性常微分方程的保线性变换及其应用

合集下载

线性代数矩阵的分解与微分方程应用

线性代数矩阵的分解与微分方程应用

线性代数矩阵的分解与微分方程应用线性代数是数学中的一个重要分支,它研究的是线性空间以及其上的线性变换。

线性代数在不同领域中都有广泛的应用,比如说在计算机图形学、物理学、经济学等领域中都起着非常重要的作用。

其中,矩阵的分解和微分方程的应用是线性代数的两大重要内容。

一、矩阵的分解矩阵的定义是一个由数字排成的矩形表格。

在线性代数中,矩阵是一个重要的工具,矩阵的分解是矩阵理论中的一个基本问题。

矩阵的分解通常是指将一个矩阵分解成几个特定形式的矩阵的乘积。

常见的矩阵分解包括LU分解、QR分解、SVD分解等。

1、LU分解LU分解是线性代数中的一种矩阵分解方法,可以将一个矩阵分解成一个下三角矩阵L和一个上三角矩阵U的乘积。

LU分解可以用于求解线性方程组、求矩阵的逆以及计算矩阵的行列式等问题。

在实际应用中,使用LU分解求解线性方程组比直接求解更加高效和准确。

2、QR分解QR分解是一个将一个矩阵分解成一个正交矩阵Q和一个上三角矩阵R的乘积的方法。

QR分解在求解最小二乘问题、特征值问题以及解非线性方程组等问题中都有广泛的应用。

3、SVD分解SVD分解是一种将一个矩阵分解成三个矩阵的乘积的方法,包括一个左奇异矩阵、一个右奇异矩阵和一个奇异值矩阵。

SVD分解可以用于降维、信号处理、图像处理等方面。

二、微分方程的应用微分方程是研究变化的数学分支,它研究的是变量与其变化率的关系。

微分方程在科学、工程和经济等领域中都有广泛的应用。

微分方程的解法中涵盖了矩阵分解的知识。

1、矩阵微分方程矩阵微分方程指的是方程中包含了一个矩阵与它的导数。

矩阵微分方程在控制系统、差分方程的研究中都有广泛的应用。

解矩阵微分方程时,可以使用矩阵指数函数或拉普拉斯变换等方法。

2、级数解法级数解法是一种用级数求微分方程解的方法。

在级数解法中,将未知函数表示为级数的形式,将其代入微分方程中,然后通过逐项比较系数来求解微分方程。

级数解法在近似计算和数值解法方面都有重要应用。

常微分方程与运动稳定性第三篇

常微分方程与运动稳定性第三篇
4
第二节 一次奇点
由于任何奇点都可借助坐标平移而将它化 为原点,因而总认为原点是(5.1)的奇点。
在原点邻域内将 X, Y 展为泰劳级数,得:
(5.3) X2,Y2 ----所有二次项
以上的全体.
则此奇点称为一次奇点,反之称为高次奇点。 5
研究以下线性系统
特征方程是
其中
其特征根为
(5.5)
(5.7)
y
若λ2<λ1<0,则积分曲线在原
点与 x 轴相切,如图示。反
x
之,若λ1<λ2<0,则积分曲线 在原点与 y 轴相切。
p16
—— 奇点称为稳定结点
o图5.2 p17
对于q > 0,p < 0,p2-4q>0,λ1、λ2为相 p20 异正实根,积分曲线方向远离原点。
——奇点为不稳定结点
8
(3) q>0,p>0,p2-4q<0,λ1,λ2为共轭复根且实 部为负。
A
向进入奇点O(0, 0). 定义2:设O(0, 0) 为孤立奇点,
r θ0
θ
若点列 An(rn,θn),当n→∞时,
O
rn→0 ,θn→θ0 ,且αn→0 ,αn为An点的方向场向量
与向径夹角的正切,称θ=θ0为特征方向。
显然,若θ=θ0为固定方向,则必为特征方向
鞍 点: 0,/2, 3 /2, 结 点: 0,/2, 3 /2,
焦 点: 无
退化结点: /2, 3 /2 或 0,
临界结点:任意方向
p7 p8
p9 p10
p11 16
定义3: 轨线L与θ=θ0相交于P ,若P点向径与方向场
夹角为: 0 < αp < ,则为正侧相交; < αp < 2 ,

常微分方程及其应用

常微分方程及其应用

常微分方程及其应用常微分方程是数学中的一个重要概念,它描述了变量的变化率与变量本身的关系。

常微分方程广泛应用于物理学、生物学、经济学等众多领域,为解决实际问题提供了有效的数学工具。

在物理学中,常微分方程被广泛应用于描述自然界中的各种现象。

例如,牛顿第二定律可以用常微分方程来描述物体的运动。

考虑一个质点在力的作用下运动的情况,我们可以通过将质点的质量、受力和加速度之间的关系表示为一个常微分方程。

这个方程可以描述质点在不同时间点上的位置和速度的变化。

在生物学中,常微分方程被用来描述生物体内的各种生理过程。

例如,人体的代谢过程可以用常微分方程来描述。

我们可以建立一个关于时间的常微分方程来描述人体内各种物质的转化和消耗。

这些方程可以帮助我们理解人体的代谢过程,从而指导健康管理和疾病治疗。

在经济学中,常微分方程被用来描述市场供求关系和价格变化。

例如,一种商品的价格会随着供求关系的变化而发生变化。

我们可以建立一个关于时间的常微分方程来描述市场供求关系的变化,从而预测价格的走势。

这些方程可以帮助我们理解市场的运行机制,从而指导经济政策和投资决策。

除了物理学、生物学和经济学,常微分方程还被广泛应用于其他领域,如工程学、环境科学和计算机科学等。

在工程学中,常微分方程被用来描述控制系统的动态行为。

在环境科学中,常微分方程被用来描述气候变化和生态系统的演化。

在计算机科学中,常微分方程被用来描述算法的复杂性和性能。

常微分方程及其应用是数学中的重要内容。

它不仅在物理学、生物学和经济学等自然科学领域发挥着重要作用,也在工程学、环境科学和计算机科学等应用科学领域发挥着重要作用。

通过建立和求解常微分方程,我们可以更好地理解和预测自然和社会现象的变化,为解决实际问题提供了有力的数学工具。

因此,对常微分方程的研究和应用具有重要的理论和实践意义。

微分方程中的变换方法和特殊函数解

微分方程中的变换方法和特殊函数解

微分方程中的变换方法和特殊函数解微分方程是数学中的重要分支,广泛应用于物理、工程、经济等领域。

解微分方程是研究微分方程的核心问题之一,而变换方法和特殊函数解是解微分方程的重要工具和方法。

一、变换方法变换方法是一种将原微分方程通过变换转化为更简单形式的方法。

常用的变换方法有线性变换、积分因子法、特征方程法等。

1. 线性变换线性变换是一种将原微分方程转化为线性微分方程的方法。

通过适当的变量替换,可以使原微分方程的形式变得更简单。

例如,对于一阶常微分方程y' + P(x)y= Q(x),我们可以通过变量替换u(x) = y(x)e^(-∫P(x)dx)将其转化为线性微分方程u'(x) = e^(-∫P(x)dx)Q(x)。

2. 积分因子法积分因子法是一种通过乘以适当的积分因子将原微分方程转化为恰当微分方程的方法。

对于形如M(x,y)dx + N(x,y)dy = 0的一阶微分方程,如果存在函数μ(x,y)使得∂(μM)/∂y = ∂(μN)/∂x,那么乘以积分因子μ后,方程变为d(μM)/dx + d(μN)/dy= 0,即d(μM + μN)/d(x,y) = 0,这是一个恰当微分方程,可以通过求解得到解析解。

3. 特征方程法特征方程法是一种通过求解特征方程得到微分方程解的方法。

对于形如a_ny^(n) + a_(n-1)y^(n-1) + ... + a_1y' + a_0y = 0的n阶常系数线性微分方程,可以通过假设y = e^(rx)的形式,代入原方程得到特征方程a_nr^n + a_(n-1)r^(n-1) + ... +a_1r + a_0 = 0。

