微积分(二)同步练习答案

合集下载

微积分II真题含答案

微积分II真题含答案

微积分II真题含答案微积分II真题含答案一、填空题(每题3分,共30分)1、函数的定义域是____________. 2、设,则________________. 3、广义积分的敛散性为_____________. 4、____________ . 5、若 . 6、微分方程的通解是____. 7、级数的敛散性为 . 8、已知边际收益R/(x)=3x2+1000,R(0)=0,则总收益函数R(x)=____________. 9、交换的积分次序= . 10、微分方程的阶数为_____阶. 二、单选题(每题3分,共15分)1、下列级数收敛的是()A,B,C,D,2、,微分方程的通解为()A,B,C,D,3、设D为:,二重积分=()A, B, C, D,0 4、若A, B, C, D, 5、=()A, 0 B, 1 C, 2 D, 三、计算下列各题(本题共4小题,每小题8分,共32分)1.已知2. 求,其中D是由,x=1和x轴围成的区域。

3. 已知z=f(x,y)由方程确定,求4.判定级数的敛散性. 四、应用题(本题共2小题,每小题9分,共18分):1. 求由和x轴围成的图形的面积及该图形绕x轴旋转所得旋转体的体积。

2. 已知x表示劳动力,y表示资本,某生产商的生产函数为,劳动力的单位成本为200元,,每单位资本的成本为400元,总1/ 14预算为*****元,问生产商应如何确定x和y,使产量达到最大?。

五、证明题(5分)一、填空题(每小题3分,共30分)1, 2,3,发散4,0 5,6,y=cx 7,收敛8,R(x)=x3+1000x 9,10,2 二、单选题(每小题3分,共15分)1,B 2,B 3,C 4,C 5,D 三、计算题(每小题8分,共32分)1、解:令2、3、整理方程得:4、先用比值判别法判别的敛散性,(2分)收敛,所以绝对收敛。

(交错法不行就用比较法) (8分)四、应用题(每小题9分,共18分)1、解:2、解:约束条件为200x+400y-*****=0 (2分)构造拉格朗日函数,(4分),求一阶偏导数,(6分)得唯一解为:,(8分)根据实际意义,唯一的驻点就是最大值点,该厂获得最大产量时的x为40,y为230. (9分)五、证明题(5分)证明:设对等式两边积分,得:(2分)(4分)解得:题设结论得证。

微积分(2)练习题2_答案

微积分(2)练习题2_答案

《微积分(2)》练习题2答案一、求下列积分(4小题,每小题9分,共36分)3411(3)xx dx x+-⎰、 解:原式c xx x+++=34313ln 34122cos x xdx ⎰、 解:原式⎰+++=-=c x x x x x xdx x x x sin 2cos 2sin sin 2sin 22,13⎰、 解:令2t x =,原式)2ln 1(2)]1ln([2121010+=+-=+=⎰t t dt t t4134xx e dx ⎰、 解:原式)1(41|41411041044-===⎰e edx exx,二、求下列偏导数(3小题,每小题9分,共27分)45z 1sin(),z z x y x yδδδδ=+、 求, 解:)cos(4543y x x x z +=∂∂ )cos(5544y x y x z +=∂∂ 22z 2(,),z z f x y xy x yδδδδ=-、 求,解:y f x f xz 212'+'=∂∂x f y f xz 212'+'-=∂∂333z 3(,)x 31z z f x y y z xyz x yδδδδ=++-=、 由确定,求,解:两边对x 求偏导数: 0333322='--'+xx z xy yz z z x 得 xyzx yz xz 333322--=∂∂ 两边对y 求偏导数: 0333322='--'+y y z xy xz z z y 得 xyzy xz yz 333322--=∂∂三、解下列常微分方程(2小题,每小题9分,共18分) 21cos dx xdx =、 y 解:dx x dy y ⎰⎰=cos 2,c x y+=sin 313,224dy xy x dx+=、解:2)2(]4[22222+=+=⎰+⎰=--⎰x x x dx x dxx ce e c e dx e x c e y , 四、求曲线22y x =-与直线y x =围成的面积(9分) 解:2/9)2/3/2()2(1223212=--=----⎰x x x dx x x五、(,)z z x y =由F(x-y,y-z,z-x)=0确定,求z z xyδδδδ+(10分)解:32F F F z '+'-=',31F F F x '-'=',21F F F y '+'-=',1-=''+''=∂∂+∂∂z y z x F F F F yz xz ,注:第三题第1小题 xdx dxy cos 2= 应改为 xdx dy y cos 2=;第二题、第五题中所有yz xz δδδδ 中的符号 δ 都要改成 ∂ ;。

