第六章半导体催化剂的催化作用及光催化原理.
光催化原理及应用

光催化原理及应用光催化是一种通过光激发催化剂来加速化学反应的方法,其原理是利用光能将催化剂激发至激发态,并在激发态下与反应物分子发生相互作用,从而达到加速反应速率的目的。
光催化广泛应用于环境治理、能源转化和有机合成等领域。
本文将详细介绍光催化的原理及应用。
光催化的原理主要是基于物质的光激发过程和催化反应机理。
光激发过程是指当物质吸收能量大于其带隙能量时,分子内的电子被激发至高能级,形成激发态。
催化反应机理是指激发态的催化剂与反应物之间发生相互作用,使反应活化能降低,从而加速反应速率。
光催化的应用主要包括环境治理和能源转化两个方面。
在环境治理方面,光催化可以用于废水处理、大气污染治理和有害气体去除等。
光催化废水处理主要通过光催化剂吸收光能产生电子-空穴对,并利用电子-空穴对在催化剂表面的迁移和再组合产生的氧化还原能力来降解废水中的有机物。
此外,光催化还可将大气中的二氧化硫、氮氧化物等污染物转化为无害的物质。
例如,采用光催化氧化剂可以将氮氧化物直接转化为氮气和水,从而减少大气中的有害气体。
在能源转化方面,光催化可用于太阳能光电转化、光催化制氢等。
太阳能光电转化是指将光能直接转化为电能,常用的光催化材料有光敏染料和半导体光催化剂。
例如,通过在半导体表面吸附光敏染料,可以将光能转化为电能,从而实现光电池的工作。
光催化制氢是指利用光催化剂吸收光能产生电子-空穴对,并利用电子-空穴对驱动水分子的光催化分解,产生氢气和氧气。
这是一种可持续的制氢方式,具有重要的应用前景。
此外,光催化还可用于有机合成领域。
一些光敏剂可以在光照条件下参与有机合成反应,从而实现对有机物高效、高选择性的功能化。
通过光催化反应,可以避免一些常规有机合成中需要较高反应温度和压力的问题,减少化学废物的生成。
总之,光催化是一种有效的化学反应加速方法,其原理是利用光能将催化剂激发至激发态,并在激发态下与反应物发生相互作用。
光催化在环境治理、能源转化和有机合成等领域有着广泛的应用。
光催化原理

光催化原理光催化原理是基于三个关键步骤:光吸收、电荷分离和催化反应。
首先,催化剂表面的一对电子吸收光能,跃迁到更高的能级。
这个能级通常称为激发态能级。
随后,激发态电子与催化剂表面的另外一个电子形成电子-空穴对。
该电子-空穴对中的电子具有高能量,可以参与化学反应。
最后,这些高能态的电子和空穴将参与催化反应,将吸附在催化剂表面的反应物转化为产物。
光催化反应的速率取决于光催化剂表面的光吸收能力、电荷分离效率和催化反应速率。
光催化剂的表面结构和组成决定了其吸收特性和光催化活性。
对于光吸收,催化剂表面通常覆盖着一层吸收光能的物质,如半导体纳米颗粒或复合材料。
这些材料能够吸收不同波长的光能,形成电子-空穴对。
在光催化剂表面,电子能够从导带(CB)跃迁到价带(VB),形成光生电子和空穴。
这些电子和空穴的分离非常重要,因为只有分离的电子才能在催化反应中参与。
光催化剂通常利用表面的潜在能差将电子和空穴分开。
在光催化剂的表面上,一层聚集电子的电子亲和能较低,而另一层聚集空穴的能带较高。
因此,光生电子倾向于在电子亲和能较低的区域停留,而光生空穴倾向于在能带较高的区域停留。
这种潜在能差在光催化过程中创造了一个电子-空穴转移的“阶梯”,从而实现了电荷的分离。
当光生电子和空穴分离后,它们可以参与不同的反应。
光生电子可以通过直接还原或氧化反应来与吸附在催化剂表面的反应物发生反应。
光生空穴则可以促进一系列反应,包括与氧或水反应生成氧化物或还原剂,或者与吸附在催化剂表面的有机物发生直接氧化反应。