根据特征方程的解,可以得到微分方程的通解。

二、特殊函数解特殊函数是一类在微分方程中具有特殊性质的函数,可以用于求解特定类型的微分方程。

常见的特殊函数包括常数变易法、欧拉方程、贝塞尔方程等。

1. 常数变易法常数变易法是一种用于求解非齐次线性微分方程的方法。

大一数学知识点思维导图

大一数学知识点思维导图

大一数学知识点思维导图数学是一门重要的学科,大一学生正式接触数学课程时,常常会感到有些吃力。

为了帮助大家更好地掌握大一数学知识,我整理了一份思维导图,以系统地呈现大一数学的重要知识点。

以下是思维导图的内容:1. 微积分1.1 极限与连续性- 数列极限- 函数极限- 连续函数与间断1.2 导数与微分- 导数的定义- 导数的性质- 微分的应用1.3 积分与不定积分- 不定积分的定义- 不定积分的计算法则- 定积分及其应用2. 线性代数2.1 矩阵与线性方程组- 矩阵的基本概念- 矩阵的运算法则- 线性方程组的求解方法 2.2 行列式与特征值- 行列式的性质与计算方法 - 特征向量与特征值- 对角化与相似矩阵2.3 向量空间与线性变换- 向量空间的基本概念- 线性变换的定义与性质 - 线性变换的矩阵表示3. 概率论与数理统计3.1 概率的基本理论- 随机试验与样本空间- 事件与概率- 条件概率与独立性3.2 随机变量与概率分布- 随机变量的概念- 离散型随机变量与概率分布- 连续型随机变量与概率密度函数 3.3 统计推断与假设检验- 参数估计- 假设检验的基本原理- 常见的假设检验方法4. 微分方程4.1 常微分方程基础- 微分方程的基本概念- 一阶常微分方程的解法- 高阶常微分方程的解法4.2 线性常微分方程与特殊函数 - 齐次线性常微分方程- 非齐次线性常微分方程- 常见的特殊函数及其应用5. 数学分析5.1 数列与级数- 数列的极限- 级数的收敛与发散- 常见的级数及其性质5.2 函数与极限- 函数的极限与连续性- 函数的一致连续性- 函数的一致收敛5.3 多元函数微分学- 偏导数与全微分- 多元函数的极值- 隐函数与参数方程以上是大一数学的主要知识点思维导图,通过整理这份导图,希望能够帮助大家更好地理清数学知识的脉络,并对各个知识点有一个整体的认识。

当然,在实际学习中,还需要深入学习每个知识点的具体内容,理解其定义、原理及应用方法。

线性定常系统的线性变换

线性定常系统的线性变换
2023
线性定常系统的线性 变换
https://
REPORTING
2023
目录
• 线性定常系统概述 • 线性变换的基本概念 • 线性定常系统的线性变换 • 线性变换的应用 • 线性变换的挑战与解决方案 • 线性变换的案例研究
2023
PART 01
线性定常系统概述
REPORTING
定义
线性变换是一种将系统从一种形式转换为另一种形式的方法,常 用的线性变换包括拉普拉斯变换和傅里叶变换。
应用
线性变换在控制系统分析和设计中具有广泛应用,如系统函数、传 递函数、频率响应等。
实现
通过数学运算和变换,将系统的形式进行转换,以便于分析和设计。
2023
PART 04
线性变换的应用
REPORTING
解决方案
为了提高计算效率,可以采用一些优化技术,如矩阵分块、稀疏矩阵、并行计算等,来降 低计算复杂度和提高计算速度。同时,也可以采用一些数值计算方法,如近似计算、数值 积分等,来减少计算量。
2023
PART 06
线性变换的案例研究
REPORTING
案例一:控制系统中的状态反馈线性变换
状态反馈线性变换的概念
线性变换的挑战与解决方 案
REPORTING
线性变换的稳定性问题
定义
线性变换的稳定性问题主要关注变换后的系统是否能够保 持稳定,即系统的状态是否能够逐渐收敛到某一平衡点或 周期性振荡。
挑战
在实际应用中,由于系统参数、初始条件、外部干扰等因 素的影响,线性变换后的系统可能会出现不稳定的情况。
解决方案
2023
PART 02
线性变换的基本概念
ห้องสมุดไป่ตู้

常微分方程的变换法

常微分方程的变换法常微分方程(ODE)是现代数学中极为重要的一个研究领域,它关注的是在时间或其它变量的连续领域内,一个函数如何变化。

在工程、物理、生物、化学及经济等领域,ODE都得到广泛的应用。

其中,ODE的可解性一直是研究重点之一。

常微分方程变换法是一个重要的解法之一,本文将对其进行详细讨论。

一、常微分方程的变换法概述常微分方程的变换法意指通过一定方式让ODE从初等微分方程的解法中免除。

常微分方程的标准形式为:$$ y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y =g(x) $$其中,$y = y(x)$是未知函数,$p_i(x)(i = 0,1, \cdots, n-1)$是已知函数,$g(x)$是已知函数。

对于ODE的求解,变换法的目的即是把复杂的ODE转化为易于求解的一般类型。

这样的转化包括从各种函数表达式中提取信息,运用特殊的公式等。

二、变换方法变换法包括线性变换和非线性变换两类,其中线性变换主要包括李群变换、相似变换以及积分因子变换等,非线性变换包括映射变换、相关变换和拓扑变换等。

本文将着重介绍线性变换,它针对的是标准ODE:$$ y^{(n)} + p_{n-1}(x)y^{(n-1)} + \cdots + p_1(x)y' + p_0(x)y = g(x) $$其中,$p_i(x)(i = 0,1, \cdots, n-1)$是已知函数,$g(x)$是已知函数。

1.李群变换李群变换是一种基于李群理论的ODE的解法。

具体来说,就是先假设ODE具有特定的对称性,然后预测解的形式。

当这种预测的解是正确的时,可以使用该解去重写原始ODE,进而求解。

这种方法适用于相对简单的ODE。

2. 相似变换相似变换是一种以特殊的线性变换来形式不变地改变ODE的方法。

具体来说,就是用一个新的自变量来代替原始ODE中的自变量 $x$,得到新的ODE $v = f(u)$,并保证新的ODE和原始ODE等价。

线性变换的定义和性质

线性变换的定义和性质
汇报人:XX
• 线性变换的基本概念 • 线性变换的基本性质 • 线性变换的矩阵表示 • 线性变换的应用举例 • 线性变换与空间结构的关系
01
线性变换的基本概念
定义与性质
线性变换定义
保持原点不动
保持向量共线性
保持向量比例不变
线性变换是一种特殊的映射, 它保持向量空间中的加法和数 乘运算的封闭性。即对于向量 空间V中的任意两个向量u和v 以及任意标量k,都有 T(u+v)=T(u)+T(v)和 T(kv)=kT(v)。
矩阵性质
线性变换的矩阵表示具有一些特殊的性质。例如,两个线性变换的复合对应于它们矩阵的乘积;线性变换的可逆 性对应于矩阵的可逆性;线性变换的特征值和特征向量对应于矩阵的特征值和特征向量等。
02
线性变换的基本性质
线性变换的保线性组合性
线性组合保持性
对于任意标量$a$和$b$,以及向量 $mathbf{u}$和$mathbf{v}$,线性 变换$T$满足$T(amathbf{u} + bmathbf{v}) = aT(mathbf{u}) + bT(mathbf{v})$。
通过引入复数和极坐标等 概念,可以将某些函数图 像进行旋转。
微分方程中的线性变换
变量代换
通过适当的变量代换,可以将某些非线性微分方 程转化为线性微分方程,从而简化求解过程。
拉普拉斯变换
将时间域内的微分方程通过拉普拉斯变换转换到 频域内,从而方便求解和分析。
傅里叶变换
将时间域内的函数通过傅里叶变换转换到频域内 ,可以分析函数的频率特性和进行滤波等操作。
数乘保持性
对于任意标量$k$和向量$mathbf{v}$,线性变换$T$满足$T(kmathbf{v}) = kT(mathbf{v})$。

