第 讲 合成氨原料气的制备方法

合集下载

合成氨生产原料气的制取

合成氨生产原料气的制取

3. 蒸汽氧比 蒸汽与氧的比例,影响气化温度及煤气 的组成。蒸汽氧比增大,煤气中氢和一氧化 碳增加。但炉温下降,使甲烷含量提高。 一般控制在5~8kg/m3。
五、固定层连续气化岗位安全操作及环保措施
(1).岗位特点 见任务一“五” (2). 岗位物料的性质
主要物料性质见任务一第五点,还有氧气,氮气。氧气为助燃剂, 和氧化剂。
(3)、本岗位主要安全事故及处理方法
事故 炉内结渣,
炉顶出口煤气与灰 锁温度同时升高
现象
处理方法
(1)灰中渣块大
(1)提高汽氧比,与灰熔点相适应。
(2)炉箅电机电流超高或液压驱 (2)降低炉箅转速,加大负荷。
动的液压压力高
(3)CO2偏低
(1)出现沟流;出口煤气温度高, (1)降低负荷,增加汽氧比,短时增加炉箅转速来破坏风洞,检查气化炉
③炉箅。其作用是维持燃料层的 向下移动,均匀分布气化剂, 排灰入灰锁,破碎灰渣。
(2)煤锁和灰锁 气化炉顶设有煤锁,进行间歇 加煤 。 炉底设有灰锁,将灰渣 定期排入灰斗
图3-4 鲁奇炉 1、煤箱 2、分布器 3、水 夹槽4、灰箱 5、洗涤器
(3)灰锁膨胀冷凝器 灰锁膨胀 冷凝器的作用是灰锁泄压时将含有 的灰尘和水蒸气冷凝、洗涤下来, 使泄压气量大幅减少,同时保护 泄压阀门不被含有灰尘的水蒸气 冲刷磨损,延长阀门的使用寿命。
润滑油供油不足
煤锁温度正常而炉内缺煤,温度 高
灰锁下阀打不开,下灰少
降炉负荷,短时增加炉箅转速,若无效停车处理。
(1)降炉负荷,降汽氧比 (2)减小供气量,维持好煤气炉的压力。 (3)减少气化剂,转动炉箅。 (4)气化炉停车处理。
检查润滑油泵,注油点压力、管线是否通畅,调整油泵出口压力。

