浅谈高中数学教学中的解题方法
浅谈高中数学教学中对学生解题思维的培养

2 学会观察求证的结论 很多数学考试 的求证都是放在综合题上的, . 因
为这些题对 学生的推理及如何摊理的能力要求 比较高。 万变不离其“ 中’严
谨地审视 求证 的结论, 从推理 中挖掘 隐含条件, 根据结论反推。所以我们要 让学生培养 出从结论下手, 观察结论解 决问题 。 其实解题的实质就是消除或
直到 问题解 决。 而让学生形成学会观察求证结论 的思维, 无疑又缩小了当前 3 学会 从已知条件中展开联想。数学语言不像语文那样富于修辞, . 它们
映函数可 能出现的一个情形 ( 解析式 、 表格或 图象表示 )对 定义域 中每一个 ,
概 念 的 讲授 看 作 是“ 词 ” 名 的解 释 而 己 。 中学 生 的 年龄 决 定 了 很 大 部 分 学 生
学 习数学在 于解题, 不仅善于解一些标准的题, 而且善 于解…些要求独
立 思考 , 路 合 理 , 思 见解 独 到 的 和 有发 明创 造 的题 。 学 的特 征 是 公式 繁 多、 数
度难在 隐含条件的深度 与广度 。 一般来说, 隐含条件通 常隐蔽在数学定义与 性质 中, 或者隐蔽在函数的定义域与值 域之中, 或者隐蔽在几何 图形的特殊 位置上, 矽者隐蔽在知识的相互联系之中。因此, 要培养学生挖掘隐含条件
额、 邮件重量 与邮资等等, 让学生把数学与 生活联系在一起 , 我们 就能很轻 小其 难 度 。 通过 以上方式坫养 学生的数学思维能力, 不断提高学生的解题能力, 让 松 地 把 学 生 引 入解 决 实 际 问题 的 境 界 。 其 问 可 以进 行 讨 论 调 动 学 生 的 积 极 性 。 后 再 转 入 有些 问题 不 能 很 直观 地 解 决所 遇 到 的 实 际 问 题 , 然 从而 引入 到
高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
浅谈高中数学教学和解题中类比思维的运用

浅谈高中数学教学和解题中类比思维的运用高中数学教学要注重培养学生的数学思维和解决问题的能力。
数学是一门抽象的学科,很多学生在学习数学的过程中往往感到吃力,这主要是因为他们缺乏对数学概念的深刻理解。
而类比思维可以帮助学生找到数学概念之间的联系,从而更好地理解数学知识。
在学习函数的概念时,老师可以引导学生用生活中的例子来理解函数的定义和特性,如用水管的流水来类比函数的输入和输出。
通过类比思维,学生能够更容易地掌握和运用抽象的数学概念,提高学习的效果。
类比思维在解题过程中也起到了非常重要的作用。
解决数学问题需要学生具备良好的逻辑思维和推理能力,而类比思维可以帮助学生找到问题之间的共性,从而运用相似的方法进行求解。
当学生在解决一道几何题时,可以将其类比为已经学过的类似的几何题目,以此来推导解题的方法和步骤。
通过类比思维,学生可以更快地找到解题的突破口,提高解题的效率。
在实际的数学教学中,老师可以通过一些教学方法来引导学生运用类比思维。
可以在课堂教学中经常使用生活中的例子和情境来说明数学知识,让学生通过类比的方式来理解数学概念和定理。
可以将教学内容进行串联,形成知识网络,让学生在学习新知识时能够与已经学过的知识进行类比,从而提高学习的效果。
老师还可以设计一些启发性的问题,让学生在解题过程中通过类比思维来寻找解题的思路。
除了在数学教学中的应用,类比思维在学生的日常生活中也是非常有益的。
通过类比思维,学生可以更好地理解和应用所学的知识,提高自己的综合运用能力。
在学习其他学科时,如物理、化学等,通过类比思维可以帮助学生将数学知识运用到其他学科中,提高整体学习的效果。