常微分方程——精选推荐

《数学模型》课 常微分方程补充 ( 2008 )( 摘自《常微分方程学习辅导与习题解答》朱思铭编 )一. 常微分方程基本概念 ( 摘自 四.§1.2 )二. 常微分方程线性奇点 ( 摘自 四.§6.1.3 )三. 极限环和平面图貌 ( 摘自 四.§6.1.4 )四*. 常微分方程内容提要五*. 常微分方程应用实例索引一. 常 微 分 方 程 基 本 概 念 ( §1.2 )微分方程 联系自变量、未知函数及其导数的关系式.实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程.一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38)线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d y y dx dx的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dy a x a x a x f x dx dx dx---++++= (39) 其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件.定解问题 求微分方程满足定解条件的解的问题.初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx---=== 初值问题 当定解条件为初值条件时的定解问题.特解 满足定解问题的解.积分曲线 一阶微分方程(,)dy f x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dy dx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,i i 1n dy f t y y i 12n dt ==或写成向量形式(,)=dy f t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dy f y dt= (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换) ()t y Φ,如满足恒同性()0y y Φ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dx f x y dt dy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.二. 常 微 分 方 程 线 性 奇 点 ( §6.1.3 )平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 对,x y 有连续偏导数.方程组(1)的解(),()x x t y y t ==在欧几里得空间Otxy 表示为一曲线,称为积分曲线.,x y 平面Oxy 称为相平面,积分曲线在相平面上的投影称为轨线.满足(,),(,)X x y 0Y x y 0==的常数,x x y y **==为方程组(1)的解,称为驻定解(常数解),相平面Oxy 上的点(,)x y **称为方程组的奇点.通过线性变换可将方程组(1)的奇点移至Oxy 的原点上,再取其线性项则得方程组(1)的线性近似方程组dx ax by dt dy cx dy dt⎧=+⎪⎪⎨⎪=+⎪⎩ (2) 线性方程组(2)的特征方程为a b 0c d λλ-=- 即,(),2p q 0p a d q ad bc λλ++==-+=- (3)可以通过方程组的系数即特征方程的根表示相平面Oxy 上奇点(原点)附近的轨线图貌,即奇点的类型:(1) q 0≠ (a) q 0< 有两不同符号实根,奇点为鞍点(b1) ,,2q 0p 4q 0p 0>-<> 有两负实根,奇点为稳定结点(b2) ,,2q 0p 4q 0p 0>-<< 有两正实根,奇点为不稳定结点(c1) ,,2q 0p 4q 0p 0>-=> 有一重负实根,奇点为稳定退化或奇结点 (c2) ,,2q 0p 4q 0p 0>-=<有一重正实根,奇点为不稳定退化或奇结点 (d1) ,,2q 0p 4q 0p 0>->>有一对负实部共轭复根,奇点为稳定焦点 (d2) ,,2q 0p 4q 0p 0>-><有一对正实部共轭复根,奇点为不稳定焦点 (e) ,q 0p 0>= 有一对(零实部)共轭虚根,奇点为中心(2) q 0= (a1) p 0> 有单零根和负实根,过奇点有稳定奇线(a2) p 0< 有单零根和正实根,过奇点有不稳定奇线(b) p 0= 有重零根,过奇点有奇线, 奇线上下有不同走向平行轨线(c) a b c d 0==== 奇点充满全平面三. 极 限 环 和 平 面 图 貌 ( §6.1.4 )(1) 极限环 考虑平面驻定微分方程组(,)(,)dx X x y dt dy Y x y dt⎧=⎪⎪⎨⎪=⎪⎩ (1) 其中,X Y 在相平面的某区域G 内有一阶连续偏导数.方程组(1)在相平面上孤立的周期解(闭轨线),且附近的轨线均趋于(离开)该闭轨线时,称此闭轨线为稳定(不稳定)极限环,如附近的轨线一边趋于另一边离开该闭轨线时,则称此闭轨线为半稳定极限环.环域定理 如果G 内存在有界的环形闭域D ,在其内不含方程组(1)的奇点,而(1)的经过D 上的点的解(轨线)(),()x x t y y t ==当0t t ≥(或0t t ≤)时不离开域D .则或者解本身是周期解(闭轨线),或者解正向(或负向)趋于D 内的某一周期解(闭轨线).如果G内存在单连通区域D*,在其内函数X Yx y∂∂+∂∂不变号且在D*内的任何子域内不恒为零.则方程组(1)在域D*内不存在任何周期解(闭轨线),更不存在任何极限环.在相平面分析中除奇点和极限环两种特殊轨线外,还有一种从奇点到奇点的轨线,这类轨线称为分界线.如果一条分界线与一个奇点构成一个环,则称为同宿环(轨).如果一条分界线两端是不同奇点,则分界线称为异宿轨.当多条分界线与多个奇点构成一个环时则称此环为异宿环.(2) Lienerd 方程 ()()22d x dx f x g x 0dt dt++= (2) 记()(),()x 0dx F x f x dx y F x dt==+⎰,方程(2)可化为方程组 (),()dx dy y F x g x dt dt=-=- (3) 定理 假设 (a) (),()f x g x 对一切x 连续,()g x 满足局部利普希茨条件; (b) ()f x 为偶函数,(),()f 00g x <为奇函数,当x 0≠时()xg x 0>; (c) 当x →±∞时(),()F x F x →±∞有唯一正零点x a =,且当x a ≥时()F x 单调增加.则方程(2)有唯一周期解,即方程组(3)有一个稳定极限环.(3) 平面图貌 对平面驻定方程组(1),在相平面上曲线(,),(,)X x y 0Y x y 0==分别表示轨线的垂直等倾斜线和水平等倾斜线.可利用垂直等倾斜线和水平等倾斜线划分出相平面上的不同区域,每一区域内轨线的,x y 方向的右、左及上、下走向是一致的,有(+,+)、(+,-)、(-,+)、(-,-)四种走向,其中括号内第一个+表向上、-表向下,第二个+表向右、-表向左.应用等倾斜线方法可画出方程组(1)的平面轨线图貌.可以用等倾斜线方法分析两种群模型(1)(1)dx rx ax by dt dy sy cx dy dt⎧=--⎪⎪⎨⎪=--⎪⎩ (6.53)其中r a 、和s d 、均为正常数. 而00b 、c >>时为竞争系统, 00b ><、c 或00b 、c <>时为被捕食-捕食系统, 00b 、c <<时则为共生系统.(4) 对一般的两种群竞争系统(,)(,)dx M x y x dt dy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ (4) 其中x 与y 的相对增长率M 与N 都是非负变量x y 、的连续函数,有连续一阶偏导数,且一种群增长时另一种群的增长率下降,即00M N y x∂∂<<∂∂、而任一种群过多时两种群都不能增长,故存在常数0K >,当x K ≥或y K ≥时(,)0M x y ≤且(,)0N x y ≤.还设只有一种群时,它将按极限增长,即存在常数00a b ><、使得(,0)0;(,0)0;(0,)0;(0,)0.x a M x x a M x y b N y y b N y <>><<>><当时时当时时在上述条件下,可以通过分析相平面上等倾斜线曲线(,)0M x y =和(,)0N x y =的形状及它们之间的关系. 有定理 两种群竞争一般模型(4)的每一条轨线,当t ∞时都趋于有限个平衡点之一.四. 常 微 分 方 程 内 容 提 要第一章 绪论§1.1.1 常微分方程模型1. RLC 电路 包含电阻R 、电感L 、电容C 及电源的电路称RLC 为电路. 电流I 经过电阻R 、电感L 、电容C 的电压降分别为R I 、dI L dt 和QC, Q 为电量,E 、()e t 为电源电压,dQI dt=.应用基尔霍夫(Kirchhoff)第二定律(在闭合回路中,所有支路上的电压的代数和等于零)可列出RLC 为电路的微分方程:dI R E I dt L L+= 221()d I R dI I de t L dt LC L dt dt++= 初始条件为00()I t I =.2. 数学摆 数学摆是系于一根长度为l 的线上而质量为m 的质点M ,在重力的作用下,它在垂直于地面的平面上沿圆周运动. 摆与铅垂线所成的角为ϕ,M 沿圆周的切向速度为v ,d v l dtϕ=.