合成氨的工艺流程

合成氨的工艺流程

合成氨的工艺流程1. 空气分离:首先,空气中的氮气和氧气需要被分离。

这可以通过空气压缩和冷却,然后用分子筛或液化分离技术将氮气和氧气分离出来。

2. 氮气制备:通过空气分离得到的氮气需要被进一步提纯。

这可以通过低温分馏或其他技术将氮气提纯到适当的纯度。

3. 氢气制备:氢气可以通过天然气蒸汽重整反应或者电解水得到。

4. 催化剂制备:制备出合成氨反应所需的催化剂,通常是以铁为主要成分的铁钼镍催化剂。

5. 合成氨反应:将氮气和氢气在高压高温的条件下通过催化剂进行反应,生成合成氨。

6. 分离纯化:将合成氨经过冷却和减压,然后通过吸收剂、冷却和压缩等工艺步骤来分离纯化合成氨。

7. 储存和运输:将合成氨储存于合适的储罐中,并通过管道或其他运输方式将其运输到需要的地点。

以上就是合成氨的工艺流程,通过这个工艺流程可以高效地制备出高纯度的合成氨,供给各种化工生产需要。

合成氨的工艺流程是一个复杂而精细的过程,其中的每一步都需要严格控制,以确保产出的合成氨的纯度和质量能够满足工业需求。

在合成氨的工艺中,采用了一系列先进的化工技术和设备,以下将进一步细说合成氨的工艺流程过程。

8. 催化剂再生:在合成氨反应中使用的催化剂需要不断地被再生。

随着反应进行,催化剂表面会积聚一定量的杂质物质,从而影响催化剂的活性和选择性。

因此,通过热气流或蒸汽来清洁催化剂表面,以恢复催化剂的活性和选择性。

9. 热力学控制:合成氨的反应是放热反应,因此需保持适宜的温度。

以确保反应不至于过热,影响产品的选择性及催化剂的稳定性。

使用适当的冷却系统来维持反应温度,是非常关键的。

10. 蒸汽重整制氢:氢气是合成氨反应的一种重要原料。

而氢气通常是通过天然气蒸汽重整反应得到的。

在这个过程中,通过加热天然气并与水蒸气反应,生成氢气和二氧化碳。

11. 压缩系统:由于合成氨反应需要高压,所以需要使用高效的压缩系统,来将氮气和氢气压缩至合适的反应压力。

一般情况下,合成氨反应的压力约为100至200大气压。

合成氨合成工艺流程

合成氨合成工艺流程

合成氨合成工艺流程
《合成氨合成工艺流程》
合成氨是一种重要的化工原料,广泛用于化肥、烟火药剂、医药品和塑料等工业生产中。

合成氨的工业生产是通过哈贝-博
斯曼过程进行的,下面将介绍合成氨的合成工艺流程。

首先,合成氨的生产原料主要是空气和天然气。

其中,空气中的氮气和氧气可以通过分离技术获取,而天然气中的甲烷则是氢气的主要来源。

合成氨的工艺流程大致分为三个主要步骤:氮气和氢气的制备、氮气和氢气的混合和反应、氨气的分离和提纯。

第一步,氮气和氢气的制备。

首先,空气被压缩,经过脱水和冷却后,氮气和氧气被分离出来。

然后,从天然气中分离出甲烷,并进行蒸汽重整反应,生成一定比例的氢气。

第二步,氮气和氢气的混合和反应。

经过精确比例的混合后,氮气和氢气进入催化剂反应器进行反应。

在高温高压下,氮气和氢气发生化学反应生成氨气。

第三步,氨气的分离和提纯。

合成的氨气含有大量的副产物和杂质,需要进行分离和提纯。

通过压缩、冷却、吸附等工艺,将氨气中的杂质和副产物去除,最终得到纯净的合成氨。

以上就是合成氨的工艺流程,通过这一连续的工艺流程,可以
高效地生产出合成氨,满足工业生产的需求。

合成氨的工艺流程是化学工程领域的重要研究课题,对于提高生产效率和减少能源消耗具有重要意义。

合成氨原料气的制备方法

合成氨原料气的制备方法

合成氨原料气的制备方法合成氨是一种重要的化工原料,广泛应用于合成尿素、硫酸铵、硝酸铵等农业肥料的生产中,同时也是用于生产合成纤维、合成塑料、合成染料等化工产品的重要原料。

