数学建模天然肠衣搭配问题

合集下载

天然肠衣搭配问题

天然肠衣搭配问题

天然肠衣搭配问题摘要本文以天然肠衣制作加工产业的组装工序为背景,根据给定的成品规格和原料描述,在一定的限定条件下,设计合理的原料搭配方案,则工人可以根据这个方案“照方抓药”进行生产。

本文的主要工作如下:首先对题目给出的限定条件逐条进行分析,将问题分解成两个线性规划问题:(1)求出每种单成品的最大捆数k H ;(2)在捆数为k H 的所有方案中,求出满足限定条件的最优搭配方案。

对单成品分配后的剩余原料,本文同样建立了一个线性规划模型求出剩余原料最优搭配方案。

其次对模型进行求解。

由于限定条件有时间因素,因此模型的求解是本文的难点。

在利用LINGO 软件求解上述模型时,当原料种类增多、单成品最大捆数增大时,求解时间远远超出30分钟的限定条件,因此本文提出了两种提高求解速度的方法:(1) 通过增加约束条件对模型进行改进; (2) 通过分步求解的方法降低求解时间。

通过这两种方法,极大的改进了成品2和成品3以及剩余原料的求解时间。

最后,本文将模型进行了推广和扩展。

在实际的生产中,各原料的数量并不一定与给出的原料描述一致,考虑到模型的通用性和一般性,本文使用Visual Studio2005设计了图形用户界面,并实现了用C#语言调用LINGO 程序进行求解,最终将模型的计算结果即最优搭配方案返回到图形用户界面上。

该软件操作简单、使用方便,该软件的建立不仅达到了模型的推广,而且在实际生产中若遇到原料数量发生改变,不需要再重新建立模型,应用软件即可自动得出结果,具有一定的实用性和一般性。

关键词:天然肠衣,线性规划,LINGO ,求解速度,图形用户界面目录一、问题重述 (3)二、模型假设与符号分析 (4)2.1 模型假设 (4)2.2 符号说明 (4)三、模型建立与求解 (4)3.1 问题分析 (4)3.1.1 建模的整体思路 (4)3.1.2 模型的扩展——VS+LINGO的图形用户界面 (5)3.2 模型的建立 (5)3.2.1 单成品最大捆数的数学模型 (5)3.2.2 单成品搭配方案的数学模型 (6)3.2.3 剩余原料搭配方案的数学模型 (7)3.3模型的求解 (7)3.3.1 数学模型的改进 (8)3.3.2 求解方法的改进 (9)3.4 结果分析 (9)四、模型的改进与推广 (10)4.1 模型的推广 (10)4.2 软件的设计思想 (10)五、模型评价 (11)六、参考文献 (11)附录1 Lingo程序清单 (12)附录2 模型计算时间 (14)附录3 最优方案 (15)附录4 C#程序用户图形界面 (19)附录5 C#程序清单 (20)一、问题重述天然肠衣(以下简称肠衣)制作加工是我国的一个传统产业,出口量占世界首位。

201x高教社杯全国大学生数学建模竞赛-天然肠衣搭配问题

201x高教社杯全国大学生数学建模竞赛-天然肠衣搭配问题

2011高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):2011高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):题目摘要天然肠衣搭配问题优化模型摘要:本文通过对题目中所给数据和参考资料以及网站上获得的数据进行分析,利用多种模型对数据规律进行归纳提炼.首先我们建立了,方程和不等式,利用线性归回求最优,利用matelab求解,通过常识和分析我们知道,由于受到人为和多种外在和内在因素的影响,是不可能实现的,它只是在理想情况下的一种模式.在这个模型中,由于两个因素的变化,使得在预测时只能简单的预测下数据,虽然精度很大,但是预测的时间太短。