在解决日常生活中的问题时,类比思维也可以发挥重要作用,帮助学生更快地找到解决问题的方法和思路。
浅谈高中数学思想方法在解题中的重要性

观察2:看作关于y的二次方程(x视作参数),变形为:2y2-(2x)y+(x2-2)=O,于是△=(2x)2-4×2(x2-2)≥0;
观察3:将原式变形为:(x-y)2+y2=2,于是y2≤2且(x-y)2≤2。
教学中,教师要引导学生全面地考查观察对象,并从不同的角度进行思考和分析,让学生通过观察,能在较复杂的图形和关系中全面反映事物的某种属性,也能指出在某种特定的条件下事物的特殊性质,从而培养学生观察的全面性。
二、多层次地观察,培养学生观察的深刻性
数学问题是抽象的、复杂的。观察者必须透过表面现象,抓住事物的本质进行观察。在数学解题教学中,教师要引导学生不仅审题时要观察,整个过程也要观察,甚至解答后还得观察,让学生学会多层次地观察问题。
四、以直觉思维方法为指导,培养学生观察的敏捷性
例如:观察幂函数y=x,y=x2,y=x3,y=x1/2,y=x1/3,在同一坐标系内的图象,得出y=xn,(n>0)的性质。
观察1:从图中分布观察,第I象限都有图象、第II、III象限可能有图象,而第IV象限没有图象(为什么?引导学生思考);若第I、II象限有图象时,图象关于y轴对称;若第I、III象限有图象时,图象关于原点对称。
能力伴随知识的丰富而不断提高、能力提高是加速知识积累的过程。没有一定量的、扎实的基础知识,便不会总结出行之有效的学习方法,从而失去“加速”的前提条件。“从基本概念作起——从数学语言的训练入手——从数学学科的基本特点出发——挖掘、展现知识的发生发现的过程——恰当地选择习题、课题并适当地让学生动手实践”,不失为一条培养学生数学能力的有效途径。
高一数学函数解题技巧

高一数学函数解题技巧上了高中以后,数学这门课程基本上都离不开函数的学习,考试内容也会围绕函数来考察。
经了解,高中数学必须要掌握基本初等函数以及相关的变形,方能提高分数。
那么,高一数学函数解题技巧有哪些?下文中将会做出介绍。
高一数学函数解题技巧有哪些?解题方法一:代入法代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。
解题方法二:单调性法单调性是在求解函数至于或者最值得时候很常见的一种高效解题的方法,函数的单调性是函数的一个特别重要的性质,也是每年高考考察的重点。
但是不少同学由于对基础概念认识不足,审题不清,在解答这类题时容易出现错解。
下面对做这类题时需注意的事项加以说明,以引起同学们的重视。
解题方法三:待定系数法待定系数法解题的关键是依据已知变量间的函数关系,正确列出等式或方程。
使用待定系数法,就是根据所给条件来确定这些未知系数,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。
运用待定系数法解答函数问题的基本步骤是:1、首先要确定所求问题含有待定系数的解析式;2、根据题目中恒等的条件,列出一组含待定系数的方程;3,用函数的基本性质解方程组或者消去待定系数,从而使问题得到解决。
解题方法四:换元法换元法主要用于解答复合函数题型问题,把一个小的函数表达式用一个变量来表现的形式称为换元法,运用换元法解题可以降低题目的难度,便于观察和理解。
解题方法五:构造方程法不管哪种函数性坏死,函数的方程在运用中无疑是可以降低解题难度的,所以构造函数的方程也是经常会用到的一种解题技巧,特别是在高考解答题压轴题中,构造函数这个步骤也是可以取得很高分数的,所大家必须要重视构造函数法这个技巧。
对提高高中生数学解题教学方法的初探

教 这种 扩展 延伸式对学生思维广度 、 灵活程度 的训练 , 《 语文课程标准》 出, 指 工具性 和人文性 的统一 , 是语 文课程 的 : 材的形式 ,
