:1.材料选择:采用高性能的正极、负极和电解质材料,以提高电池的能量密度和循环寿命。

2.电池设计优化:优化电池的结构设计,如减小电池的内阻、提高电池的充放电效率,从而降低电池的损耗。

3.电池管理系统应用:采用电池管理系统(BMS)对锂电池进行实时监测和控制,确保电池在安全、合理的范围内工作,避免过充、过放等现象发生,从而延长电池寿命。

我国锂电池产业发展现状喜人,产能持续扩大,技术不断突破。

在政策的扶持下,新能源汽车、储能等领域的锂电池需求迅速增长。

然而,与国际先进水平相比,我国锂电池在关键材料、制造工艺等方面仍有一定差距。

pv试验报告

pv试验报告

PV试验报告一、引言该试验报告旨在记录对光伏(Photovoltaic,简称PV)系统进行的试验结果。

光伏系统是一种将太阳能转化为电能的装置,由太阳能电池板(Photovoltaic Panel),逆变器(Inverter)和电池储能系统(Battery Energy Storage System)等组成。

本次试验旨在评估光伏系统的性能和可靠性,以及分析其在不同条件下的发电效果。

二、试验目的本次试验的主要目的是:1.测量光伏系统在不同光照条件下的发电效果;2.分析光伏系统在恶劣天气条件下的性能表现;3.评估光伏系统在不同温度下的电能转化效率。

三、试验设备与方法本次试验所需的设备包括:•太阳能电池板;•逆变器;•电源线;•测量仪器(如多用电表);•温度计;•试验记录表格。

试验步骤如下:1.将太阳能电池板安装在适当的位置,确保其能够充分接收到阳光;2.连接逆变器并接通电源线;3.使用测量仪器对太阳能电池板的输出电压和电流进行测量,并记录结果;4.在一定时间范围内,根据日照强度和温度的变化,进行多次测量;5.在恶劣天气条件下,如阴天或下雨天,观察光伏系统的性能表现;6.测量太阳能电池板的温度,并记录结果。

四、试验结果与分析4.1 发电效果的测量结果根据试验过程中的测量数据,得到了不同光照条件下的发电效果数据。

以下是部分数据的示例:光照强度(W/m2)输出电压(V)输出电流(A)电能转化效率(%)100020.1 5.215.78 120022.3 5.816.47 150025.6 6.517.54从上述数据可以看出,光伏系统的发电效果随着光照强度的增加而提高。