摆的运动方程为22d gsin 0l dtϕϕ+= 微小振动(ϕ较小时,可用ϕ代替sin ϕ):22d g0l dtϕϕ+= 存在阻力时(阻力系数为μ):22d d g 0m dt l dtϕμϕϕ++= 有强迫力()F t 时:()22d d g 1F t m dt l ml dtϕμϕϕ++= 摆的初始状态:当0t =时00,d dtϕϕϕω== 0ϕ代表摆的初始位置,0ω代表摆的初始角速度.3. 人口模型 Malthus 模型:基本假设是:在人口自然增长的过程中,净相对增长率(单位时间内人口的净增长数与人口总数()N t 之比)是常数,记此常数为r (生命系数)dNrN dt= Logistic 模型:荷兰生物学家Verhulst 引入常数m N (环境最大容纳量)用来表示自然资源和环境条件所能容纳的最大人口数,并假设净相对增长率为m N r 1N ⎛⎫- ⎪⎝⎭,即净相对增长率随()N t 的增加而减少,当()m N t N →时,净增长率0→.m dN N r 1N dt N ⎛⎫=- ⎪⎝⎭ 初始条件为0t t =时()0N t N =4. 传染病模型 假设传染病传播其间其地区总人数n 不变.开始时病人数为0x ,在时刻t 的健康人数为()y t , 病人数为()x t ,k 为传染系数. SI 模型:易感染者(Susceptible),已感染者(Infective), 00(),()dxkx n x x x dt =-= SIS 模型:治愈率为μ时,其平均传染期为1μ,接触数为kσμ=,0()()()(),(0)dx t ky t x t x t x x dtμ=-=SIR 模型:病人治愈后不会再被感染,移出者(Removed). 治愈率l ,0000dxkxy lx x x dtdy kxy y y n x dt ⎧=-=⎪⎪⎨⎪=-==-⎪⎩,(),()5. 两生物种群生态模型 甲、乙两种群的数量分别记为,x y . Volterra 模型:分竞争、共生、捕食与被捕食等类型()()dxx a bx cy dtdyy d ex fy dt⎧=++⎪⎪⎨⎪=++⎪⎩一般两种群竞争系统:(,)M x y 与(,)N x y 为相对于x 与y 的增长率(,)(,)dxM x y x dtdy N x y y dt⎧=⎪⎪⎨⎪=⎪⎩ 6. Lorenz 方程()dxa y x dt dycx y xz dt dzxy bz dt⎧=-⎪⎪⎪=--⎨⎪⎪=-⎪⎩气象学家Lorenz 由大气对流现象模型简化,10,8/3,28a b c ===为参数. 被称为混沌(chaos)现象第一例.*7. 化学动力学模型 化学反应体系,内部包含三种化学成分,A B 和.,x A B 是反映物,x 为中间产物,,,A B x 分别代表A 类、B 类和x 类的分子数.Schlogt 单分子化学动力学模型:体系的状态仅由单个变量x 来表征323210dxk x k Ax k x k B dt=-+-+ 双分子化学动力学模型:有两个中间变量,1223dxk Ax k xy dtdyk xy k y dt⎧=-⎪⎪⎨⎪=-⎪⎩三分子化学动力学模型:开放的体系中进行着一系列化学反应,22(1)dxA B x x y dt dyBx x y dt⎧=-++⎪⎪⎨⎪=-⎪⎩*8. 力学系统中的常微分方程模型 有完整约束的力学系统,可以通过引进广义坐标12(,,)n ϕϕϕ 解除约束, 用一个拉格朗日函数1(,)i L q q 刻画系统, 归结为拉格朗日方程0i i d L Ldt qq ∂∂-=∂∂ .引进广义速度12(,,)n v v v =ν ,用广义动量Lp q∂=∂ 代表广义速度v ,再通过拉格朗日变换(,)(,)H q p q p L q q =- ,便得到等价于拉格朗日方程的哈密顿正则方程dq H dt pdp H dt q ∂⎧=⎪∂⎪⎨∂⎪=-⎪∂⎩或 dx Hdt y dy H dt x∂⎧=-⎪∂⎪⎨∂⎪=⎪∂⎩§1.2 常微分方程基本概念微分方程 联系自变量、未知函数及其导数的关系式. 实值微分方程 自变量、未知函数均为实值的微分方程.复值微分方程 未知函数取复值或自变量、未知函数均取复值的微分方程. 常微分方程 只有一个自变量的微分方程.偏微分方程 有两个或两个以上自变量的微分方程. 一阶微分方程 微分方程中未知函数的导数最高为一阶.n 阶微分方程 微分方程中未知函数的导数最高为n 阶,一般形式为n n dy d y F x y 0dx dx ,,,, ⎛⎫= ⎪ ⎪⎝⎭(38) 线性微分方程 n 阶微分方程(38)的左端为,,,n n dy d yy dx dx 的一次有理整式称为线性微分方程.n 阶线性微分方程的一般形式为()()()()n n 11n 1n n n 1d y d y dya x a x a x f x dx dx dx---++++= (39)其中(),,(),()1n a x a x f x 为x 的函数.非线性微分方程 不是线性微分方程的微分方程.(显式)解 使微分方程(38)变为恒等式的函数()y x =ϕ称为方程的解. 隐式解 如微分方程(38)的解()y x =ϕ由关系式(,)x y 0Φ=决定,称(,)x y 0Φ=为微分方程(38)的隐式解.通解 n 阶微分方程(38)的含有n 个独立的任意常数,,,12n c c c 的解(,,,,)12n y x c c c ϕ=隐式通解(通积分) 由含有n 个独立的任意常数,,,12n c c c 的关系式(,,,,,)12n x y c c c 0Φ= 决定的n 阶微分方程(38)的解.定解条件 为确定微分方程的一个特定的解需附加的条件. 定解问题 求微分方程满足定解条件的解的问题. 初值条件 n 阶微分方程(38)的初值条件为当0x x =时,()(),,,n 11n 1000n 1dy d y y y y y dx dx---=== 或写为()()()()(),,,n 11n 1000000n 1dy x d y x y x y y y dx dx ---=== 初值问题 当定解条件为初值条件时的定解问题. 特解 满足定解问题的解. 积分曲线 一阶微分方程(,)dyf x y dx= (47) 的解()y x ϕ=在Oxy 平面上表示为一条曲线,称为微分方程(47)的积分曲线.曲线上的点的斜率dydx值为(,)f x y . 向量场 一阶微分方程(47)的右端函数(,)f x y 定义为在Oxy 平面某区域D 上过各点的小线段(线素)的斜率方向,称域D 为方程(47)所定义的向量场(方向场,线素场).通过向量场可以判断微分方程的解的走向.等倾斜线 向量场中方向相同的曲线(,)f x y k =称为等倾斜线或等斜线. 微分方程组 n 阶微分方程()()(,,',,)n n 1z g t z x z -=可通过变换(),',,n 112n y z y z y z -===化为一阶方程组(,,,),,,,ii 1n dy f t y y i 12n dt==或写成向量形式(,)=dyf t y dt其中n y D R ∈⊂.驻定微分方程组 微分方程组右端不含自变量t 的方程组()dyf y dt = (50) 动力系统 对n 维空间某区域n D R ⊂的D 到D 的含参数t 的同胚映射(变换)()t y Φ,如满足恒同性()0y yΦ=和可加性()(())121221t t t t t t y y y ΦΦΦΦΦ+==.则称映射()t y Φ为D 上的动力系统.微分方程所定义的动力系统 由驻定微分方程组过n y D R ∈⊂的解(,)t y ϕ可定义动力系统()(,)t y t y ϕΦ=称为微分方程所定义的动力系统.相空间 不含自变量,仅由未知函数组成的空间.轨线 微分方程的解在相空间中的轨迹,即积分曲线在相空间中的投影.驻定微分方程的解在相空间中的轨线互不相交.奇点(平衡解、驻定解) 驻定微分方程组(50)右端函数()f y 的满足()f y 0=的解y y *=称为方程组的平衡解或驻定解,是方程组在相空间中的奇点.垂直、平行等倾斜线 平面一阶驻定微分方程组(,)(,)dxf x y dtdy g x y dt⎧=⎪⎪⎨⎪=⎪⎩ 等价于一阶微分方程(,),((,))(,)dy f x y g x y 0dx g x y =≠ 或 (,),((,))(,)dx g x y f x y 0dy f x y =≠ 在相平面Oxy 上的等倾斜线(,)(,)f x y k g x y =中,k 0=即(,)f x y 0=时的曲线为垂直等倾斜线;k =∞即(,)g x y 0=时的曲线为平行等倾斜线.垂直、平行等倾斜线的交点为奇点.雅可比矩阵 n 个变元,,,12n x x x 的m 个函数(,,,),,,,i i 12n y f x x x i 12m ==的雅可比矩阵定义为(,,,)(,,,)111n 12m 12n m m 1n y y xx D y y y D x x x y y x x ∂∂⎡⎤⎢⎥∂∂⎢⎥=⎢⎥⎢⎥∂∂⎢⎥⎢⎥∂∂⎣⎦雅可比行列式 n 个变元的n 个函数的雅可比矩阵对应的行列式. 函数相关、函数无关 设函数(,,,)(,,,)i i 12n y f x x x i 12m == 及其一阶偏导数在某区域n D R ⊂上连续.如果D 内,,,12m f f f 中的一个函数能表成其余函数的函数,则称它们函数相关;如果它们在D 内任何点的邻域均不是函数相关,则称它们函数无关.如果雅可比矩阵在D 内任何点的秩均小于m ,则,,,12m f f f 函数相关;如其秩均等于m ,则,,,12m f f f 函数无关.当n m =时雅可比行列式不等于零为函数无关.