光催化原理的关键是选择合适的催化剂和光源,以优化光催化反应的效率。
常用的光催化剂有二氧化钛(TiO2)、锌氧化物(ZnO)和硫化铜(CuS)等。
这些催化剂具有广泛的光吸收能力和优异的光催化活性。
而作为光源,不同波长的光具有不同的能量,因此选择合适波长的光源也是提高光催化反应效率的关键因素。
总之,光催化原理(经典)通过光吸收、电荷分离和催化反应三个关键步骤实现催化剂表面的化学反应。
第六章半导体催化剂的催化作用及光催化原理

第六章半导体催化剂的催化作用及光催化原理半导体催化剂是一种新型的催化剂,具有广泛的应用前景。
在第六章中,我们将探讨半导体催化剂的催化作用及其光催化原理。
半导体催化剂的催化作用是通过改变反应物的活化能来加速反应速率。
在催化作用中,半导体催化剂首先吸附反应物分子,然后通过提供电子或空穴给反应物来促进新的键的形成。
半导体催化剂还能通过改变反应物分子的构型来影响反应的速率和选择性。
半导体催化剂的催化作用主要包括光催化和电化学催化两种方式。
光催化是指在可见光照射下,半导体催化剂的表面能够吸收光能,并将其转化为电荷泵动力,从而加速反应物的吸附和分解速率。
光催化还可以通过激活溶液中的氧分子,产生具有强氧化性的自由基,从而促进氧化反应的进行。
电化学催化是指在电荷的作用下,半导体催化剂表面的氧化还原反应会被调控,从而推动反应物的转化。
半导体催化剂的光催化原理是基于其半导体的特性。
当半导体催化剂的表面吸附光能时,电子会被激发,从价带跃迁到导带,产生自由电子和空穴。
自由电子和空穴的形成导致表面电荷分离,并产生电子传导和空穴传导。
自由电子和空穴的流动使得反应物在半导体催化剂表面上更易被吸附,从而增加了反应速率。
此外,光照还可以改变半导体催化剂表面的能级结构,对反应物分子的电子结构进行调控,进一步促进反应的进行。
半导体催化剂的电化学催化原理是利用电荷的转移来加速反应速率。
半导体催化剂表面吸附的反应物分子会与表面的电子进行电子转移,形成活性中间体,进而参与反应。
此外,半导体催化剂表面的电荷分离还可以调控反应物的吸附和解离步骤,从而提高反应的选择性和效率。
总的来说,半导体催化剂具有催化作用和光催化原理。
通过探索半导体催化剂的催化作用机理和光催化原理,可以为半导体催化剂的合成与应用提供更加科学、高效的方法。
随着对半导体催化剂的研究深入,相信半导体催化剂将在环境保护、能源转化等领域中发挥重要作用。
半导体光催化

半导体光催化半导体光催化是21世纪初发展起来的一种新型能源技术,它利用太阳能,将有机物、无机物或污染物通过吸收,分解并转化为无害物质的反应过程,实现清洁能源的利用。
半导体光催化的作用原理可以用布朗迁移来理解,即由半导体中的电子-空穴对吸收光子,形成电子-空穴对而引起的电荷转移。
然后,半导体中的电子和空穴可以在光生自由基上进行氧化还原反应,从而分解污染物并将其转化为无害物质,实现污染物消减。
半导体光催化的受体物中含有多种元素,其中,高价金属元素具有强烈的光吸收能力,同时也具有良好的光催化性能,能够有效地催化有机物的氧化和还原反应,从而促进污染物的光降解。
此外,CdSe 材料由其具有低带隙、强烈的吸收带、良好的稳定性和抗氧化性能而被广泛应用于光催化,在提高反应速率和降低光催化反应热量方面有明显的优势。
半导体光催化技术主要有两种,即光电催化和光化学催化。
光电催化是一种利用半导体材料作为催化剂,将紫外光转换成电子,用电子来催化污染物的氧化和还原反应,从而实现污染物的消减。
而光化学催化,则是一种利用半导体材料作为催化剂,将可见光转换成自由基,通过光生自由基来催化污染物的氧化还原反应,从而实现污染物的消减。