合成氨的制备方法主要有两种,分别是哈伯-玻苏曼法和氮氢氧化物还原法。

1.哈伯-玻苏曼法哈伯-玻苏曼法是最常用的工业合成氨的方法,其主要反应是氮气和氢气在高温高压条件下通过催化剂合成氨。

具体步骤如下:(1)空气的预处理:将气源空气经过压缩、过滤、去除水分和二氧化碳等处理后,进入空气分离机,将氮气与氧气分离。

(2)硝氧化:对分离出来的氮气进行硝化反应,将氮气转化为二氧化氮。

通过将氮气与氧气在高温高压条件下经过氧化催化剂的催化作用,生成二氧化氮。

(3)合成氨反应:将已经生成的二氧化氮与氢气混合,并通过冷凝和压缩等操作,将混合气体送入空气反应器中。

在高温高压条件下,通过铁-铁-铁铬催化剂的作用,二氧化氮与氢气发生反应,生成氨气。

2.氮氢氧化物还原法氮氢氧化物还原法是一种相对新的合成氨方法,其原理是将氮气和氢气通过一系列反应和催化作用转化为合成氨。

(1)氮气的预处理:与哈伯-玻苏曼法相似,将气源空气经过处理,将氮气与氧气分离。

(2)硝化反应:将分离出来的氮气与氧气在高温高压条件下经过氧化催化剂的催化作用,生成二氧化氮。

(3)氮氧化物的催化还原:将二氧化氮经过一系列反应步骤,包括氧化、还原和催化等多个阶段的循环反应。

氧化阶段是将二氧化氮与空气中的氧气经过催化剂的作用,部分转化为三氧化二氮。

还原阶段是将三氧化二氮与氢气在高温高压条件下反应,生成亚氮化合物。

催化阶段则是将亚氮化合物经过合适的催化剂作用,转化为氨气。

这两种方法中,哈伯-玻苏曼法是目前工业上最常用的方法,其具有规模大、成本低的优势。

氮氢氧化物还原法则相对较新,其具有可持续发展的潜力,在节能减排、降低工艺复杂度等方面具有一定优势。

随着科技的不断进步,相信合成氨制备方法将会得到更多的改进和创新。

工业制氨气的方法

工业制氨气的方法

工业制氨气的方法
工业合成氨生产工艺基本过程如下:
1.造气
合成氨原料气中的氮气一般来自空气,氢气则需要制备。

制氢的原料有天然气、石脑油、重质油、煤等。

2.脱硫
制氢的原料中,一般含有少量的硫化氢或硫化物,它们会进入原料气中,这些含硫物质,极易使后续阶段使用的催化剂中毒,必须首先将其除去,这个过程称为脱硫。

脱硫主要有物理吸收(用甲醇、聚乙二醇二甲醚作吸收剂)和化学吸收两种,后者常用的有氨水催化法和改良蒽醌二磺酸法等。

3.变换
经脱硫后的原料气中,除氢气外,还含有一定量的一氧化碳。

为提高氢气产量,利用水蒸气和一氧化碳反应,使之转化成氢气,该过程称为变换。

4.精炼
经过上述几个过程得到的氮、氢原料气中还含有少量的一氧化碳和二氧化碳,而合成反应使用的催化剂要求碳的氧化物总量不能大于10ppm,必须进一步脱去;少量水分对催化剂的活性等也有影响,同样要除去。

除去这些微量有害物质的过程,称为精炼。

合成
经过上述处理并经过多级压缩后达到指定高压(一般为32MPa)的氮、氢混合气,送到合成塔中在一定温度(~500℃)范围内,经催化剂(Fe2O3为主体)作用,进行合成反应。

合成氨原料气的精制陈诚

合成氨原料气的精制陈诚

常规甲烷化工艺具有如下特点: 原料气中CO+CO2含量较低,一般不超过0.7%;


反应放热量少,热点温度不超过350℃ ;
反应空速为3000-6000h-1; 反应器为单绝热床; 催化剂为镍系,采用浸渍法或共沉淀法制备; 产品气中CO+CO2含量<2ppm。
二.催化剂主要活性组分
二.工艺流程
变换气经压缩机压缩,用水(或热钾碱溶液等)除去其中大部分CO2 后,再由压缩机加压到12~13MPa送至铜氨液洗涤系统。 气体自铜 氨液洗涤塔(简称铜洗塔)的底部进入,自下而上与塔顶喷淋下来的 铜氨液逆流接触,气体中CO、CO2、H2O和O2等即为铜氨液吸收。 如果洗涤后气体中CO+CO2〈10ml/m3,即可加压后送往氨合成系 统。倘若出铜洗塔气体中的CO2含量较高时,还要经过碱洗塔用氨水 或碱液吸收CO2后,才能达到净化要求。 吸收气体中CO等杂质后 的铜氨液,自铜液塔底部经减压至0.15MPa自动流到铜氨液再生系统 的回流塔3的顶部,与再生器4逸出的气体相遇,捕集其中氨及部分 CO2后,由回流塔底部流至还原器7中。还原器的上下两段均上设有 蒸汽加热管,底部有空气加入管 ,中部有旁通管线(即副线)。铜 氨液首先经过下加热器6加热,随即向上流,经还原器内几层有孔折 板后进入上加热器5。在必要时,可开用旁通管,使部分铜氨液不经 下加热器而直接进入上加热器。铜氨液经还原

金属的甲烷化活性顺序: Ru>Ir>Rh>Ni>Co>Os>Pt>Fe>Mo>Pd>Ag


从原料来源、成本和活性进行综合分析,认为Ni是最适 宜的甲烷化催化剂;
优点 缺点
镍系催化剂
钴系催化剂 钼系催化剂 铁系催化剂
活性高、选择性好

合成氨原料气脱CO2.

合成氨原料气脱CO2.