第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换 (1) 变量分离方程 ()()dyf xg y dx= 解法:(),()()()dydyf x dx f x dx Cg y g y ==+⎰⎰(2) 齐次方程dy y g dx x ⎛⎫= ⎪⎝⎭解法:变量变换 ,ydy du u x u x dx dx ==+,方程化为变量分离方程()du g u udx x-=(3) 分式线性方程111222a x b y c dy dx a x b y c ++=++ 或 111222a x b y c dy f dx a x b y c ⎛⎫++= ⎪++⎝⎭解法:(ⅰ) 120c c == 情形: 1122ya b dy y x g y dx x a b x+⎛⎫== ⎪⎝⎭+ 属齐次方程. (ⅱ)1122a b k a b == 情形:令22u a x b y =+,方程化为221222()()()k a x b y c dy f u dx a x b y c ++==++ 22()dua b f u dx=+ 属变量分离方程. (ⅲ) 一般情形:先解联立代数方程11122200a x b y c a x b y c ++=⎧⎨++=⎩ 得解 x y αβ=⎧⎨=⎩ 再作代换 X x Y y αβ=-⎧⎨=-⎩ ,则将原方程化为齐次方程 dY Y g dX X ⎛⎫= ⎪⎝⎭§2.2 线性方程与常数变易法 (1) 一阶齐线性方程()dyP x y dx= 用变量分离方法得通解 ()P x dx y ce ⎰= (2) 常数变易法 对一阶非齐线性方程 ()()dyP x y Q x dx=+ 假设有形式解()()P x dxy c x e ⎰= 代入方程化简得 ()()()P x dxc x Q x e dx c -⎰=+⎰ 原方程的通解为()()()P x dxP x dx y e Q x e dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰ (3) 伯努利方程()()n dyP x y Q x y dx=+ 变量变换 1n z y -= 化为线性方程求解(1)()(1)()dzn P x z n Q x dx=-+-§2.3 恰当方程与积分因子(1) 恰当方程 将一阶微分方程写成对称形式 (,)(,)0M x y dx N x y dy += 如方程右端恰可表为某函数(,)u x y 的全微分:(,)(,)(,)M x y dx N x y dy du x y +≡ 则称方程为恰当方程.恰当方程的通解为 (,)u x y c =.方程为恰当方程的充分必要条件为M Ny x∂∂=∂∂ ,此时有 (,)(,)(,)u M x y dx N x y M x y dx dy y ⎡⎤∂=+-⎢⎥∂⎣⎦⎰⎰⎰(2) 分项组合全微分方法 将恰当方程的各项分项组合成全微分形式 简单二元函数的全微分: 2(),y d x x d y xy d x x d y d x yd y y ⎛⎫-+== ⎪⎝⎭2,ln ydx xdyy ydx xdyx d d x xy y x ⎛⎫-+-⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 22221,ln2ydx xdy y ydx xdy x yd arctg d x x yx y x y ⎛⎫---⎛⎫== ⎪ ⎪++-⎝⎭⎝⎭(3) 积分因子 如存在连续可微函数(,)x y μ,使得Mdx Ndy du μμ+=则称(,)x y μ为方程0Mdx Ndy +=的积分因子.同一方程可以有不同的积分因子.μ为积分因子的充分必要条件:()()M N y x μμ∂∂=∂∂即M N N M x y y x μμμ⎛⎫∂∂∂∂-=- ⎪∂∂∂∂⎝⎭(4) 单变量积分因子()()x y μμ、 ()x μμ=形式的积分因子的充分必要条件:()M Ny xx Nψ∂∂-∂∂=,此时积分因子为()()x dx x e ψμ⎰=. 同样,()y μμ=形式的积分因子的充分必要条件: ()M Ny xx Mϕ∂∂-∂∂=-,此时积分因子为()()y dyy e ϕμ⎰=.§2.4 一阶隐方程与参数表示一阶隐微分方程形式为 (,,')0F x y y =.(1) (,')y f x y = 令'y p = 对(,')y f x y =取x 微分得f f dp p x p dx∂∂=+∂∂,视为,x p 的一阶微分方程解之,解为(,)p x c ϕ=时原解为(,(,))y f x x c ϕ=;解为(,)x p c ψ=时原解为 (,)((,),)x p c y f p c p ψψ=⎧⎨=⎩. (2) (,')x f y y = 令'y p = 对(,')x f y y =取y 微分得1f f dp p y p dy∂∂=+∂∂,视为,y p 的一阶微分方程解之,解为(,)p y c ϕ=时原解为(,(,))x f y y c ϕ=;解为(,)y p c ψ=时原解为 (,(,))(,)x f y p c y p c ψψ=⎧⎨=⎩. (3) (,')0F x y = 令'y p =,方程化为(,)0F x p =,代表(,)x p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 ()()'()x t y t t dt c ϕψϕ=⎧⎪⎨=+⎪⎩⎰. (4) (,')0F y y = 令'y p =,方程化为(,)0F y p =,代表(,)y p 平面上的一条曲线.如有参数解()()x t y t ϕψ=⎧⎨=⎩,则原方程的通解为 '()()()t x dt c t y t ϕψψ⎧=+⎪⎨⎪=⎩⎰.第三章 一阶微分方程的解的存在定理§3.1 解的存在唯一性定理与逐步逼近法(1) 微分方程00(,),,dy f x y R x x a y y b dx =-≤-≤: 称(,)f x y 在R 上关于y 满足利普希茨条件,如存在常数0L >满足121222(,)(,),(,)(,)f x y f x y L y y x y x y R -≤-∈、L 称为利普希茨常数.当(,)f x y 在R 上f y∂∂存在且连续,则(,)f x y 在R 上关于y 满足利普希茨条件. 存在唯一性定理1 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dy f x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中 (,)min ,,max (,)x y R b h a M f x y M ∈⎛⎫== ⎪⎝⎭(2) 隐方程 (,,')0F x y y =存在唯一性定理 2 如(,,')F x y y 在'000(,,)x y y 的某邻域中对(,,')x y y 连续且存在连续偏导数,同时''000000(,,)0,(,,)0'F x y y F x y y y ∂=≠∂.则方程(,,')0F x y y =存在唯一解'0000(),(),'()y x x y x y ϕϕϕ===.(3) 逐步迫近法 微分方程(,)dy f x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰ 取00()x y ϕ=,定义001()(,()),1,2,x n n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程.通过逐步迫近法可证明解的存在唯一性.先证积分方程与微分方程等价(命题1);后用数学归纳法证定义的()n x ϕ存在且连续(命题2);再证()n x ϕ在区间一致收敛(命题3);于是()x ϕ是积分方程连续解(命题4);最后,用反证法证解唯一(命题5).(4) 近似计算 逐步迫近法中第n 次近似解()n x ϕ和真解()x ϕ有误差估计式1()()(1)!n n n ML x x h n ϕϕ+-≤+ 可以通过控制h 和n 使上不等式右端误差值足够小,而得到满足误差估计的近似解()n x ϕ.§3.2 解的延拓(1) 局部利普希茨条件 对域称函数(,)f x y 在某区域G 内每一点有以其为中心的完全被含于G 内的闭矩形R 存在,在R 上(,)f x y 关于y 满足利普希茨条件,则称(,)f x y 在G 内满足局部利普希茨条件.(2) 延拓定理 如(,)f x y 在某有界区域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的通过G 内任何一点00(,)x y 的解()y x ϕ=可以延拓,直到点(,())x x ϕ任意接近区域G 的边界.(3) 饱和解 方程(,)dy f x y dx=的解()y x ϕ=的定义区间为x αβ<<,且当0x α→+或0x β→-时(,())x x ϕ趋于G 的边界,则称解()y x ϕ=为饱和解.当G 是无界区域时,方程(,)dy f x y dx=的解可能无界,αβ、亦可以是∞∞-、+. (4) 如(,)f x y 在整个x y 平面上定义、连续和有界,且存在关于y 的连续偏导数,则方程(,)dy f x y dx=的任一解均可延拓到区间x -∞<<+∞.§3.3 解对初值的连续性和可微性定理(1) 解对初值的对称性定理 设方程(,)dy f x y dx =的满足初值条件00()y x y =的解是唯一的,记为00(,,)y x x y ϕ=,则(,)x y 与00(,)x y 对称,即有00(,,)y x x y ϕ=.