于是,在分析了天然糖衣的搭配问题。

首先我们是将数据进行处理,利用四舍五入以0.5为一个等级划分并作图。

而后我们是对两表的数据信息进行分类,总共分为三类。

解本题的思路是,利用线性归回求最优解,将最优的搭配一一列好,将剩余的材料进行降级处理后再次搭配。

天然肠衣加工与分配

天然肠衣加工与分配

天然肠衣搭配问题的分析与解决摘要本文是关于离散数据模型的搭配组合问题。

通过将已知类别的各档肠衣依照一定方案按类进行组合搭配,在满足成品条件和尽量吻合方案要求的情况下,使生产效率达到最大。

本题要求对于给定的一批原料,捆数越多的方案越好 那么不妨将本问题转化为剩余的原料数量越少越好i y =用去的根数;i x =原料的个数;,则: )(5.25.....)(15)(5.14)(14332211n n y x y x y x y x Min -++-+-+-∑ )(5.13.....)(8)(5.7)(7332211m m y x y x y x y x Min -++-+-+-∑ )(5.6.....)(4)(5.3)(3332211k k y x y x y x y x Min -++-+-+-∑对于解决此问题,我们依据成品表的最短长度和最长长度的各个值,在原料表上把和其长度相等对应档位标记出来,并通过这些档位作为标定,把原料表划分为三组。

将这三组离散数据从长度最长的14m —26m 规格开始,依照长度递减原则对每类离散数据应用贪婪算法进行处理。

在处理14m —26m 类原料时,利用贪婪算法在本类原料中肠衣长度最长的档位开始从长到短依次遍历元素,当找到符合成品要求的搭配后结束此次遍历,将符合成品要求的搭配从现有的原料离散数据中剔除,并转存入一个新的成品数据空间内。

而完成剔除后的原料离散数据将继续按照贪婪算法从现存的长度最长档位开始进行下一次的从长到短遍历来获取数据。

而在按照上文描述运行了有限次的贪婪算法之后,所剩的原料数据已经无法再能够符合成品的搭配要求,这时将剩余属于14m —26m 规格的数据降级并入7m —13.5m 规格中,原料开始按照上述处理方法继续处理本规格数据。

3m —6.5m 类原料数据的处理方法同上。

当用贪婪算法筛选完3m —6.5m 类的数据后,此时所剩余的档次条数即为无法成品的原料剩余,而此时成品数据空间中所存储的搭配数目即为所能生产出的成品数目,其中每种搭配对每个原料档次的提取个数即为一种成品对原料的选取方法。

数学建模天然肠衣搭配问题

数学建模天然肠衣搭配问题
原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。表1是几种常见成品的规格,长度单位为米,∞表示没有上限,但实际长度小于26米。
为了提高生产效率,提高产品的市场竞争力,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。并按照公司对原料搭配的具体要求,设计一个原料搭配方案,使工人按其“照方抓药”进行生产,以提高生产效率。
关键词:搭配问题、LINGO软件、整数规划、全局最优、加权
二、问题重述
天然肠衣(以下简称肠衣)制作加工就是我国的一个传统产业,已有百余年的历史,出口量占世界首位,为我国创造了可观的经济价值。肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。
(2)对于成品捆数相同的方案,最短长度最多的成品越多,方案越好;这里涉及到一个最优化问题,即在成品中原材料最短长度最多。因此使用LINGO编程求其全局最优方案。
(3)为提高原料使用率,总长度允许 米的误差,总根数允许比标准少1根;对于这个要求来看,误差为 ,即成品的合格范围是 米之间,在误差范围内,比原定根数少一根也算是合格成品。
(5)为了食品保鲜,要求在30分钟内产生方案。
三、模型假设及符号说明
1、模型的假设
(1)假设所有选定的肠衣原料都能组装为成品;
(2)假设所生产的成品肠衣都为合格产品;
(3)假设该公司提供的原材料均能符合国家标准,为合格的新鲜肠衣原料;
(4)假设肠衣在搭配过程中除去无法组成整捆的原料,均无浪费现象;
2、符号说明
在本问题中,给出了2组数据,我们需要根据这2组数据设计搭配的方案。显然,肠衣分配问题是一个整数规划问题。所以本文都采用Lingo软件进行编程求解,求解这个整数规划问题本文都选择单纯形法。