对于提高他们综合运用知识解决 问题的能力是有 百利而无一 害。 基本特点 。语文工具性能力培养在于语文实践 , 人文性在 于熏陶 , ・ 而这_ 是我们的学生所缺乏的 , l E 也是我们教 师要着力研究的。 二者相辅相成。 展性总结正是依据语文学科这种综合性 的特点 ,: 拓 年来 , 我根据教材的特 点 , 在课堂上注重引导学 生对课文 中 注重语言学科诸要素 的联 系, 从不 同角度 、 不同侧面 , 通过 多种形 :
一
的主要人物进行 分析 、 评价 , l 弓 导学生走人文本 、 走进主人公 , 并引 式、 多种手段 , 有效地沟通诸要 素之间的内在联系 , 使其相关 内容 : 能够在逻辑 上密切地联系起来 , 融会贯通 , 互渗透 , 同作用 于 : 相 共 导学生联系 自身的生活实际 , 抒发 内心 的感受 , 从而获得 心灵 的震 学习对象。 l 懂 ・ , 得人 生的意义和做人 的道理 。 撼 拓展性 总结这一形式是教师根据教材的特 点 ,抓住 教材某一 :
表面的尘上后 , 然是一块闪亮 的金子 , : 仍 会 出错 的很少。 : 参考文献 :
发 出耀眼的光辉。所 以, 课堂讲习题的时候 ・ 不错的方法 。比如 : 样的一道题 目:
例. := + x x + + 眦 求 S x2 . 3 缸4…+ +3
.
三、 息技 术的应用 。 信 有利 于加深学生 ・ 几何画板软件越来越多 的在教 学中得 :
: 版社
:
在学习等比数列前 n项 和的时候有这 : 到应用。它简单易学 , 功能强大。动态探究 :
高中数学解题教学中构造方法的运用

高中数学解题教学中构造方法的运用构造法,简单的说就是在原有数学的基础上,通过一些辅助线、方程等此类,根据已经知道的条件,把未知的数据变成已知的内容,方便我们解答问题。
每一种学习方法有利也有弊,构造法的缺点就是,思路不会按着学生考虑的进行,能想到构造法是不容易的事情。
教育工作者就要根据大纲的内容,从学生的实际出发,对高中数学解题发现新的方法,并且要把这种构造方法引入到教学中去,从而提高学生的学习兴趣,增加课堂的气氛。
然而现实中很多老师,不能完全理解这种教学方法,在课堂上也就完全忽略或是讲解的不详细,不能进行深入的探讨、钻研,这样的教学就会使学生更加的不理解,不能很好的使用这种方法。
构造法作为一种特别的的数学解题方法,和一般同学的逻辑思维是不一样的,它很难让你在解题中想到,它是为了实现从已知的条件向结论的转变,知道了已知条件和结论后,就要想方设法的去求证,从而构造除了不同的数量关系。
构造法在学生中一直被人们广泛的应用,不但在高中数学课堂中出现,也在各种数学的试题中出现,成了许多数学试题常见的解题方法。
一、构造式解题在高中数学中应遵循的原则(一)要想将数学问题的本质、形象直观的显示出来就需要通过构造式解题方式,这样既能引导学生逐步建立模式识别的方法,也能缩短学生的思维过程,从而提高教学的效率。
(二)在老师的引导下,学生能够顺利完成问题的转化,创设的问题一定要符合学生的水平,不能过高,过高的话学生会完全的不理解;也不能过低,过低的不能体现学生水平。
所以在构造式解题时,一定要符合学生的水准,这样才能提高学生的解题能力。
(三)要想找出问题"相似结构"的原型,就要合理的运用直觉、化归等的方式,对现有的条件进行分析,从而找出新的问题,并作出判断,从综合层面引导学生解决数学难题。
二、构造方法(一)构造函数法高中数学解题教学的重点内容是函数教学,在函数构造法教学中,可以培养学生的解题思想,提高学生实际解题能力。
浅谈高中数学中最值问题的常用解题方法(数学本科毕业论文)