然而,电能转化效率并非线性增加,而是呈现出逐渐减小的趋势。

4.2 恶劣天气条件下的表现试验中也模拟了恶劣天气条件下光伏系统的性能表现。

在阴天和下雨天的情况下,发现光伏系统的发电效果显著减弱。

在阴天条件下,光照强度下降到500W/m2,输出电压和电流也相应降低,电能转化效率达到了12%左右。

光伏电池组件测试标准

光伏电池组件测试标准

光伏电池组件测试标准光伏电池组件是太阳能发电系统中的核心部件之一,其性能稳定性和可靠性直接影响着整个光伏发电系统的发电效率和寿命。

因此,对光伏电池组件进行严格的测试是非常必要的。

本文将介绍光伏电池组件测试的标准和方法,以期为相关从业人员提供参考。

一、光伏电池组件外观检查。

1.1 外观检查项目。

光伏电池组件的外观检查是第一道工序,主要包括表面平整度、玻璃表面是否有划伤、背板是否有裂纹、边框是否完整等项目。

1.2 检查方法。

采用目视检查和触摸检查相结合的方法,对光伏电池组件进行全面的外观检查,确保组件外观完好。

二、光伏电池组件电性能测试。

2.1 电性能测试项目。

光伏电池组件的电性能测试主要包括开路电压、短路电流、最大功率点电压、最大功率点电流等项目。

2.2 测试方法。

采用多用途太阳能电池测试仪进行测试,按照测试仪器的操作说明进行测试,确保测试结果准确可靠。

三、光伏电池组件耐久性测试。

3.1 耐久性测试项目。

光伏电池组件的耐久性测试主要包括温度循环测试、湿热循环测试、紫外线辐照测试等项目。

3.2 测试方法。

采用符合国家标准的测试设备进行测试,按照标准要求进行测试,确保测试结果符合标准要求。

四、光伏电池组件安全性能测试。

4.1 安全性能测试项目。

光伏电池组件的安全性能测试主要包括防火性能测试、耐候性测试、电气安全性能测试等项目。

4.2 测试方法。

采用符合国家标准的测试设备进行测试,按照标准要求进行测试,确保光伏电池组件的安全性能符合标准要求。

五、光伏电池组件质量控制。

5.1 质量控制要求。

光伏电池组件的生产企业应建立完善的质量控制体系,确保产品质量稳定可靠。

5.2 质量控制方法。

采用先进的生产工艺和严格的质量控制流程,对光伏电池组件进行全程质量控制,确保产品质量达标。

六、光伏电池组件测试报告。

6.1 报告内容。

光伏电池组件测试报告应包括外观检查、电性能测试、耐久性测试、安全性能测试等内容。

6.2 报告编制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Test Results from the PV BatteryCycle-Life Test ProcedureTom HundPhotovoltaic System Applications DepartmentSandia National Laboratories*Albuquerque, NM 87185-0753Abstract. Cycle-life testing has been conducted on the Deka ‘Solar’, Dynasty Division ofC&D Technologies‘Dynasty’, and Sonnenschein ‘Dryfit’ gel valve regulated lead-acidbatteries to evaluate their performance in small stand-alone photovoltaic (PV) systems. ThePV battery test procedure uses regulation voltage, charge rate, charge-amp-hour to load-amp-hour ratio, depth-of-discharge, and low-voltage-disconnect as test variables to measure theavailable battery capacity to the low-voltage-disconnect and end-of-test battery capacity to1.75 volts per cell. Each cycle-life test sequence includes 25 shallow cycles, 6 deficit-chargecycles to low-voltage-disconnect, 10 to 20 recovery-charge cycles, and 40 to 50 more shallowcycles, for a total of 91 cycles per test sequence. Test results after 1,001 cycles on the abovebatteries have indicated that the Deka and Sonnenschein batteries lost capacity at a slow butconsistent rate. The Dynasty battery experienced an initial drop in capacity but recoveredmost of it later in the cycle-life test. The test results also demonstrate that the “PV BatteryCycle-Life Test Procedure” is an effective means to evaluate battery performance usingcharging parameters similar to a stand-alone PV system.INTRODUCTIONThe “PV Battery Cycle-Life Test Procedure” used at Sandia National Laboratories and at the Florida Solar Energy Center has been in development for over seven years. Initial work by Harrington and Swamy, et al. [1,2] explored the unique operational profiles that PV batteries are exposed to and the testing requirements needed to simulate the PV cycle profile in a laboratory environment. This work made it clear that traditional battery test procedures from the Battery Council International (BCI) [3] were not fulfilling the testing needs of the PV industry. The BCI cycle-life tests were specifically designed for the motive power industry where relatively high charge and discharge rates, with complete recharges every cycle, are the norm. Batteries in PV systems continually suffer from limited power for recharge and extended periods when they are left in a partially charged condition. It is important for any PV battery test procedure to duplicate the shallow cycling, deficit-charge cycling, low charge and discharge rates, and limited recharge or finish-charge as found in PV systems. Over the last few years there has been a significant effort by the PV Global Accreditation Program (PV GAP), the IEEE Standards Coordinating Committee 21 (IEEE SCC21), and the International Electrotechnical Commission (IEC) to develop standardized test procedures for batteries used in stand-alone PV systems. The test procedure and test results in this report represent Sandia’s effort at providing the PV industry with a standardized “PV Battery Cycle-Life Test Procedure.”*Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.PV Battery Cycle-Life Test ProcedureThe PV Battery Test Procedure is designed to cycle the test battery in a way that attemptsto simulate the daily charge and discharge cycles of a PV system in high and low solar resource periods. The test procedure shallow cycles the battery to a high state of charge (SOC) every day to simulate high solar resource, and deep discharges the battery to thelow-voltage-disconnect (LVD) to simulate low solar resource. It is not intended to, nor can it, measure actual PV battery cycle-life. It is intended to make comparative performance evaluations based on typical stand-alone PV system design parameters.The input test parameters are adjustable as needed to conform to system design and battery requirements. These design parameters include regulation voltage (Vr), chargeand discharge rate (C/X), available charge amp-hour (Ah) to load Ah ratio (C:L), daily depth of discharge (DOD) in percent, battery temperature in °C, and LVD. In addition to the test parameters, the deficit-charge cycle recovery period is also an important variablein this