天然肠衣搭配问题的数学建模

天然肠衣搭配问题的数学建模

天然肠衣搭配问题是一个组合优化问题,通常涉及到在满足一系列约束条件下,选择合适的肠衣以最大化某种目标函数。

下面我将提供一个简单的数学模型,以帮助您理解这个问题。

假设我们有n种不同的天然肠衣,每种肠衣都有不同的长度和特性。

我们的目标是选择一定数量的肠衣,使得它们的总长度最大,同时满足以下约束条件:
每种肠衣的数量不能超过其最大供应量。

选择的肠衣必须满足特定的品质要求。

选择的肠衣的总成本不超过预算限制。

数学模型如下:
目标函数:最大化所有选择的肠衣的总长度。

约束条件:
每种肠衣的数量不超过其最大供应量。

选择的肠衣必须满足品质要求。

选择的肠衣的总成本不超过预算限制。

我们可以用线性规划或整数规划等优化方法来解决这个问题。

这些方法可以帮助我们在满足约束条件下,找到最优的肠衣搭配方案,使得目标函数达到最大或最小值。

需要注意的是,天然肠衣搭配问题可能涉及到更多的因素和复杂的约束条件,需要根据具体情况进行适当的调整和扩展。

数学建模天然肠衣搭配问题

数学建模天然肠衣搭配问题

天然肠衣搭配问题一、摘要肠衣加工企业对原材料应制定合理有效的方式来搭配,使得企业的收益最大化,同时基于保鲜的需要,也要求搭配方案能够尽可能快速。

因此肠衣的搭配问题是个很有实际意义的研究课题。

在本问题中,给出了2组数据,我们需要根据这2组数据设计搭配的方案。

显然,肠衣分配问题是一个整数规划问题。

所以本文都采用Lingo软件进行编程求解,求解这个整数规划问题本文都选择单纯形法。

对于每一个题设的要求,我们都单独考虑。

对于第一个问题:我们将问题分为3个小块,对于长度在[3,6.5]的长度,由于题设限制了一捆要求满足20根肠衣并且一捆最短要89米,所以我们通过构建线性方程组,来找到满足条件的结果;对于其他长度的肠衣,我们也是类似于[3,6.5]的方式进行。

对于第二个问题,题设要求最短长度的尽量多,所以我们在第一问的基础上,给较短长度的肠衣较大的权系数,最后通过Lingo软件求得全局最优解。

关于第三个问题的求解,我们参照求解问题一的方法使用不等式约束。

对于问题四,我们运用贪心算法来求解,即对于剩余的肠衣,我们通过贪心准则来进行降级,使得每次的贪心选择都是当时的最佳选择。

由于原材料已定,按照题设,分别讨论每个要求,解得第一问中肠衣最多只能做出130捆;第二问中对剩余的肠衣加权,也得到了比较理想的结果;第三问最多可以生产183捆合格成品;第四问中我们通过贪心算法对降级问题进行处理,最终得到剩下的肠衣可以组成183 捆。

对于第五问,我们每个程序的时间都仔分钟内就可以得到结果,所以能够在30分钟内得到分配方案。

关键词:搭配问题、LINGO软件、整数规划、全局最优、加权二、问题重述天然肠衣(以下简称肠衣)制作加工就是我国的一个传统产业,已有百余年的历史,出口量占世界首位,为我国创造了可观的经济价值。

肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。

传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。

天然肠衣搭配问题

天然肠衣搭配问题

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D我们的参赛报名号为(如果赛区设置报名号的话):112D02所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2011 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):天然肠衣搭配问题摘要本文讨论了天然肠衣原料合理搭配生产成品的最优化问题,通过分类讨论,构建了线性规划模型,运用lingo软件编写程序求解,得出了本问题的最优化的解决方案。

针对本文的题目要求,我们讨论了以下两种情况,分别是:1.我们根据长度将成品分为Ⅰ、Ⅱ、Ⅲ三大类。

在现有给定的原料情况下,使生产成品达到最优化,即生产成品的捆数最多。

我们采用了分类讨论的方法,主要细分了两种情况:第一,原料每个分档可以是自己独立的成为一捆成品;第二,原料每个分档可以与其它分档进行匹配成为一捆成品。

我们采用了捆绑法和逆推法的思想进行建模求解,所谓逆推法的思想,即是从第三部开始求解,使之产生的成品最多。

如果说第三部分的原料有剩余,那么把剩余的原料降到第二部分的原料中,以此类推。

2011高教社杯全国大学生数学建模竞赛—D题—天然肠衣生产原料的优化配比

2011高教社杯全国大学生数学建模竞赛—D题—天然肠衣生产原料的优化配比

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): D 我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):日期: 2011 年 9 月 12 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):天然肠衣生产原料的优化配比一、摘要:天然肠衣制作加工是我国的一个传统产业,出口量占世界首位。