半导体光催化技术在污染物的处理中具有显著的效果,它可以大大提高处理效率,并有效降低污染源的处理成本,为污染源的处理提供一种安全、有效、经济的技术手段。
然而,由于半导体催化剂结构的复杂性和原料成本的高昂,以及光催化技术本身存在的局限性,使得半导体光催化技术的应用受到了一定的限制。
因此,为了进一步提高半导体光催化技术的应用效果,我们需要开展多种研究,如开发新型的催化剂,改善半导体光催化剂的反应机理,提高催化性能,探索多种可行的光催化反应工艺,以及研究新型光催化技术。
此外,要加强对半导体光催化技术的实验研究,确保技术的可靠性和可靠性,为解决污染物的处理提供一种安全可行的技术手段。
总之,半导体光催化技术是一种有效的污染物处理技术,可以为污染物的处理提供一种安全有效的技术手段;但是,由于各种技术的局限性,也需要进一步的研究,以进一步提高降解污染物的效率和可靠性。
半导体光催化基础光催化剂课件

半导体能带结构
能带理论
能带理论是描述固体中电 子运动的模型,它把电子 的运动状态分为不同的能 带。
价带和导带
价带是最高填满电子的能 带,导带是最低未被填满 电子的能带。
能隙
能隙是价带顶和导带底之 间的能量差,它决定了半 导体的光学和电学性质。
半导体光催化过程
光催化过程定义
光催化过程是在光的照射下,半导体 材料吸收能量,使得电子从价带跃迁 到导带,从而产生电子-空穴对的过程 。
化学沉淀法
总结词
化学沉淀法制备的光催化剂成本较低,但纯度较低。
详细描述
化学沉淀法是一种常用的光催化剂制备方法,通过向金属盐溶液中加入沉淀剂, 使金属离子形成沉淀物,再经过洗涤、干燥和热处理得到光催化剂。该方法制备 的光催化剂成本较低,但纯度较低,需要进一步提纯。
热解法
总结词
热解法制备的光催化剂具有较高的热稳定性和化学稳定性, 但制备过程需要高温条件。
详细描述
热解法是一种常用的光催化剂制备方法,通过将有机金属盐 或金属醇盐在高温下进行热解反应,得到光催化剂。该方法 制备的光催化剂具有较高的热稳定性和化学稳定性,但制备 过程需要高温条件,且原料成本较高。
其他制备方法
总结词
除了上述方法外,还有多种其他制备光催化剂的方法,如水热法、微波法等。
详细描述
光催化技术的发展历程
总结词
光催化技术的发展经历了基础研究、技术成熟和应用拓展三个阶段。
详细描述
光催化技术的研究始于上世纪70年代,最初主要是对光催化反应机理的基础研究。随着技术的不断发 展,进入90年代后,光催化技术逐渐走向成熟,并开始应用于实际生产中。目前,随着科研的深入和 技术进步,光催化技术的应用领域不断拓展,成为一种备受关注的环境友好型技术。
光催化原理

光催化原理
光催化原理是指利用光能激发催化剂表面的电子,使催化剂具有更强的催化活性的过程。
在光催化反应中,光能作为外界能量来源,可以激发催化剂表面的电子从基态跃迁到高能级,形成活性物种。
这些活性物种可以与待催化物质发生反应,并加速催化反应的进行。
光催化反应主要涉及催化剂、光源和反应物三个要素。
其中,催化剂是实现光催化的核心,是光催化反应能否发生和催化效果的关键。
光催化剂一般由半导体材料或含有过渡金属的化合物构成,具有良好的光催化性能。
当催化剂暴露在光源下时,其表面会吸收光的能量,产生电子-空穴对。
这些电子-空穴对
能够参与氧化还原反应,从而产生活性物种。
光催化反应中的光源通常为紫外线或可见光,其能量可以激发催化剂表面的电子。
不同波长的光源对应的激发能量不同,因此选择合适波长的光源对于光催化反应的进行是至关重要的。
在光催化反应中,反应物分子与光催化剂表面形成接触后,活性物种能够在光催化剂表面发生反应。