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ
2、气体分离原理
分离的基本原理是:将经过净化的带压或加压的原料气逐级冷却至 各分离组分的冷凝温度进行分凝(单级或逐级冷凝);或使原料气加压 冷却、液化、再精馏进行分离。常用的气体冷凝温度(在101.325千 帕压力下)见表1[常见的气体冷凝温度 法( 以 冷 密 分化 分 却 度 离学 为 , 不 。) : 根 同 反压据、 应缩沸扩 吸气点散 附体温速 气,度度 体物不不 等理同同 方 可,
甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和 H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数) 一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量 脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰 性气体CH4的含量。甲烷化反应如下:
CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的 重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和 CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量 不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工 序前,必须进行原料气的最终净化,即精制过程。 目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。
初步方案的制定
一、合成氨的工艺物料
(1)原料气制备 将煤和天然气等原料制成含氢和 氮的粗原料气。对于固体原料煤和焦炭,通常 采用气化的方法制取合成气;渣油可采用非催 化部分氧化的方法获得合成气;对气态烃类和 石脑油,工业中利用二段蒸汽转化法制取合成 气。 (2)净化 对粗原料气进行净化处理,除去氢气和 氮气以外的杂质,主要包括变换过程、脱硫脱 碳过程以及气体精制过程。

化工工艺学第1章合成氨 0304 001 合成氨原料气的制备

化工工艺学第1章合成氨 0304 001 合成氨原料气的制备

(2) Z(CH2)+H2O(g) Z+CO
CH4 + H2O(g) = CO + 3H2 (4) H2O(g)+Z (5) CO+ZO Z─镍催化剂表面的活性中心 ZCH2、ZCO、ZO─化学吸附态的CH2、CO、O。 其它 Z(O)+H2 CO2+Z
a─(4)的化学平衡常数
CO + H2O(g) = CO2 + H2
由上述计算可知, yCH4=f(T,P,m),当固定3个影 响因素之2时,可考察某因素 对指标的影响。根据上述计 算给出定量结果见图
图 1.3
结论:甲烷蒸汽转化在高温、高水碳比和低压下进行为宜。
2. 动力学 甲烷蒸汽转化反应是气-固相催化反应,包括
①外扩散 ②内扩散 ③表面吸附和化学反应
其中最慢的一步称为反应的控制步骤,总反应速度等于 最慢步骤的速度,称之为外扩散控制、内扩散和控制和表 面反应控制( 动力学控制)。
r dc D S (Cb C s ) K G (Cb C s ) dt V
一定条件下γ、Re和PrD为一定数,kG随G的增大而增加。
D─Fick 扩散系数 δ─扩散层厚度
S、V ─单位时间内气体扩散通过的截面积与体积
Cb、Cs─气体在体相与表面的浓度 kG ─ 外扩散传质系数
外扩散速度的大小由传质系数决定,可用大量实验数据 总结出的经验公式描述:
化工工艺学 Chemical engineering technics
第二节 原料气的制取 Production of synthetic gases
合成氨的生产需要高纯氢气和氮气。氢气的主要来源有:含 有碳、氢或碳氢化合物(简称烃)的物质:按物质存在的形态分 为三类: 1.固体原料 无烟煤、褐煤、焦炭等。 2.气体原料 天然气、油田气、焦炉气、炼厂气、电解食盐副产 氢气等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年产五十万吨合成氨的原料气制备工艺筛选
合成氨生产工艺流程简介
合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。

●原料气的合成
固体燃料生产原料气:焦炭、煤
液体燃料生产原料气:石脑油、重油
气体燃料生产原料气:天然气
●原料气的净化
CO变换
●合成气的压缩
●氨的合成
工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下:
1)以焦炭(无烟煤)为原料的流程
50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。

以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。

我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程:
◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作
为产品。

所以,流程的特点是气体净化与氨加工结合起来。

◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代
传统的铜氨液洗涤工艺。

2)以天然气为原料的流程
天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到0.1ppm以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。

3)以重油为原料的流程
以重油作为制氨原料时,采用部分氧化法造气。

从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。

二、合成氨原料气的制备方法简述
天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。

除焦炭成分用C表示外,其他原料均可用C n H m来表示。

它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气,
这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。

按原料不同分为如下几种制备方法:
●以煤为原料的合成氨工艺
各种工艺流程的区别主要在煤气化过程。

典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。

①固定床碎煤气化
②德士古水煤浆加压气化工艺
③干煤粉加压气化工艺
●以渣油为原料的合成氨工艺
按照热能回收方式的不同,分为德士古(Texaco)公司开发的激冷工艺与壳牌(Shell)公司开发的废热锅炉工艺。

