数字图像处理 频率域滤波
频域处理-数字图像处理

频域处理
5.5 频域中图像处理的实现
5.5.1 理解数字图像的频谱图 数字图像平移后的频谱中,图像的能量将集中到频谱中
心(低频成分),图像上的边缘、线条细节信息(高频成分)将分 散在图像频谱的边缘。也就是说,频谱中低频成分代表了图 像的概貌,高频成分代表了图像中的细节。
频域处理
H(u,v)称作滤波器,它具有允许某些频率成分通过,而阻 止其他频率成分通过的特性。该处理过程可表示为
H 和G 的相乘是在二维上定义的。即,H 的第1个元素乘 以F 的第1个元素,H 的第2个元素乘以F 的第2个元素,以此类 推。滤波后的图像可以由IDFT 得到:
频域处理 图5 9给出了频域中图像处理的基本步骤。
频域处理
图5 10 基本滤波器的频率响应
频域处理
图5 11分别为采用D0=10、D0=30、D0=60、D0=160进行 理想低通滤波的结果。图5 11(c)存在严重的模糊现象,表明 图像中多数细节信息包含在被滤除掉的频率成分之中。随着 滤波半径的增加,滤除的能量越来越少,图5 11(d)到图5 11(f) 中的模糊现象也就越来越轻。当被滤除的高频成分减少时, 图像质量会逐渐变好,但其平滑作用也将减弱。
式中:u 取0,1,2,…,M -1;v 取0,1,2,…,N-1。
频域处理 对二维离散傅里叶变换,则有:
图像处理实践中,除了 DFT 变换之外,还可采用离散余弦 变换等其他正交变换。
频域处理
5.4 离散余弦变换(DCT)
离散余弦变换(DiscreteCosineTransform,DCT)的变换核 为余弦函数,因其变换核为实数,所以,DCT 计算速度比变换核 为复数的 DFT 要快得多。DCT 除了具有一般的正交变换性 质外,它的变换阵的基向量能很好地描述人类语音信号、图 像信号的相关特征。因此,在对语音信号、图像信号的变换 中,DCT 变换被认为是一种准最佳变换。
空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。
它们通过对图像进行数学变换和滤波操作来改善图像质量。
本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。
2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。
它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。
2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。
它通过计算像素周围邻域的平均值来实现滤波操作。
均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。
2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。
它通过计算像素周围邻域的中值来实现滤波操作。
中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。
2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。
它通过对像素周围邻域进行加权平均来实现滤波操作。
高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。
3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。
它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。
3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。
在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。
在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。
3.2小波变换小波变换是一种基于小波函数的时频分析方法。
它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。
小波变换在图像压缩和特征提取等方面具有广泛应用。
4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。
4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。
频率域滤波

频率域滤波频率域滤波是经典的信号处理技术之一,它是将信号在时域和频域进行分析以达到信号处理中的一定目的的技术。
它在诸多技术方面有着广泛的应用,比如音频信号处理、通信信号处理、部分图像处理和生物信号处理等。
本文将从以下几个方面来介绍频率域滤波的基本原理:概念的介绍、频谱的概念、傅里叶变换的原理、频率域滤波的基本原理、应用场景。
一、概念介绍频率域滤波是一种信号处理技术,它可以将时域信号转换成频域信号,并根据信号特征在频率域中对信号进行处理以达到特定的目的,如去除噪声和滤波等。
一般来说,信号处理包括两个阶段:时域处理和频域处理。
时域处理会涉及到信号的时间特性,而频率域处理则涉及到信号的频率特性。
二、频谱概念频谱是指信号分析中信号频率分布的函数,它是信号的频率特性的反映。
一个信号的频谱是一个衡量信号的能量随频率变化的曲线。
通过对信号的频谱进行分析,可以提取出信号中不同频率成分的信息,从而对信号进行更深入的分析。
三、傅里叶变换傅里叶变换是将时域信号转换成频域信号的基本手段。
傅里叶变换是指利用线性无穷积分把一个函数从时域转换到频域,即将一个函数的时间属性转换为频率属性的过程。
傅里叶变换会将时域信号映射到频域,从而可以分析信号的频率分布情况。
四、频率域滤波的基本原理频率域滤波的基本原理是先将信号进行傅里叶变换,然后将信号在频域进行处理。
根据不同的应用需求,可以采用低通滤波、高通滤波或带通滤波等滤波器对信号进行处理,从而获得滤波后的信号。
最后,再将滤波后的信号进行反变换即可。
五、应用场景由于具有时域和频域双重处理功能,频率域滤波技术在诸多技术领域都有广泛应用。
例如,在音频信号处理方面,频率域滤波可以去除音频信号中的噪声,使得信号变得更加清晰。
此外,在以图像处理方面,频率域滤波技术可以有效去除图像中的多余信息,从而提高图像的质量。
在通信领域,频率域滤波技术可以应用于对通信信号的滤波和信号分离,从而有效提升信号的传输效率。
数字图像处理图像滤波ppt课件