而天然肠衣传统的生产方式已不能满足出口量日益增长的需要。

因此,我们从节约生产成本、提高企业生产效率的角度出发,保证生产成品捆数较多、原料的使用率较高和成品质量相对较好的产品。

针对天然肠衣生产原料的配比设计的具体要求,我们结合原料的长度及成品规格进行了理想模型的设计。

根据A、B、C三种成品的规格和原料长度相差0.5m的性质,找出一个总长度为89m与每根长度的固定常数关系式(如:A规格成品的固定常数关系式为89=10n3-m,3= n3-3n3.5 = n3 - 2m …… 6.5 = n3+ 4m),根据此类关系式列出相应的不定方程组进行分析求解。

考虑到原料的使用率和剩余原料达到最优,我们采用了倒推法(剩余原料的降级使用)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年数学建模天然肠衣搭配问题————————————————————————————————作者:————————————————————————————————日期:天然肠衣搭配问题一、摘要肠衣加工企业对原材料应制定合理有效的方式来搭配,使得企业的收益最大化,同时基于保鲜的需要,也要求搭配方案能够尽可能快速。

因此肠衣的搭配问题是个很有实际意义的研究课题。

在本问题中,给出了2组数据,我们需要根据这2组数据设计搭配的方案。

显然,肠衣分配问题是一个整数规划问题。

所以本文都采用Lingo软件进行编程求解,求解这个整数规划问题本文都选择单纯形法。

对于每一个题设的要求,我们都单独考虑。

对于第一个问题:我们将问题分为3个小块,对于长度在[3,6.5]的长度,由于题设限制了一捆要求满足20根肠衣并且一捆最短要89米,所以我们通过构建线性方程组,来找到满足条件的结果;对于其他长度的肠衣,我们也是类似于[3,6.5]的方式进行。

对于第二个问题,题设要求最短长度的尽量多,所以我们在第一问的基础上,给较短长度的肠衣较大的权系数,最后通过Lingo软件求得全局最优解。

关于第三个问题的求解,我们参照求解问题一的方法使用不等式约束。

对于问题四,我们运用贪心算法来求解,即对于剩余的肠衣,我们通过贪心准则来进行降级,使得每次的贪心选择都是当时的最佳选择。

由于原材料已定,按照题设,分别讨论每个要求,解得第一问中肠衣最多只能做出130捆;第二问中对剩余的肠衣加权,也得到了比较理想的结果;第三问最多可以生产183捆合格成品;第四问中我们通过贪心算法对降级问题进行处理,最终得到剩下的肠衣可以组成 183 捆。

对于第五问,我们每个程序的时间都仔分钟内就可以得到结果,所以能够在30分钟内得到分配方案。

关键词:搭配问题、LINGO软件、整数规划、全局最优、加权二、问题重述天然肠衣(以下简称肠衣)制作加工就是我国的一个传统产业,已有百余年的历史,出口量占世界首位,为我国创造了可观的经济价值。

肠衣经过清洗整理后被分割成长度不等的小段(原料),进入组装工序。

传统的生产方式依靠人工,边丈量原料长度边心算,将原材料按指定根数和总长度组装出成品(捆)。

原料按长度分档,通常以0.5米为一档,如:3-3.4米按3米计算,3.5米-3.9米按3.5米计算,其余的依此类推。

表1是几种常见成品的规格,长度单位为米,∞表示没有上限,但实际长度小于26米。

为了提高生产效率,提高产品的市场竞争力,公司计划改变组装工艺,先丈量所有原料,建立一个原料表。

并按照公司对原料搭配的具体要求,设计一个原料搭配方案,使工人按其“照方抓药”进行生产,以提高生产效率。

其搭配要求如下:(1) 对于给定的一批原料,装出的成品捆数越多越好;(2) 对于成品捆数相同的方案,最短长度最长的成品越多,方案越好;(3) 为提高原料使用率,总长度允许有± 0.5米的误差,总根数允许比标准少1根;(4) 某种规格对应原料如果出现剩余,可以降级使用。