(2) 解对初值的连续依赖定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,0000(,),(,,)x y G y x x y ϕ∈=是方程(,)dy f x y dx=的满足初值条件00()y x y =的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,)a b δδε=,使得当2220000()()x x y y δ-+-≤时方程(,)dy f x y dx=的满足条件00()y x y =的解00(,,)y x x y ϕ=在区间a x b ≤≤上也有定义,且0000(,,)(,,),x x y x x y a x b ϕϕε-<≤≤解对初值的连续性定理 如(,)f x y 在域G 内连续且关于y 满足局部利普希茨条件,则方程(,)dy f x y dx=的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续的. (3) 解对初值的可微性定理 如(,)f x y 和f y ∂∂在域G 内连续,则方程(,)dy f x y dx =的解00(,,)y x x y ϕ=作为00,,x x y 的函数在它的存在范围内是连续可微的.(4) 含参数微分方程(,,)dy f x y dxλ=,用G λ表示域:(,),G x y G λαλβ∈<<: 如(,,)f x y λ在域G λ内连续且关于y 满足局部利普希茨条件,当其利普希茨常数L 与λ无关时称为G λ内一致地关于y 满足局部利普希茨条件.含参数方程的解对初值和参数的连续依赖定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,000000(,,),(,,,)x y G y x x y λλϕλ∈=是方程(,,)dy f x y dxλ=的通过点000(,,)x y G λλ∈的解,在区间a x b ≤≤上有定义(0a x b ≤≤),则对任0ε>,有(,,,,)a b δδεαβ=,使得当2222000000()()()x x y y λλδ-+-+-≤时方程(,,)dy f x y dxλ=的通过点000(,,)x y Gλλ∈的解000(,,,)y x x y ϕλ=,在区间a x b ≤≤上也有定义,且 000000(,,,)(,,,),x x y x x y a x b ϕλϕλε-<≤≤含参数方程的解对初值的连续性定理 如(,,)f x y λ在域G λ内连续且在G λ内一致地关于y 满足局部利普希茨条件,则方程(,,)dy f x y dxλ=的解000(,,,)y x x y ϕλ=作为000,,,x x y λ的函数在它的存在范围内是连续的.§3.4* 奇解(1) 包络 对单参数曲线族(,,)0x y c Φ=其中c 是参数, Φ是x y c 、、的连续可微函数. 曲线族的包络曲线指它本身在曲线族中,但过包络曲线的每一点有曲线族中向一条曲线在该点与其相切.(2)c -判别曲线 曲线族0Φ=的包络存在于下两方程'(,,)0(,,)0c x y c x y c Φ=⎧⎪⎨Φ=⎪⎩ 消去c 而得的曲线中,称为c -判别曲线.c -判别曲线需通过实际检验才能确定是否是曲线族的包络.(2) 奇解 奇解是微分方程的解,但其解曲线上每一点处唯一性不成立. 奇解定理 一阶微分方程的通解的包络如存在,则它是奇解.反之亦然.(3) 隐微分方程,,0dy F x y dx ⎛⎫= ⎪⎝⎭的奇解,被包含在方程组 '(,,)0(,,)0pF x y p F x y p =⎧⎪⎨=⎪⎩ 消去p 而得的曲线 (称为p -判别曲线) 中.需通过实际检验才能确定是否是奇解.(4) 克莱罗方程 (),dy y xp f p p dx=+= (()f p 连续可微) 的通解是一直线族()y cx f c =+.此直线族的包络为方程的奇解.可用c -判别曲线求其包络(奇解).§3.5 数值解(1)求微分方程的初值问题00(,),()dy f x y y x y dx == (3.39)的解y y x =(),从初值条件00y x y ()=出发,按照一定的步长h ,依某种方法逐步计算微分方程解y x ()的值n n y y x ()=,这里0h x x n h =+⋅.这样求出的解称为数值解.用一种方法,其局部截断误差为步长h 的1()p O h +时称此方法有p 阶精度.(2) 欧拉公式(1阶精度): 10(,),n n n n n y y h f x y x x n h +=+⋅=+⋅ 改进的欧拉方法(2阶精度): 11112(,),((,)(,))n n n n n n n n n n h y y h f x y y y f x y f x y ++++=+⋅=++ (3) r 段(阶)龙格-库塔方法:11rn n i i i y y h k λ+==+∑112(,),,,j j n j n js s s k f x d h y h k j r β-==++=∑二阶龙格-库塔公式(2阶精度):2r =, 1221222111,,22d d d λλβ=-== 四阶龙格-库塔公式(4阶精度):4r =112341213243(22)6(,)(,)22(,)22(,)i i i i i i i i i i h y y k k k k k f x y h h k f x y k h h k f x y k k f x h y hk +⎧=++++⎪⎪=⎪⎪⎪=++⎨⎪⎪=++⎪⎪=++⎪⎩(4) 相容性:当0h →时平均斜率趋近真正斜率.局部截断误差为p 阶时相容称为p 阶相容.收敛性:当0h →时计算公式收敛于精确解.整体误差()n n n e y x y =-(在整个区间0[,]n x x ).p 阶收敛:如存在正数M ,其整体误差p n e Mh ≤.定理 不计舍入误差时,p 阶相容的方法一定是p 阶收敛的.(5) 刚性问题:微分方程组的初值问题中方程组的解的各分量值存在数量级的差别.微分方程组线性近似部分其特征值实部的绝对值中最大与最小之比称为刚性比.刚性比很大的刚性问题其数值方法与常规数值方法有所不同.第四章 高阶微分方程§4.1 线性微分方程的一般理论(1) 基本概念 n 阶非次齐线性微分方程(非齐线性方程)1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt---++++= (1) 当非齐次线性方程(1)中函数()0f t ≡时称为n 阶齐次线性微分方程(齐线性方程)1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt---++++= (2) 伏朗斯基行列式(函数()(1,,)i x t i k = 在区间a t b ≤≤可微1k -次)12'''1212(1)(1)(1)12()()()()()()()[(),(),,()]()()()k k k k k k k x t x t x t x t x t x t W t W x t x t x t x t x t x t ---==线性相关:对定义在区间a t b ≤≤上的函数()(1,,)i x t i k = ,如存在不全为零的常数(1,,)i c i k = ,使得在整个区间a t b ≤≤上恒成立1122()()()0k k c x t c x t c x t +++≡ ,不是线性相关的函数()(1,,)i x t i k = 称为在所给区间上线性无关. 基本解组(基解组) n 阶齐次线性方程(2)的一组n 个线性无关解.(2) 齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . 注意 00()()k k k k t t d t d t dt dt ϕϕ==. (b) 叠加原理 对方程(2)的k 个解12(),(),,()k x t x t x t 的线性组合1122()()()k k c x t c x t c x t +++也是方程(2)的解.其中12,,,k c c c 为任意常数.(c) 定理 若函数12(),(),,()n x t x t x t 在区间a t b ≤≤上线性相关或无关,则在区间a t b ≤≤上它们的伏朗斯基行列式()0W t ≡或恒不为零.(d) 齐次线性方程(2)的基本解组的伏朗斯基行列式恒不为零.(e) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.则齐次线性方程(2)的通解可表为1122()()()n n x c x t c x t c x t =+++ (3)其中12,,,k c c c 为任意常数.通解包括了齐次线性方程(2)的所有解.(3)非齐次线性方程基本性质:(a) 存在唯一性 设()(1,,)i a t i k = 和()f t 区间a t b ≤≤上连续,则对任0[,]t a b ∈及任意初值(1)(1)000,,,n x x x - ,方程(1) 存在唯一解()x t ϕ=定义于区间a t b ≤≤上,且满足初始条件1(1)(1)0000001()()(),,,n n n d t d t t x x x dt dtϕϕϕ---=== . (b) 如(),()x t x t 分别为n 阶线性方程(1),(2)的解,则()()x t x t +也是方程(1)的解.如12(),()x t x t 均为方程(1)的解,则12()()x t x t -是方程(2)的解.(c) 通解结构 设12(),(),,()n x t x t x t 是齐次线性方程(2)的一个基本解组.()x t 是方程(1)的某一解(特解).则非齐次线性方程(1)的通解可表为1122()()()()n n x c x t c x t c x t x t =++++其中12,,,k c c c 为任意常数.反之,对方程(1)的所有解,必存在常数12,,,k c c c ,表为上述形式.(d) 常数变易法 当已知方程(2)的一个基本解组12(),(),,()n x t x t x t 时,可用常数变易法求得方程(1)的解11()()()n ni i i i i i x x t x t t dt γϕ===+∑∑⎰其中()i t ϕ为由n 次微分通解式(3)得到的n 个方程。