47
噪声图像
中值滤波3x3
48
平均滤波与中值滤波比较
噪声图像
均值滤波
中值滤波
均值滤波和中值滤波都采用的是2x2 的模板
49
均值,中值和最频值
均值是模板内像素点灰度的平均值,中值是数值排列 后处于中间的值,最频值是出现次数最多的灰度值;
8
常用像素距离公式
欧几里德距离
DE
(
p,
q)
x
s 2
y
t
2
范数距离
D( p, q) x s y t
棋盘距离
D( p, q) max x s , y t
9
像素间的基本运算
算术运算:
加法: p + q
减法: p - q
乘法: p * q
这三者都与直方图有着密切的关系; 直方图的一个峰对应一个区域,如果这个峰是对称的,
那么均值等于中值,等于最频值。
50
中值滤波的代码实现 Matlab中函数medfilt1和medfilt2,第一个是一维
的中值滤波,第二个是二维的中值滤波。 使用help查看函数功能
51
示例
52
代码讲解
0.25
0.10 0.05
0.125 01 2
34
56
7
P r 关系目标曲线 r
原始图像中的P-r点位置 对应变换后的P-r点位置
24
算法描述 设像素共分为L级(r = 0,1,2,…L1),变换后对应的
数字图像处理-频域滤波-高通低通滤波

数字图像处理-频域滤波-⾼通低通滤波频域滤波频域滤波是在频率域对图像做处理的⼀种⽅法。
步骤如下:滤波器⼤⼩和频谱⼤⼩相同,相乘即可得到新的频谱。
滤波后结果显⽰,低通滤波去掉了⾼频信息,即细节信息,留下的低频信息代表了概貌。
常⽤的例⼦,⽐如美图秀秀的磨⽪,去掉了脸部细节信息(痘坑,痘印,暗斑等)。
⾼通滤波则相反。
⾼通/低通滤波1.理想的⾼/低通滤波顾名思义,⾼通滤波器为:让⾼频信息通过,过滤低频信息;低通滤波相反。
理想的低通滤波器模板为:其中,D0表⽰通带半径,D(u,v)是到频谱中⼼的距离(欧式距离),计算公式如下:M和N表⽰频谱图像的⼤⼩,(M/2,N/2)即为频谱中⼼理想的⾼通滤波器与此相反,1减去低通滤波模板即可。
部分代码:# 定义函数,显⽰滤波器模板def showTemplate(template):temp = np.uint8(template*255)cv2.imshow('Template', temp)return# 定义函数,显⽰滤波函数def showFunction(template):row, col = template.shaperow = np.uint16(row/2)col = np.uint16(col/2)y = template[row, col:]x = np.arange(len(y))plt.plot(x, y, 'b-', linewidth=2)plt.axis([0, len(x), -0.2, 1.2])plt.show()return# 定义函数,理想的低通/⾼通滤波模板def Ideal(src, d0, ftype):template = np.zeros(src.shape, dtype=np.float32) # 构建滤波器 r, c = src.shapefor i in range(r):for j in range(c):distance = np.sqrt((i - r/2)**2 + (j - c/2)**2)if distance < d0:template[i, j] = 1else:template[i, j] = 0if ftype == 'high':template = 1 - templatereturn templateIdeal2. Butterworth⾼/低通滤波Butterworth低通滤波器函数为:从函数图上看,更圆滑,⽤幂系数n可以改变滤波器的形状。
频域滤波增强原理及其基本步骤