这两种工艺的基本流程相同,只是在操作压力和热能回收方式上有所不同。

●以天然气为原料的合成氨工艺
针对以天然气为原料的合成氨提出了一系列节能型工艺,有代表性的四种是:Kellogg 公司的MEAP工艺,Topsoe公司的节能工艺,Braun公司的深冷净化工艺以及ICI公司的AMV工艺。

三、烃类蒸汽转化法
目前合成氨生产工艺中原料气的制备以天然气作原料为主,国外几家大公司针对天然气流程开发了很多新型工艺,国内外合成氨装置也大多是以天然气为原料。

早在1913年,德国BASF公司就已经提出了第一个蒸汽转化催化剂的专利。

30年代初期,工业上已经用甲烷作为原料与蒸汽进行催化转化反应制取氢气。

二次大战期间,合成氨工业开始采用天然气,与焦炭,煤原料相比,它显示出种种优越性。

因此,天然气蒸汽转化法制氨得到广泛应用。

1954年以后,英国ICI公司先后开发成功抗析碳的系列石脑油蒸汽转化催化剂,60年代合成氨原料又开始扩大到石脑油。

蒸汽转化法制得的粗原料气应满足下述要求:
●残余甲烷含量不超过0.5%(体积)
●(H2+CO)/N2比在2.8-3.1(摩尔比)
因此,合成氨厂的转化工序一般分为两段进行。

一段炉中,大部分烃类与蒸汽于催化剂作用下转化成H2、CO和CO2;接着一段转化气进入二段炉,在此加入空气,有一部分H2燃烧放出热量,催化剂床层温度升高到1200-1250℃,并继续进行甲烷的转化反应;二段炉出口气体温度约为950-1000℃,残余甲烷含量和(H2+CO)/N2比均可达到上述指标。

气态烃原料是各种烃的混合物,除了主要成分甲烷外,还有一些其它烷烃,有的甚至还有少量烯烃。

此外,当烃与蒸汽作用时,可以有几个反应同时产生。

因此,研究烃类转化反应首先应该讨论气态烃类蒸汽转化过程的化学反应表达形式。

(二)烃类蒸汽转化的工业生产方法
工业上含烃原料采用蒸汽催化转化法制取转化气可以分为一段和二段转化。

对合成氨生产,都采用二段转化流程。

工艺流程
与采用重油或煤为原料生产合成氨相比较,以轻质烃类为原料时,由于基建投资省,能源消耗低,环境污染小,建设进度快,因此工厂数量多,所占氨产量比重最大。

各公司开发的蒸汽转化法流程,除一段转化炉炉型、烧嘴结构、是否与燃气透平匹配等方面各具特点外,在工艺流程上均大同小异,都包括有一、二段转化炉,原料气预热,余热回
收与利用。

四、重油气化法(部分氧化法)
重油是石油炼制过程中的一种产品,根据炼制方法不同,分为常压重油(馏分350℃以上)、减压重油(馏分520℃以上)、裂化重油。

由于原油产地及炼制方法不同,重油的化学组成与物理性质有很大差别,但以烷烃、环烷烃和芳香族为主。

除碳、氢外,重油中还有硫、氧、氮等组分,还有微量的钠、镁、钒、镍、铁和硅等成分。

重油部分氧化是指重质烃类和氧气进行部分燃烧,由于反应放出的热量,使部分碳氢化合物发生热裂解以及裂解产物的转化反应,最终获得了以H2和CO为主体,含有少
量CO2和CH4(CH4通常在0.5%以下)的合成气。

(三)、重油气化的工艺流程
重油部分氧化制取合成气(CO+H2)的工艺流程由四个部分组成:
原料油和气化剂(O2+H2O)的预热
油的气化
出口高温合成气的热能回收
炭黑清除与回收
按照热能回收方式的不同,可以分为两类:
德士古公司(Texaco)开发的激冷流程
谢尔公司(Shell)开发的废热锅炉流程
这两种方法的基本流程相同,只是在操作压力和热能回收方式上有所不同。

也有以清除合成气中炭黑工艺不同而分为水洗、油洗河石脑油、重油萃取等多种流程。

相关文档
最新文档