数学分析中的微分方程解法

数学分析中的微分方程解法数学分析是数学的重要分支之一,其中微分方程是数学分析的核心内容之一。

微分方程是描述自然界中变化规律的数学模型,广泛应用于物理、工程、生物等领域。

本文将介绍微分方程的解法,并探讨其中的数学原理和应用。

一、常微分方程的解法常微分方程是指只涉及一个自变量的微分方程。

常微分方程的解法主要有解析解和数值解两种方法。

1. 解析解解析解是指通过数学方法得到的精确解。

对于一阶常微分方程,我们可以使用分离变量、齐次方程、一阶线性微分方程等方法求解。

分离变量法是常微分方程最常用的解法之一。

通过将方程中的变量分离到等式两边,再进行积分,即可得到解析解。

例如,对于一阶线性微分方程dy/dx = f(x),我们可以将方程改写为dy/f(x) = dx,然后对两边同时积分,即可得到解析解。

齐次方程是指方程中只包含未知函数及其导数的方程。

对于齐次方程,我们可以通过变量代换的方法将其转化为分离变量的形式,然后进行积分求解。

一阶线性微分方程是指方程中未知函数及其导数的系数均为一次多项式的方程。

我们可以通过积分因子的方法将一阶线性微分方程转化为一个可直接积分的形式,从而求得解析解。

对于高阶常微分方程,我们可以通过变量代换、特解叠加原理、常系数线性微分方程等方法求解。

其中,特解叠加原理是指将高阶常微分方程的解表示为其特解与齐次方程的通解之和。

2. 数值解数值解是指通过数值计算方法得到的近似解。

对于一些复杂的微分方程,往往无法通过解析解求解,这时我们可以使用数值方法进行求解。

常见的数值方法有欧拉法、改进的欧拉法、龙格-库塔法等。

这些方法通过将微分方程转化为差分方程,然后利用差分逼近的方法求解。

数值解的精度取决于步长的选取,步长越小,精度越高。

二、偏微分方程的解法偏微分方程是指涉及多个自变量的微分方程。

偏微分方程的解法相对复杂,常用的方法有分离变量法、特征线法、变换法等。

分离变量法是偏微分方程最常用的解法之一。

通过假设解为多个函数的乘积形式,然后将偏微分方程转化为多个常微分方程,再分别求解,最后将得到的解合并即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2常见的保线性变换
在常微分方程的一般理论中,线性性质尤为重要
能保持微分方程的线性性质的变换统称为保线性变 换下面讨论最常见的两种保线性变换
2.1变换,(z】.“(t)e“”的保线性性质 为确定起见.在以下讨论中规定一般的二阶线性
变系数常微分方程的标准方程为
挈岬(z)塞+Q(m=0
(1)
对方程(1)作变换得
(6),则式(14)就是判别式,有的书上称为方程的不变
式‘…
3.3作自变量与未知函数的联合变换
若经自变量变换(11),式(12)不满足,或经未知函
数的齐次线性变换(13).式(】4)不成立,则可考虑作自
变量与未知函数的联合变换为便于处理问题,先考虑
自变量的变换Q。(1)=Q(z)章2,即式(10’),可以算得
万方数据
第7期
柬仁贵等:线性常微分方程的保线性变换及其应用
若式方(14程)成c立 t,.气则 章i萼;器方程ce, y(z)=^一1(z),【』) 已知方程(6)的解为式(19),则方程(1)的解为
y(f)=^(T)y(T)=cl^(z)y1(z)+旬^(z)y2(r)
若式方(程18)(成·立),;则赢若考等等揣方程(6)
其中、几盯田df=、几盯习dz,z=P(f),P=脚一
÷.^(f)=e。f忡耳”。已知方程(6)的解为式(19),则
方程(1)的解为
y(z)=f.^[甲。1(z)h[妒1(z)]+cz^[尹。1(z)k[驴_1(z)]
4.1.1常系数化方法
二阶线性常系数常微分方程总是可解的,将一个 给定的二阶线性变系数常微分方程化为常系数方程求 解称为常系数化方法这时,可在方程(6)中取P.(f)
蹦沪z}+脚一詈
(9)
㈣““刮)=+卿}2卜+i【詈脚)一+言善)+“} o,“0)
这正是变换y(z)=y(f)e巾’(其中e巾’=^(£),。=9 (f))能将方程(1)变为方程(6)的充分必要条件下面 分别情况作进一步讨论. 3.1作于自变量的任意变换
此时a(f)=0,^(f)=1,式(9)与式(10)分别化 为:
[掣n”。(z)+na “z)d嘉z y…(z)+‰7山)Ⅶ(圳Ⅱ 南T …(小 7。(z)+n:(z)],{“(z)=o
令y(z)=,…(z),则上式化为
a[。掣n(”z)。善(yz()z+)一+[a’∥.。((zz))+hn(:z()z])墨]yy((zz))=+o
(21)
5倒置
关于常系数化方法求解的讨论与例题,详见参考 文献[4].这时着重讨论一般的二阶变系数常微分方 程,是否可以及通过什么样的变换才能化为常见的特 殊函数方程来求解
由式(13)可以确定