这些活性物种可以有氧化还原活性的电子或提供氢、氧等活性基团的化学物质。
光催化反应可以加速原本需要高能消耗的化学反应,实现高效率、高选择性的催化反应。
总的来说,光催化原理是通过利用光能激发催化剂表面的电子,形成活性物种,促进催化反应的进行。
这种原理在环境净化、能源转换、有机合成等领域有着广泛的应用前景。
光催化技术的原理

光催化技术的原理
光催化技术是一种利用光能激发固定相催化剂表面的光生电子和空穴,通过活化分子间的化学键,从而实现催化反应的方法。
其原理主要涉及以下几个方面:
1. 光吸收:光催化过程首先需要材料能够吸收可见光或紫外光,以提供足够的能量给催化剂中的电子和空穴。
常用的光吸收材料包括二氧化钛(TiO2)、氧化锌(ZnO)等。
2. 电子和空穴的生成:在光吸收后,光生电子和空穴对在催化剂表面上生成,并迅速分离。
在二氧化钛中,光激发会导致电子从价带跃迁到导带,形成带电电子和空穴。
3. 活性物种的产生:光生电子和空穴具备一定的活性,它们参与了激发分子间的化学反应。
光生电子在还原反应中起着电子供应的作用,而空穴在氧化反应中起着氧化作用。
这些活性物种的产生能够在其附近的环境中引发一系列氧化还原反应,从而促进有机污染物降解、细菌杀灭等一系列应用。
4. 反应环境的调控:光催化过程中的反应环境也对催化效果有着重要影响。
例如,通过调整光照强度、气体或液体中的溶解氧含量等条件,可以优化活性物种的产生和利用效率。
需要注意的是,光催化技术具有可重复使用的优点,并且不会造成二次污染。
然而,其在实际应用中还面临一些挑战,例如催化剂的选择、反应速率等问题。
因此,对于不同的应用场景,
需要仔细选择合适的催化剂和优化反应条件,以实现更高效、更可靠的催化效果。
光催化反应的机理及应用研究

光催化反应的机理及应用研究光催化反应即利用光能和半导体材料的特性来进行化学反应,在研究和应用领域已经成为一个非常热门的领域。
光催化反应具有易于实现、环境友好、反应速率快等优势,极大地推动了现代化学科学的进展。
本文将探讨光催化反应的机理原理,以及在制备污水处理和有机物分解领域的应用研究。
一、光催化反应的机理原理光催化反应的核心是半导体催化剂的催化作用,即光生电子与空穴在半导体中的运动和间接带的电荷转移。
在半导体催化剂的表面,通过光子激发,光生载流子被产生出来,这些载流子可以穿过溶液或气体相,从而发起催化反应。
在这里,我们简单介绍一下光催化反应的原理。
在光催化反应中,光子在物质中传播,相互作用和反应。
在半导体催化剂表面上,光子被吸收后将光能转化为电子能量,并被激发成一个电子。
这个电子能够氧化空气中的H2O,从而形成OH官能团。
同时,也能脱除溶解在水中的一些有机污染物分子中的电子,从而形成碳中间体,最终这些有机物会转化为CO2和H2O。
这样的光学反应一般分为如下几个步骤:1、激活带的产生:在光催化剂表面上,光子能够激发出载流子,这些载流子分为电子和空穴。
在光照下,电子和空穴不能被回收,开始在催化剂表面运动。
2、电子孔对的形成:当处于光照状态下时,相邻的电子和空穴可以在半导体表面发生相互作用和复合,从而形成电子孔对。
3、活性氧的生成:电子和孔在半导体表面相互作用,形成一些活性的化学物质,其中包括活性氧分子等,这些物质十分容易在水中攻击其他有机物质和无机物质。
4、有机废物降解:因为活性氧和其他化学物质的存在和作用,一些有机物的能量级会被提升,从而展开化学反应,最终被降解、去除。
二、光催化在污水处理方面的应用现代城市和工业化进程中存在大量由各种化学物质和有机物污染造成的废水,这些废水污染严重影响到环境保护和人类的健康。