test procedure. As the C:L ratio increases, the number of deficit-charge cycles decreases and the time spent at regulation voltage increases accordingly. It is very important for batteries in stand-alone PV systems to recover from this deficit-charge condition using only the limited charge provided by the PV. Deficit-charge recovery inPV systems is more difficult than in other deep-cycle applications because of the extended time that the battery spends in a discharged condition. In many PV systems the battery may not completely recover from LVD for weeks-to-months at a time. As in all battery testing, the value and quality of the test results are dependent on how well the test parameters duplicate the basic characteristics of the battery application. Every effort has been made to duplicate the PV system cycle profile in this test procedure.Test Objectives1) Identify batteries that operate well in the stand-alone PV-cycle environment.2) Identify the PV battery charging parameters that result in the best cycle-life.3) Increase PV system reliability and thus reduce life-cycle cost.Test ProcedureA graphical representation of the “PV Battery Cycle-Life Test Procedure” extracted from test data is plotted in Figure 1. A detailed overview of the test procedure is listed below. 1) Initial Battery Charge - Returns lost battery capacity from self-discharge during storageafter manufacturing. Initial charge procedures should be specified by the batterymanufacturer.2) Initial Capacity - Measures initial battery capacity at the test discharge rate to LVD and1.75 vpc (10.5 volts) after the Initial Battery Charge.3) Cycle Test - Cycles batteries using charge control specified by the PV system design andin a scenario that resembles the daily discharge and charge cycles of a stand-alone PV system. The cycle test consists of:a) 25 sustaining charge cycles at specified test parameters,b) six deficit-charge cycles to the predetermined low voltage disconnect,c) 10 to 20 recovery-charge cycles calculated based on Ah discharged and total Ahavailable each cycle, andd) 40 to 50 sustaining-charge cycles at specified test parameters.4) Cycle testing can be terminated as required or when the battery capacity in Ah at the endof discharge to LVD is 20% less than the initial available capacity during the first deficit-charge cycle period.5) Temperature should be held constant. The standard test temperature is 25o C, but othertemperatures can be used. Stabilized temperature baths or room temperature control is required.6) Final Capacity - The discharged Ah to 1.75 vpc (10.5 volts) at the end of a test sequence.PV Charge Controllers and Data AcquisitionCounting the Ah charged into a battery when a PV charge controller is employed requiresa fairly fast sample rate. Voltage, current, Ah, and temperature data sampling of two samples per second is recommended for PV charge controllers due to the switching natureof these devices. Recording and integration of this data is recommended at a maximum interval of 30 minutes, depending on capabilities. Data points are also recorded at the beginning and end of each discharge and charge cycle. An integrating ampere-hour counting device is an acceptable substitute to computer controls.Initial ChargePrior to performing the Initial Capacity rating an Initial Charge needs to be performed.The battery manufacturer should be consulted for battery charging instructions for an Initial Charge. The investigator should request the charging specifications similar to the data listed in Table 1 (showing default initial charging parameters). This procedure may be referred to as the Initial Charge, boost charge, or freshening charge. In any event, when requesting this information it should be communicated that this will be a charge sequence intended to get the battery to 100% SOC or ready for installation in a PV system. The method of recharge is the current-limited, constant voltage method.If the battery manufacturer cannot be contacted, Table 1 parameters are included as guidance for this charging sequence. The Initial Capacity rating should be performed no more than 24 hours after this Initial Charge sequence. For informational purposes only, record the amount of recharge in amp-hours. This is intended to identify any unusual battery handling or damaging storage conditions.Table 1. Default Initial Charging Parameters.Type Voltagelimit, vpc Voltage limit,nominal6/12vMinimum duration ofconstant voltageregulation or equalizationcharge periodVented (flooded), lead-antimony 2.557.65/15.3 3 hours Vented (flooded), lead-calcium 2.667.98/16.0 3 hoursVRLA (AGM & Gel) 2.35 or2.407.05/14.17.2/14.412 hoursNOTES:Current should be limited to 3.0 amperes per 100 Ah of manufacturer’s 20-hr, rated capacity.vpc= volts per cell, AGM= Absorbed Glass Mat, Gel = gelled-electrolyteInitial CapacityAfter Initial Charge, the battery will be discharged to the minimum discharge voltage specified by the battery manufacturer. This voltage is usually 1.75 vpc (10.5 volts) for deep-cycle lead-acid batteries. The capacity test will be conducted at the discharge and charge rate desired in the cycle test. During discharge, the battery voltage and Ah removed should be