P2唧一÷

(15)
^(f)=e帆” (16)
将其代人式(14)式,若
扣喀=o
(17)
方程(I)可经变换y(z)=^“)r(r)化为方程(6),式 (17)为判别式为便于记忆与应用,可将判别式化为
÷砰+吾p.={茸+毒宣
(,8)
4应用
根据上述研究与讨论,可用来解一类二阶线性变 系数常微分方程
P。(f)=脚÷

Q,(f)=西2
从式(10’)可以解出
(9’) (10’)
i:√鲁或锕“=属dt…)
代人式(9 7),得到
击厄+2丢同尚2墒南+2丢厢嚣…,…
在自变量变换(“)下,若式(12)成立,方程(1)可 化为方程(6),式(12)就是判别式 3.2作关于来知函数的齐次线性变换
2£,鲁3 此时T
4.1化方程为可解的方程 如果方程(1)或方程(6)的解已知.则另一个方程
的解也可经相应变换给出
若式(12)成立,则
方程(1’‘f 2 ;∞ !i1;Lz等,等方程(6)
如果方程(6)的解为
r(£)=c1,1(£)+f2y2(f)
(19 J
(f。、c:为任意常数,y,、y。为两个线性无关解),则方
程(1)的解 y(z)=flyl[P一1(z)]+c2,2[妒一1(T)]
p 2l·y(f)2^(r)y(£),式(9)
与式(10)分别化为:
P-(f)=2}+P(£)
(9”)
州r)-Q“)+}(f)+;
(1∥)
从式(9w)可以解得
^“):e{n…。7 (13) 代人式(10”),得到
Q,一号p.{P2=Q一丢P,_丢P2 (14)
若上式成立.可经变换(13)使得方程(1)变换为方程
解:把方程化为标准型:
警+吾蓑+[-一掣]删, P=』,Q:卜坐盟
标准的一阶Bessd方程为:
#+{£+(一一;),=o, dT2
T dz
、‘
”’
T‘J’
P=土。Q:1一乓
根据变换式(13)有
^(z)=e{J”·。”2={:
Vz
检验判别式(14),有:
卜”{P,1一扣㈡一掣一
丢未(吾)一丢(导)2=-一堕掣
驴去弓浩2习毒’毒
卜壳十吉嚣2密‘毒
来表示
解:标准的Legendre方程为:
(卜z 2)d祭z‘ 协菩dT十f(…)y=o
no=l~z2, 口l= 2z,
将方程阿边对z求”阶导数,则
d2=f(f+1)
可以看出,若取p;以,。=f2时,判别式J。=J,即原 方程经自变量的变换,可以化为厄阶的Be站el方程因
y(z)=“(f)e“”
(2)
即同时作未知函数的齐次线性变换和自变量的变换,
经过通常的微分运算方程(1)可化为未知函数“关于
自变量为£的二阶线性常微分方程:
;(£)2+二[塞+z二(老)2+P害]+
“[;(塞)2+;(睾+,盎)+i 2(£)2+Q]=。
(3)
可见变换(2)能保持微分方程的线性性质,是保线性变 换 2.2二阶线性齐次常微分方程对自变量求n阶导数
二阶线性变系数齐次常微分方程对数学物理方法教学中怎样通过适当的变换把给定的二阶线性变系数齐次常微
分方程化为可解的方程给出了合理解释
关键词:二阶线性常微分方程;保线性变换
中圈分类号:o 41l
文献标识码:A
文章编号:1000.0712(2003)07—0011—05
l引言
二阶线性常微分方程在物理学及科学技术中有广 泛的应用“。2 o根据线性常微分方程的一般理论,求任 何线性非齐次常微分方程的解都归结为求相应齐次常 微分方程的基本解组”…然而,即使对二阶线性变系 数常微分方程,至今也没有求出其基本解组的一般方 法在通常的高等数学及数理方法教科书中都给出了 二阶线性常系数常微分方程及一些特殊函数方程求解 方法,如果能够通过适当的变换把一个给定的二阶线 性变系数常微分方程化为这些可解的方程,则很容易 得出该二阶线性变系数常微分方程的通解问题在于 如何知道这个方程能否化为可解的方程并通过怎样的 变换才能化为可解的方程
第22卷第7期 2003年7月
大学 物理 COI,LEGE PHYSICS
V0l 22 No 7 July 2003
线性常微分方程的保线性变换及其应用
柬仁贵1,束萱2,李珍1
(1.东北师范大学物理系,吉林长春 130024;2清华大学经管学院.北京 100084)
摘要:研究了线性常微分方程的保线性变换,得到任意两个二阶线性常微分方程等价的条件,并用于求解一类
=d.(常数),Q。(f)=J:(常数): 1)变换式(11)化为
f摆az p叫(z)
(¨’)
条件(12)化为
”护√害(r+是) …’,
这是方程(1)经自变量的变换(11’)可常系数化的判别

2)变换式(13)化为
^(r)=e趴“
(13,)
条件(14)化为
△:=Q÷P7÷P2=c(常数) 【14’)
a。=a:+{。》c+{穰
这是方程(1)经未知函数的齐次线性变换y(f)=^(f) y(f)可常系数化的判别式
3)变换式(11)与(16)化为
r=f摆扣P1扎^“)=e玳南“
(P=昂=÷)
(20)

条件式(18)化为
△,=÷#2+芦=÷正(常数) (187)
此为方程(1)经自变量和未知函数的联合变换可常系
3两个二阶线性齐次方程能够相互转换的判别式
设给定二阶线性齐次常微分方程为
警+Pl(f)萼旧㈩y(f)_0 (6)
如果方程(1)能够经变换(2)化为方程(6),则在方程 (3)中'7(f)=“(f),且同时满足:
州沪鍪(鲁)2忆+,鲁 ㈩ 臼m,=q(鲁)2+;[霉(等)2+P警]+二+;’
(8)
因为警=÷,e“】-^(f),二=鲁,二+j 2=鲁,又有:
y(zj 2 ct,o(2/虹)+f2No(2 ̄/nz) 饲2:判断方程f2j+西+4(£‘一2)Ⅳ=o能香化为 Bessel方程求解
若取。2÷2 z(f+1),即取v=f+告,则方程可作变 换,(z)2^(z)R(z)化为,+{阶的Bessel方程因
解:将方程化为标准型j+扣+4(z2一舌),= o,Pt=÷,Q,=4(r 7一;),,阶Be5sel方程为:
数化的判别式 这些正是文献[4]中的结果,有关的详细讨论与应
用,不再赘述 4.1.2化为已知可解的特殊函数方程
将方程(6)取为已知可解的特殊函数方程,则可以 确定一个给定的二阶线性变系数常微分方程能不能化 为特殊函数方程来解(详见例题) 4.2 以,“1(j)为解的二阶线性齐次常微分方程
若已知方程(4)有解y(z),可以导出以y“’(-) (不等于零)为解的二阶线性方程以及方程(4)的系数 所应满足的条件从方程(5)中不难看出,若它有懈 ,“’(z),则n。(z)最多只能为z的二次多项式.n. (z)最多只能为。的一次式,而a:(z)只能是常数因 此,方程(5)化为
相关文档
最新文档