频域滤波增强原理及其基本步骤1. 引言频域滤波增强是一种常用的图像增强技术,通过将图像从空域转换到频域进行滤波操作,然后再将图像从频域转换回空域,从而改善图像的质量。
本文将详细解释频域滤波增强的原理及其基本步骤。
2. 基本原理频域滤波增强的基本原理是利用图像在频域中的特性来进行图像增强。
在频域中,不同频率的成分对应着不同的图像细节信息。
通过选择性地增强或抑制不同频率成分,可以改变图像的对比度、清晰度和细节。
频域滤波增强主要依赖于傅里叶变换和逆傅里叶变换。
傅里叶变换将一个时域信号转换为其在频域中的表示,逆傅里叶变换则将一个频域信号转换回时域。
3. 常见步骤频域滤波增强通常包括以下几个步骤:步骤1:图像预处理在进行频域滤波增强之前,通常需要对图像进行预处理。
预处理包括去噪、平滑和锐化等操作。
去噪可以使用一些常见的降噪算法,如中值滤波、高斯滤波等。
平滑可以通过低通滤波器实现,用于抑制图像中的高频成分。
锐化可以通过高通滤波器实现,用于增强图像中的细节。
步骤2:傅里叶变换将经过预处理的图像进行傅里叶变换,将其转换为频域表示。
傅里叶变换将图像分解为一系列的正弦和余弦函数,每个函数对应一个特定的频率成分。
在频域中,低频成分对应着图像的整体亮度和颜色信息,而高频成分对应着图像的细节信息。
步骤3:频域滤波在频域中对图像进行滤波操作,选择性地增强或抑制不同频率成分。
常见的频域滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
低通滤波器可以保留图像中的低频成分,抑制高频成分,用于平滑图像。
高通滤波器可以抑制低频成分,增强高频细节,用于锐化图像。
步骤4:逆傅里叶变换将经过滤波操作的频域图像进行逆傅里叶变换,将其转换回时域表示。
逆傅里叶变换将频域信号重建为原始的时域信号。
通过逆傅里叶变换,我们可以得到经过频域滤波增强后的图像。
步骤5:后处理对经过逆傅里叶变换得到的图像进行后处理,包括亮度调整、对比度增强和锐化等操作。
数字图像处理之频率域图像增强

图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS
数字图像处理(冈萨雷斯)-4_fourier变换和频域介绍(dip3e)经典案例幻灯片PPT

F (u,v)
F *(u, v)
f ( x ,y ) ☆ h ( x ,y ) i f f t c o n j F ( u , v ) H ( u , v )
h(x,y):CD 周期延拓
PAC1
h:
PQ
QBD1
DFT
H (u,v)
F*(u,v)H(u,v)
IDFT
R(x,y):PQ
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
图像变换通常是一种二维正交变换。
一般要求: 1. 正交变换必须是可逆的; 2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图像能量将集中分布在低频率 成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
4.11 二维DFT的实现
沿着f(x,y)的一行所进 行的傅里叶变换。
F (u ,v ) F ( u , v ) (4 .6 1 9 )
复习:当两个复数实部相等,虚部互为相 反数时,这两个复数叫做互为共轭复数.
4.6
二维离散傅里叶变换的性质
其他性质:
✓尺度变换〔缩放〕及线性性
a f( x ,y ) a F ( u ,v ) f( a x ,b y ) 1 F ( u a ,v b ) |a b |
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现