recorded.Procedure for Capacity Measurement:1.Determine the nominal or manufacturer’s battery capacity rating for the discharge ratedesired. Use average current from PV system design or see Table 2 for recommended discharge/charge rate if actual PV system rate is unknown.2.Set the discharge rate (constant current or for a resistive load use rated current at 2.0vpc) for the current determined in Step 1.3.Begin discharge, record battery voltage, current, Ah removed to LVD, and Ahremoved at termination voltage (1.75 vpc or other specified).4.Recharge the battery in accordance with Initial Charge procedure.5.Plot the data showing voltage and Ah at the specified discharge current to end pointvoltage (Figure 2).6.Determine the percentage of overcharge for the recharge rate by dividing the chargedAh by the discharged Ah times 100 - i.e., (Ah charged/Ah discharged)*100 = %overcharge). Percentage of overcharge calculated here is a reasonable estimate of what is required to return the battery to a high state-of-charge after a full discharge has been performed.Cycle Parameter DeterminationTable 2 is provided as a baseline for cycle parameter determination. The values identified in Table 2 are a good starting point for most PV and battery systems. Other Vr set-points, charging rates, C:L ratios, DOD’s, and temperatures can be used when based on battery manufacturer’s recommendations or PV system design and user requirements.Table 2. Default PV Battery Cycle Test Parameters.Variable VRLAAGM/Gel Vented (Flooded) Lead-AntimonyVr Set-point (12 volt)14.1 or 14.414.4 to 14.7 Charge Rate Capacity/35Capacity/35 Discharge Rate Capacity/35Capacity/35 C:L Ratio 1.3 1.3 DOD%2020 Temperature °C2525PV Battery Cycle-Life Test ProcedureSteps for 80-Ah 12 volt VRLA Battery:1)Identify sustaining charge parameters: a) Vr set-point (2.35 vpc, 14.1 volts), b)discharge/charge rate (C/35, 2.3-amps), c) daily DOD (20%, 16 Ah) d) LVD (1.9 vpc,11.4 volts), and e) C:L ratio (1.3).2)Conduct Initial Battery Charge and Initial Capacity test at discharge and charge rate.Record available battery capacity to 1.9 vpc (11.4 volts) and capacity to 1.75 vpc(10.5 volts).3)Calculate deficit-charge required to discharge battery to LVD in six (6) cycles (70Ah/6 cycles = 11.7 Ah/cycle).4)Calculate the number of recovery cycles plus five (5) cycles required for a 70 Ahdeficit charge recovery. 70 Ah/((16 Ah discharged x 1.3 C:L) - 16 Ah discharged) + 5 cycles = 20 cycles5)Begin twenty-five (25) sustaining discharge and charge cycles at specified Vr, rate,C:L ratio, and DOD.6)Begin six (6) cycles at deficit C:L ratio (-11.7 Ah/cycle) designed to discharge toLVD.7)Begin twenty (20) recovery discharge/charge cycles using sustaining chargeparameters from Step 1.8)Begin forty (40) sustaining discharge/charge cycles using sustaining chargeparameters from Step 1.. Total number of cycles per test sequence should be ninety-one (91).9)Terminate test as required or when available battery capacity to LVD is 20% lowerthan the initial value or when the 91-cycle test sequence is complete after the required number of test cycles. A Final Capacity test is conducted after the last 91-cycle testsequence..ResultsThe test results discussed in this report are from three different VRLA gel batteries using the manufacturers’ recommended regulation voltages of 2.35 (14.1) or 2.40 vpc (14.4 volts). The C:L ratio, charge and discharge rate, and LVD were based on typical PV system design considerations.Table 3 shows the PV Battery Cycle-Life Test Data. Table 3 includes the battery manufacturer and model number, regulation voltage (Vr), initial battery capacity, capacity to LVD, total number of cycles, final capacity, capacity loss per cycle in Ah, initial Ah overcharge, final Ah overcharge, and the number of deficit charge cycles.Initial Battery CapacityThe initial battery capacity measurements were conducted using the indicated regulation voltage and rate for each battery. Each battery was boost charged for 12 hours at the regulation voltage before discharging at the test rate for the capacity measurements at 1.9 vpc and 1.75 vpc (11.4 and 10.5 volts). Recharge included the same 12-hour finish-charge at regulation voltage. The 11.4 and 10.5 volt capacities for the Deka batteries were both 80 and92 Ah with overcharge values between 107 and 110%. The Dynasty Division of C&D Technologies battery capacities were 71 and 82 Ah and 71 and 83 Ah with overcharge values between 105 and 106%. The Sonnenschein battery capacities were 102 and 114 Ah and 107 and 115 Ah with both overcharge values at 109%. It should be noted that the above overcharge values are for 100% DOD cycles and for battery recharge to about 90% SOC the recharge efficiency is near 99%. For 20% DOD cycles, at least half of the recharge is in the inefficient charging range between 90 and 100% SOC; therefore, the required overcharge to recover the battery back to 100% SOC should be greater than the overcharge measured for 100% DOD cycles. This is an important consideration when evaluating the cause of battery capacity loss.Test Sequence Battery Capacity to LVDThe available capacity measurements to the 1.9 vpc (11.4 volt) LVD in each test sequence