光催化技术应运而生,成为一种高效、低成本的废水处理技术。
光催化处理废水技术中,对催化剂的选择尤为关键,开发和制备出高效催化剂具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章半导体催化剂的催化作用及光催化原理⏹本章主要内容:⏹半导体的能带结构及其催化活性⏹从能带结构出发,讨论催化剂的导电性能、逸出功与催化活性的关系⏹半导体多相光催化原理金属氧化物与金属硫化物催化剂概述过渡金属氧化物与过渡金属硫化物有许多相似之处,多为半导体型化合物。
作为氧化用的过渡金属氧化物催化剂主要催化反应类型是烃类的选择性氧化和NOx的还原等;作为催化剂的多为过渡金属硫化物,如Mo、W、Ni、Co、Fe等的金属硫化物具有加氢、异构、氢解等催化活性,用于油品的加氢精制;加氢脱硫(HDS)、加氢脱氮(HDN)、加氢脱金属(HDM)等过程。
半导体的能带结构及其催化活性过渡金属氧化物、硫化物(半导体)催化剂过渡金属氧化物、硫化物催化剂多属半导体类型,本章用半导体能带理论来说明这类催化剂的催化特性。
将半导体的导电性能、电子逸出功与催化活性相关联,解释解释这类催化剂的催化作用。
固体的能带结构原子核周围的电子是按能级排列的。
例如1S,2S,2P,3S,3P……内层电子处于较低能级,外层电子处于较高能级。
固体是由许多原子组成的,固体中许多原子的电子轨道发生重叠,其中外层电子轨道重叠最多。
由于这种重叠作用,电子不再局限于在一个原子内运动,而是在整个固体中运动,这种特性称为电子的共有化。
但重叠的外层电子也只能在相应的轨道间转移运动。
例如3S引起3S共有化,形成3S 能带;2P轨道引起2P共有化,形成2P能带。
禁带、满带或价带、空带或导带3S能带与2P能带之间有一个间隙,其中没有任何能级,故电子也不能进入此区,称之为禁带;下面一部分的能级组成一个带,一般充满或部分充满价电子,称为满带或价带;上面一部分的能带也组成一个带,在基态时往往不存在电子,只有处于激发态时才有电子进入此带,所以称为空带,又叫导带;激发到空带中去的自由电子提供了半导体的导电能力。
金属的能带结构导体、半导体、绝缘体的能带结构比较金属的能带结构导体都具有导带,能带没有被电子完全充满,在外电场的作用下,电子可从一个能级跃迁到另一个能级,因此能够导电。
绝缘体的能带结构绝缘体的满带己被电子完全填满,而禁带很宽(>5eV),满带中的电子不能跃迁到空带上去,所以不能导电。
半导体半导体的禁带很窄,在绝对零度时,电子不发生跃迁,与绝缘体相似;当温度升高时,部分电子从满带激发到空带上去,空带变成导带,而满带则因电子移去而留下空穴。
电子和空穴在外加电场作用下能够导电,称半导体。
半导体的类型本征半导体:不含杂质,具有理想的完整的晶体结构,有电子和空穴两种载流子,例如Si、Ge等。
N 型半导体:含有能供给电子的杂质,此杂质的电子输入空带成为自由电子,空带变成导带。
该杂质叫施主杂质。
P型半导体:含有易于接受电子的杂质,半导体满带中的电子输入杂质中而产生空穴,该杂质叫受主杂质。
本征半导体能带结构不含杂质,具有理想的完整的晶体结构,具有电子和空穴两种载流子N型半导体(电子型半导体)在导带和满带之间另有一个能级,并有电子填充其中,该电子很容易激发到导带而引起导电,这种半导体就称为N型半导体。
中间的这个能级称为施主能级。
满带由于没有变化在导电中不起作用。
实际情况中N型半导体都是一些非计量的氧化物,在正常的能带结构中形成了施主能级。