福建师范大学现代远程教育毕业论文题 目: 浅谈高中数学中最值问题的常用解题方法学习中心: 灌 云 奥 鹏 专 业: 数学及应用数学 年 级(入学批次): 201103 学 号: ************ 学生姓名: * * 导师姓名: 严 晓 明2013 年 3月 15 日装 订 线浅谈高中数学中最值问题的常用解题方法201103896627 刘明 指导老师:严晓明摘要: 最值问题是中学数学的重要题型之一。
以最值问题为载体,可以考查中学数学的几乎所有知识点,可以考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。
解决最值问题,从方法上来说,它常用到函数的单调性、二次函数的性质、数形结合法、均值不等式法、导数法、换元法等等。
本文就高中数学的要求,结合一些典型试题进行分析和探讨,说明其解题的思考方法和一般的技能与技巧。
关键词:高中数学 最值 解题方法1、引言在日常生活及科学实验中,常常遇到“最好”、“最省”、“最大”、“最小”、“最低”等问题。
例如质量最好,用料最省,效益最高,成本最低,利润最大,投入最小等等,这类问题在数学上常常归结为求函数的最大值或最小值问题,也就是最值问题.最值问题是一类综合性较强的问题,其题型多样,解法灵活,在高中数学中,最值问题涉及面广,像函数(三角函数,二次函数,指对函数,幂函数),不等式,向量,解析几何,立体几何,圆锥曲线中都能找到最值问题,在高考中,常以一些基础题,小综合的中档题或一些难题的形式出现,是历年高考重点考查的知识点之一,几乎每年的高考试题中都有出现。
2、最大(小)值及其几何意义一般地,设)(x f y =的定义域为A ,如果存在A x ∈0,使得对于任意的A x ∈,都有)()(0x f x f ≤,那么称)(0x f 为)(x f y =的最大值,记为)(0max x f y =;如果存在A x ∈0,使得对于任意的A x ∈,都有)()(0x f x f ≥,那么称)(0x f 为)(x f y =的最小值,记为)(0min x f y =.其几何意义是:函数图象上最高(低)点的纵坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈高中数学教学中的解题方法
发表时间:2017-08-07T15:55:47.000Z 来源:《教育学》2017年6月总第121期作者:谭雪燕
[导读] 在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样。
广西钦州市灵山县第二中学535400
摘要:针对高中数学教学过程中学生能听懂老师讲课但不会解题的现象,从审题和基础知识这两个方面分析了导致这一个现象的原因,并对这两个方面给出了建议。
关键词:审题基础知识解题方法
在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样,但没有做出来,或者考试时没有思路,老师在评讲时,一分析就知道如何解题”、“考试粗心”等。
以上这些问题导致学生在考试中没有取得理想的成绩,对此问题,我不断思考,努力去寻找解决此问题的方法,最终得出结论:“这不是偶然,而是学生没有掌握高中数学的解题方法”。
以下将从审题和基础知识这两个方面做深入的分析。
一、理解题目
著名数学教育家G·波利亚在《怎样解题》一书中,把数学解题分为四个步骤:(1)弄清问题;(2)拟定计划;(3)实施计划;(4)检验回顾。
而不少学生在这四个步骤中的“弄清问题”存在问题,对题目难以理解,导致解题困难。
1.审题时存在问题的原因主要有:
(1)肤浅阅读。
读题时,就以读题而读题,只限于字认识,不会去思考、去挖掘题目条件暗含怎样的数学基础知识。
(2)心理障碍。