indicates that the Deka and Sonnenschein batteries lost capacity at a slow but consistentrate of –0.021 to –0.042 Ah/cycle based on the initial and final capacity measurements to1.75 vpc (10.5 volts). The measured available Ah loss was between 19 and 22Ah or 19-26% of the available capacity to LVD. The Dynasty Division of C&D Technologies battery deviated from the capacity loss trend by first losing about 5 Ah of available capacity in sequence numbers 2, 3, and 4 and then gaining it back in sequences 5 through 11. The capacity loss for the Dynasty battery was calculated at -0.001 Ah/cycle. Thefinal available capacity loss was 2 Ah, or just 3%. A plot of available battery capacitiesto LVD vs. the test sequence number is in Figure 3 and is useful to see the performance trends.Total Number of CyclesAt least one of each of the batteries tested was cycled for 1,001 cycles before testing was terminated. This represents about 2.74 years of cycling in a PV system. One battery from both Deka and Dynasty was automatically terminated prematurely at cycle number 374 and 182. This was due to a low voltage spike in the battery cycle tester and not the battery itself. Available capacity to LVD on the batteries terminated early did not indicate that any significant capacity differences existed between the two batteries still under test and the terminated battery.Initial and Final Ah OverchargeBattery overcharge in this test procedure was defined by:Overcharge = (charged Ah / discharged Ah) x 100The initial battery overcharge (Ah in/Ah out) was measured at cycle number 1 and the final overcharge was measured at cycle number 1001, or when the test was terminated. The results indicate that overcharge is between 107% and 113% initially and drops quickly to the 103% to 106% values seen at the end of test. Usually battery manufacturers will recommend about 110% overcharge for their VRLA batteries cycled at about 20% DOD. In this test the overcharge values are lower than would be optimum for the battery due to the efficiency losses that occur in shallow cycling.To increase overcharge would require a larger C:L ratio and/or a higher regulation voltage. The higher regulation voltage would probably increase water loss, but may reduce the capacity loss rate. With a C:L ratio of 1.3, the battery spends about 2.6 hrs at regulation voltage every cycle, which is significantly less than the 12 hours required for the boost charge or complete finish-charge required by the Initial Capacity test. Further testing would be required to quantify the performance enhancing effects of increasing the C:L ratio and/or regulation voltage.Deficit-Charge Cycles to Regulation VoltageThe deficit-charge cycles to regulation voltage include the first deficit-charge cycle and all cycles thereafter that do not reach regulation voltage during charge. This is a useful number because it is an indicator of how long the battery spends in a discharged condition before reaching regulation voltage. The days spent in a discharged condition can be calculated by adding the charge and discharge times. The cycle time calculations indicate that each day produces 1.4 test cycles. Based on the number of cycles per day, the above batteries spent 9.3 to 13.5 days in a partially charged condition from regulation voltage to LVD back to regulation voltage. If battery performance problems arise after the deficit-charge cycle period, then the deficit-charge cycle period can be reduced by increasing the C:L ratio.ConclusionsBased on the test results, it is possible to identify some significant conclusions from this work. These include the following:1) The C:L ratio may be one of the more important test parameters for VRLA batteriesachieving rated cycle-life. The C:L ratio determines the number of cycles spent in deficit-charge recovery and the time spent at regulation voltage every day. This is probably the most important PV system battery charging parameter for maintaining VRLA battery health.2) The batteries used in this test performed well and should last at least 3-years in aPV system using a similar design. These results were obtained using the battery manufacturers recommended cycling regulation voltage, current limited constant voltage charging, and typical PV system design parameters such as a minimum charge to load ratio (C:L) of 1.3 and a C/35 charge and discharge rate at 25°C.3) Further testing would be required to quantify the performance enhancing effects ofincreased C:L ratio and/or regulation voltage on the Deka and Sonnenscheinbatteries.4) The “PV Battery Cycle-Life Test Procedure” proved to be very useful in verifyingand comparing battery performance under controlled laboratory conditions that were similar to stand-alone PV systems.REFERENCES1.S. R. Harrington and T. D. Hund, “Rating Batteries for Initial Capacity, Charging Parametersand Cycle-Life in the Photovoltaic Application,” Power Systems World InternationalConference, Sept., 1995.2.R. Swamy and J. Dunlop, “Battery Cycle-Life Testing for Stand-Alone Photovoltaic Systems,”SOLTECH, 1997.3.Battery Council International, Battery Technical Manual 3rd Edition, 401 North Michigan Av.,Chicago, Illinois 60611, (312) 644-6610.。

相关文档
最新文档