有四种情形的N型半导体(1) 正离子过量:含有过量Zn的ZnO 属于N型半导体(2) 负离子缺位氧化物属于N型半导体(3)高价离子同晶取代(4) 电负性较小的原子掺杂P型半导体(空穴型半导体)在禁带中存在一个能级,它很容易接受满带中跃迁上来的电子,使满带中出现空穴而导电,这种导电方式就是P型导电。
这种能级称为受主能级,有受主能级的半导体称为P型半导体,P型半导体也是一些非计量的化合物,这些非计量关系造成半导体中出现受主能级。
有三种情形的P型半导体(1) 氧化物中正离子缺位例如,在NiO中Ni2+缺位,相当于减少了两个正电荷。
为保持电中性,在缺位附近,必定有2-Ni2+个变成Ni3+,这种离子可看作为Ni2+束缚住一个空穴,即Ni3+=Ni2+·,这空穴具有接受满带跃迁电子的能力,当温度升高,满带有电子跃迁时,就使满带造成空穴,从而出现空穴导电。
(2) 氧化物中低价正离子同晶取代若以Li+取代NiO中的Ni2+,相当于少了一个正电荷,为保持电荷平衡,Li+附近相应要有一个Ni2+成为Ni3+。
即Ni3+=Ni2+·,这空穴具有接受满带跃迁电子的能力,同样可以造成受主能级而引起P型导电。
(3)电负性较大原子的掺杂在NiO晶格中掺入电负性较大的原子时,例如F,它可以从Ni2+夺走一个电子成为F-,同时产生一个Ni3+,也造成了受主能级。
总之,能在禁带中靠近满带处形成一个受主能级的固体就是P型半导体,它的导电机理是空穴导电。
费米能级EF费米能级EF是半导体中价电子的平均位能。
本征半导体中,EF在满带和导带之间;N型半导体中,EF在施主能级和导带之间;P型半导体中,EF在受主能级和满带之间。
电子逸出功由Φ电子逸出功:将一个具有平均位能的电子从固体内部拉到固体外部所需的最低能量。
掺入施主杂质使费米能级提高,从而导带电子增多并减少满带的空穴。
对N型半导体来说,电导率增加了对P型半导体而言,电导率降低掺入受主杂质其作用正好相反对N型半导体来说,电导率降低了对P型半导体而言,电导率增加半导体催化剂的化学吸附本质半导体的催化作用把表面吸附的反应物分子看成是半导体的施主或受主。
半导体催化剂上的化学吸附:对催化剂来说,决定于逸出功的大小;对反应物分子来说,决定于电离势I的大小。
由Φ和I的相对大小决定了电子转移的方向和限度。
(1) 当I <Φ时电子从吸附物转移到半导体催化剂上,吸附物带正电荷。
如果催化剂是N型半导体其电导增加,而P型半导体则电导减小。
这种情况下的吸附相当于增加了施主杂质,所以无论N型或P型半导体的逸出功都降低了。
(2) 当I>Φ时电子从半导体催化剂转移到吸附物,于是吸附物是带负电荷的粒子吸附在催化剂上,可以把吸附物视作为受主分子。
对N型半导体其电导减小,而P型半导体则电导增加,吸附作用相当于增加了受主杂质从而增加了逸出功。
(3) 当I≈Φ时半导体与吸附物之间无电子转移,此时形成弱化学吸附,吸附粒子不带电。
无论对N型或P型半导体的电导率都无影响。
例子对于某些吸附物如O2,由于电离势很大,无论在哪种半导体上的化学吸附总是形成负离子;有些吸附物,如CO 、H2,由于电离势小,容易形成正离子。
半导体催化剂的催化活性催化剂的活性与反应物、催化剂表面局部原子形成的化学吸附键性质密切相关。
化学吸附键的形成和吸附键的性质与多种因素有关,对半导体催化剂而言,其导电性是影响活性的主要因素之一。
例子对于2N2O =2N2十O2反应在金属氧化物催化剂上进行时,实验发现:P 型半导体氧化物(Cu2O ,CoO ,NiO ,CuO ,CdO ,Cr2O3,Fe2O3等)活性最高其次是绝缘体(MgO ,CaO ,Al2O3)N 型半导体氧化物(ZnO)最差;实验研究还发现,在P 型半导体上进行分解反应时,催化剂的电导率增加,而在N 型半导体上进行时电导下降。