如长度为14米的原料可以和长度介于7-13.5米的进行捆扎,成品属于7-13.5米的规格;(5) 为了食品保鲜,要求在30分钟内产生方案。

三、模型假设及符号说明1、模型的假设(1) 假设所有选定的肠衣原料都能组装为成品;(2) 假设所生产的成品肠衣都为合格产品;(3) 假设该公司提供的原材料均能符合国家标准,为合格的新鲜肠衣原料;(4)假设肠衣在搭配过程中除去无法组成整捆的原料,均无浪费现象;2、符号说明S:每种肠衣原料的总数;(,)x i j:第i捆成品使用的第j种原材料的数量;l:为每种原材料的长度。

in:假设的最多捆数四、问题分析本题共有五个要求:(1)对于给定的一批原料,装出的成品捆数越多越好;针对本题,因为原料已定,也就是说原料的总长度一定,我们认为要想装出的成品捆数增加,就必须尽量让所有的原料都被利用,争取浪费最少,采用线性规划的方法来解决问题。

(2)对于成品捆数相同的方案,最短长度最多的成品越多,方案越好;这里涉及到一个最优化问题,即在成品中原材料最短长度最多。

因此使用LINGO编程求其全局最优方案。

(3)为提高原料使用率,总长度允许0.5±米的误差,总根数允许比标准少1根;对于这个要求来看,误差为0.5±,即成品的合格范围是88.589.5米之间,在误差范围内,比原定根数少一根也算是合格成品。

(4)某种规格对应原料如果出现剩余,可以降级使用;与上一要求类似,在提高效率方面,不对原料进行多次切断组装加工处理,直接归类,可以缩短工人产生方案的时间,同时也就提高了效率。

(5)为了食品保鲜,要求在30分钟内产生方案。

在前四个要求都满足的情况下,要对模型进行简化,方便工人在生产加工时,能够在最短时间内对原料的组合搭配进行规划,并且找到最优方案。

五、模型的建立及求解(一):对第一个要求进行探究:要求对于给定的一批原料,装出的成品捆数越多越好,则首先对该公司部分成品规格表进行分析,并对举出的三种规格命名,如下表:规格名称最短长度最大长度根数总长度规格13 6.5 289规格27 13.5 8 89规格314 ∞ 5 89在此表格中能得到成品总长度为89米,由此来规定本文中合格成品肠衣的标准为每捆肠衣总长度为89米。