当学生看到题目的文字多、关系式子较复杂,或者新题时,便会产生畏惧心理,变得紧张起来,在读题时就会出现读不懂,认为有一定难度,便选择放弃。
(3)节省时间。
采用阅读的方式,加快读题的速度,争取更多解题时间,但往往适得其反,遇到不清楚的地方再重复读,导致没有思路,结果是更加浪费时间。
2.审题能力的培养:
(1)理解题目。
学生首先要把题目读懂,能够把题中每一个条件经过转换、化简等方法把其隐藏的基础知识点挖掘出来。
再根据条件逐一联想所学知识、方法、类似的题目、注意点和关键点。
这样才能发现题目中条件与结论的联系,从而逐步入题,找到解题的关键点、突破口。
(2)树立自信。
帮助学生建立正确的人生观、世界观和价值观。
遇到困难,相信自我,挑战困难,战胜困难,以提高他们勇于消除心理障碍、克服学习困难的心理素质。
(3)稳定沉着。
读题时要慢、要细心,边读边想边理解,逐字逐句分析。
若读一遍找不到解题思路,多读几遍,读清楚题目内容,会从题目中找到解题的思路。
读懂题,理解题是解题的基础,然后在理解题意基础之上结合知识与技能联系题目相关的知识、方法,进而深入理解题目的本质,为下一步的解题做好基础准备。
二、理解概念,掌握基础
要想学好高中数学,必须先理解概念,就像设计师在设计房屋时,首先要知道什么是房子;同时数学基础知识是学好数学最基本的,就像建房子一样,房基就不可少,只有坚固的根基,你才能建设出更牢固、更有特色的房子,所以学好数学,理解概念,掌握数学基础知识是学好数学必不可少的要素,只有理解概念,掌握基础知识才能灵活运用。
理解概念,可以让学生感觉到学数学是轻松、容易的,学习数学离不开数学概念的学习,在数学中的概念是核心,把数学中各个知识点特有属性及之间的关系联系起来。
在数学学习中,学生经常会遇到一些形似而质异的易混问题,如果概念不清,这样的题是非常容易错的。
例如,函数f(x)=x3-12x,求函数与x的交点,零点,极值点。
解答此题,首先要理解交点、零点和极值点的定义,方能解题。
(1)根据题意f(x)=x3-12x,x3-12x=0,x(x2-12x)=0,解得x1=0,x2=2和x3=-2所以函数f(x)=x3-12x的图象与x轴交点坐标(0,0),(2,0)和(-2,0)。
(2)函数f(x)=x3-12x的零点是0,2和-2。
(3)又因为f`(x)=3x2-12,3x2-12=0,解得x1=2或x2=-2;当f`(x)>0时,函数在区间(-∞,-2)、(2,+∞)上是单调递增函数;当f`(x)<0时,函数f(x)在区间(-2,2)上是单调递减函数,所以x=2是函数f(x)的极大值点,x=-2是函数f(x)的极小值点。
只有把数学基础知识正确地掌握好,才有可能做到思路清晰,条理分明,容易找到解决问题的突破口,顺利解题。
而每一个题目都是由多个知识点综合而得,于是要解决它就必须掌握数学基础知识。
总之,想学好高中数学,必须具备较强的解题能力,掌握解题方法。
审题是解题的前提,基础知识是解题的基础,在此基础上解决问题。
只有掌握基础,才谈得上创新。
在以后的教学中,加强培养学生的审题能力、理解能力,同时注重基础知识掌握和应用,让学生掌握解题的方法,对学习数学达到事半功倍的效果,爱学、乐学数学。
参考文献
[1]朱华伟数学解题策略[J].科学出版社有限责任公司,2009。
[2][美]G.波利亚数学思维的新方法[M].上海科技教育出版社,2007。
[3]陈晓敏拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用[J].中学数学,2014,(5):14-16。
[4]潘文德. 以退为进灵活解题——浅析高中数学解题技巧[J].新课程学习:中,2014,(1):71-71。