据此可以推测:N2O 在半导体表面上吸附时是受主分子。
2N2O =2N2十O2的反应机理若N 2O 分解分两步进行2N 2O =2N 2十O 2 在P 型半导体上反应活性较高的解释反应机理中的第一步是不可逆快反应,第二步是慢反应,是决定反应速度步骤。
催化剂的电导率应该由第一步所引起,总的结果为N 型电导下降,P 型电导上升。
这与实验结果一致。
反应速率由第二步控制,所以要加快反应速率,必须提高催化剂接受电子的速率。
由于P 型半导体的空穴能位比N 型半导体的导带能位更低,所以接受电子的速率快得多,这就解释了P 型半导体的活性较高的原因。
掺杂对2N2O =2N2十O2反应的影响适当加入一些杂质使费米能级下降,即加入一些受主杂质会有助于加速反应。
但是反应的决定反应速度步骤随条件而变化,当受主杂质加得太多到一定程度已严重影响到第一步要求电子的速率,这样反过来第一步会成为决定反应速度步骤。
事实上对P 型半导体NiO 加一些Li2O 证实了上述的推论,适当加入一些Li2O 可以增加空穴浓度,提高反应速率,但当Li2O 的量超过0.1%时,反应速率反而降低。
因为此时空穴浓度太高,使第一步吸附产生O-成为困难。
所以添加Li2O 有一个最佳值。
半导体催化剂的选择原则设反应为 A+B =CA 为施主分子,B 为受主分子。
其电子转移过程如下图所示:由于A 、B 的吸附速率常常是不一样的,所以决定反应速度步骤也往往不一样。
若A A +十e 是慢过程,反应为施主反应,增加催化剂空穴,能增加反应速率。
若B 十e B-是慢过程,反应为受主反应,增加催化剂自由电子则能增加反应速率。
慢过程的确定究竟哪一步为决定反应速度步骤?取决于反应物A 、B 的电离势(IA 、IB)和催化剂的电子逸出功的相对大小。
对上述A+B =C 反应,催化剂的逸出功必须介于IA 和IB 之间,且IA <<IB 才是有效的催化剂。
第一种类型逸出功靠近IA,EA<EB。
此时B得电子比A给出电子到催化剂容易,于是A的吸附成为决定反应速度步骤,属于P型反应。
为了加快反应速率,必须提高催化剂的以使EA增加,必须降低费米能级EF,加入受主杂质对反应有利。
第二种类型靠近IB,EB<EA。
此时A给催化剂电子,比B从催化剂得到电子要容易得多,于是B 的吸附成为决定反应速度步骤。
加入施主杂质提高EF以降低来使EB增大而加速反应。
第三种类型在IA和IB之间的中点即EA=EB。
此时二步反应速率几乎相近,催化反应速率也为最佳。
由此推论:如果已知IA和IB的话,只要测出催化剂的逸出功就可推断反应的活性大小光催化原理及应用-以TiO2为例TiO2光催化反应原理光催化反应类型TiO2光催化活性的影响因素与TiO2光催化剂的改性TiO2光催化技术存在的问题概述20世纪60年代中期,发现半导体材料具有光敏性,并能引发吸附物种的氧化还原反应,开始了半导体光致催化研究。
20世纪70年代初期,Fujishima发现施加偏压的TiO2半导体单晶电极受光照后能将H2O 分解为H2 和O2,光催化在分解水制氢的研究中得到发展,但由于现有光催化剂的量子效率和催化活性低,这一研究目前仍未取得太大进展。
20世纪80年代以来,光催化研究较多集中在半导体多相光催化方面,在一定波长光照下,半导体中产生电子-空穴对,吸附到半导体催化剂表面的反应物种得到或失去电子实现光致氧化还原反应。
20世纪90年代以来,多相光催化用于环境污染的深度净化,取得了较大进展。
光催化及光催化作用的基本问题光催化:既需要有催化剂的存在,又需要光的作用。