原料的相关信息基于表2:长度3-3.4 3.5-3.9 4-4.4 4.5-4.9 5-5.4 5.5-5.9 6-6.4 6.5-6.9 根数43 59 39 41 27 28 34 21长度7-7.4 7.5-7.9 8-8.4 8.5-8.9 9-9.4 9.5-9.9 10-10.4 10.5-10.9 根数24 24 20 25 21 23 21 18长度11-11.4 11.5-11.9 12-12.4 12.5-12.9 13-13.4 13.5-13.9 14-14.4 14.5-14.9 根数31 23 22 59 18 25 35 29长度15-15.4 15.5-15.9 16-16.4 16.5-16.9 17-17.4 17.5-17.9 18-18.4 18.5-18.9 根数30 42 28 42 45 49 50 64长度19-19.4 19.5-19.9 20-20.4 20.5-20.9 21-21.4 21.5-21.9 22-22.4 22.5-22.9 根数52 63 49 35 27 16 12 2长度23-23.4 23.5-23.9 24-24.4 24.5-24.9 25-25.4 25.5-25.9根数0 6 0 0 0 1先来研究第一种规格:最短长度 最大长度 根数 总长度3 6.5 2089由于在本题要求根据题中所给信息处理,建立出初始模型首先要满足题中对每捆成品肠衣所使用原料根数的要求列出式(1), 如下:81(,)20j x i j ==∑ (1)(1,2,3,)i n =然后根据题意对每捆成品标准长度进行限制,每捆肠衣的总长度为89米,列出式(2) 如下:1(,)89njj lx i j ==∑ (2)(1,2,3,,)i n =生产成品所使用的每种档次原料数量不能超过该原料的总数,因此得出式(3)如下:1(,)nji x i j S=≤∑ (3)(1,2,3,,8)j =第i 捆成品使用原料j 的个数记为(,)x i j :(,)x i j 是整数 (4)(1,2,3,,i n =;. 1,2,3,,8)j =要使得捆数最大,需要下面的最大目标约束:max n =;LINGO 11.0求解得到第一种规格的最优解,此时14n =(程序解题代码见附件一第一要求规格1):X1 X 2X 3 X 4X 5X 6X 7X 8根数组合11 11 0 02 1 1 4 20 组60 2662合2 0组合3 2 0 0 17 0 0 0 1 2组合4 0 0 2 18 0 0 0 0 2组合5 0 4 2 6 8 0 0 0 2组合6 4 6 3 0 1 0 0 6 2组合7 3 3 8 0 1 0 0 5 2组合8 3 9 0 0 0 0 7 1 2组合9 0 9 1 0 7 0 2 1 2组合10 7 0 3 0 2 4 4 0 2组合11 0 5 8 0 0 5 2 0 2组合1210 0 0 0 0 3 6 12组合13 7 4 0 0 0 1 7 1 2组合14 0 3 10 0 0 7 0 0 2以上结论共14种材料组合,在规定条件下,是捆数最多的结果。

接下来同理对表1中另外两个规格进行讨论:名称最短长度最大长度根数总长度规格2 7 13.5 8 89规格3 14 ∞ 5 89按照规格一的计算方式,计算规格二和三。

我们发现36捆是在规格二能生产出最多的数量,也就是说在组装成品最多的条件下,36捆是最符合题目要求的数量(程序解题代码详见附件一第一要求规格2、可行组合见附件二第一要求规格2)因此对于规格二,生产36捆的方案最合理。

而第三规格的生产捆数,与前两种规格的产生不同,按照原料长度、成品长度与最大生产捆数的关系求解,类似于规格一的方式,我们得出第三规格在仅考虑做出成品的情况下,最多可以生产80捆成品肠衣。

最后我们将得到的这三个结果进行求和,143680130++=,即第一问的最终结果为:最大成品的捆数为130捆。

(二):由于要求(2)中,对于成品捆数相同的方案,最短长度最多的成品越多,方案越好。

在解决第一个要求时,我们所得到都是可行方案。

但是我们要求是最短长度最多的成品越多越好,即最短长度剩余的长度越少越好,因此我们需要增加目标函数使得最短长度剩余的长度越少越好。

在这里我们对剩余长度进行加权,给较短的长度较大的权重。

这样就能得到我们新的目标函数。

由表1中给出的数据,先来研究第一种规格:817218111min ((,1))((,2))((,8))nnni i i l S x i l S x i l S x i ====⋅-+⋅-++⋅-∑∑∑ (5)i l 为第i 种肠衣原料的长度,因为要求取的是最短长度的原料,将这个长度作为我们的权重。

即在捆数相同的方案中,优先考虑最短长度原料,即尽可能使得最短长度的原料剩余尽可能少。

然后在结合原是模型于是我们得到了下面这组整数线性规划列式:817218111min ((,1))((,2))((,8))nnni i i l S x i l S x i l S x i ====⋅-+⋅-++⋅-∑∑∑8111(,)20(,)89(,)(,)j n j j nj i x i j l x i j x i j S x i j ===⎧⎪⎪=⎪⎪⎪=⎨⎪⎪≤⎪⎪⎪⎩∑∑∑是整数………………………………………………………(6) 带入数据,在保证了每捆成品肠衣都为标准的89米的情况下,用LINGO 求解得到了三种规格的全局最优解(由于篇幅原因,以下只列出了第一种规格的具体组合方案,程序解题代码详见附件一第二要求、组合方案见附件二第二要求运算结果)。

相关文档
最新文档