微积分2参考答案

微积分2参考答案

参考答案及提示第一章 函数习题一1、(1)-1、2、-3. (2)-4、23、.86443222-+--x x x x 、(3)有界. 2、略.3、解:∵362)(2-+=x x f x∴3623)(6)(2)(22--=--+-=-x x x x x f ∴64)]()([21)(2-=-+=x x f x f x ϕxx f x f x 12)]()([21)(=--=φ又∵)(646)(4)(22x x x x ϕϕ=-=--=-,即)(z ϕ是偶函数;)(6)(6)(x x x x ψψ-=-=-=-,即)(x ψ是奇函数.4、(1)解:由题知,设c bx ax x R ++=2)(且满足方程组:⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧++=++==0421*******0c b a cb ac b a c∴.4212x Rx +-=(2)解:由题列方程组:⎪⎩⎪⎨⎧===⇒⎪⎩⎪⎨⎧⋅+=⋅+=⋅+=2510905030432c b a c b a c b a c b a即2510p Q ⋅+=.(3) 解:由题意有:⎩⎨⎧≤<⨯⨯-+⨯≤≤=10007009.0130)700(1307007000130x x x x R5、(1)解:∵Z k k x ∈≠+,+21ππ∴⎭⎬⎫⎩⎨⎧±±=-+≠ ,2,1,0,12|k k x x ππ.(2)∵131≤-≤-x ,∴]4,2[∈x .(3)∵⎩⎨⎧≠≥-03x x ,∴]3,0()0,(⋃-∞.(4)∵,0ln ≥x ∴1≥x ,∴),1(+∞∈x .*6、解:由题有x e x f x -==1))(()(2ϕϕ,∴).1,(,)1ln()(-∞∈-=x x x ϕ7、(1)uy =u = 3x-1. (2)2u y = u = lgv v = arccosw 2x w =(3)y=au 3v u = v=1+x. * (4)ua y =u=sinv wv =12+=x w8、(1)47-=x y . (2)1)1(2-+=x x y . (3)2arcsin31x y =. (4)21-=-e x y*9、略.第一章 单元测验题1、(1),8)2(,6)1(,4)0(πππ===g g g .2)2(,125)3(ππ=-=-g g2、解:由题知)3,2(]2,7[04913032⋃-∈⇒⎪⎩⎪⎨⎧≥-≠->-x x x x ,且342lg 1))7((+=-f f .3、解:令t x =ln ,即te x =,则ttee tf )1ln()(+=,∴ee xx x f )1ln()(+=.4、解:11)()(9333+=+=x x x f , 12)1()]([36232++=+=x x x x f .5、证明:∵)(loglogloglog)()1()1(1)1()1)(1()1)((222222x f x f x x ax x ax x x x x x ax x a-=-====-++++++++-++-+-∴)(x f 为奇函数.6、解:由题知:⎪⎩⎪⎨⎧>-=<=⎪⎪⎩⎪⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=0100011110111)(11)(01)(1)]([x x x ee e x g x g x g x gf xx x , ⎪⎩⎪⎨⎧>=<=⎪⎩⎪⎨⎧>=<==--1||1||11||1||1||1||)]([1101)(x e x x e x e x e x e ex f g x f .第二章 极限与连续习题二1、(1)3231,1615,87,43,21 (2)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛564534235432,,,,2(3)5sin 51,82,63,21,0π(4),!3)2)(1(,!2)1(,---m m m m m m !4)3)(2)(1(---m m m m ,!5)4)(3)(2)(1(----m m m m m2、(1)收敛 (2)收敛 (3)发散 (4)收敛3、(1)证明:对0>∀ε,]1[ε=∃N ,当Nn >时,ε<+=-+1111n n n ,则11lim =+∞→n n n ;(2)证明:对0>∀ε,]11[2+=∃εN ,当N n >时,ε<=-nn111,则01l i m=∞→nn .4、(1)2 (2)∞+ (3)∞- (4)∞ (5)∞+ (6)0 (7)∞ (8)0(9)不存在 (10)∞- (11)不存在 (12)不存在 (13)0 (14)∞ 5、提示:用左右极限来证. 证明:∵1lim lim==++→→x x x xx x ,1lim lim 0-=-=--→→xx x x x x∴xx xxx x -+→→≠0lim lim,即xx x 0lim →不存在.6、解: 1lim )(lim ,3)2(lim )(lim 1111-===-=++---→-→-→-→x x f x x f x x x x ,,3)(lim ,1)(lim 11==+-→→x f x f x x∵)(lim )(lim 11x f x f x x +-→→≠,∴)(lim 1x f x →不存在.7、(1)证明:对0>∀ε,01>=∃εM ,当M x >时,ε<=-xx101,则01lim=∞→xx ;(2)证明:对0>∀ε,0>=∃εδ,当δ<--)2(x 时,ε<+=--+-2)4(242x x x 成立则424lim22-=+--→x x x .8、(1)(2)(4)是无穷小. 9、(1)xsinx 是无穷小,x25是无穷大 (2)10,52x x-是无穷小,xex ),2lg(+是无穷大.10、当∞→→x x 或0时,f(x)是无穷大量,当21→x 时,f(x)是无穷小量.11、(1)∵1sin ≤n 为有界变量,且011lim =+∞→n n ,∴01sin lim=+∞→n n n .(2)∵2arctan π≤x 为有界变量,且01lim2=∞→xx ,∴0arctan lim2=∞→xx x .(3)∵当0→x 时,11cos ≤x为有界变量,且0lim 0=→x x ,∴01coslim 0=→x x x .(4)∵011lim1=+-→x x x ,∴∞=-+→11lim1x x x .12、(1)原式75342452=+⨯-⨯=; (2)原式213)1(4)1(212=--⨯+---=;(3)∵0123lim23=+-+-→x x x x ,∴原式∞=; (4)原式1lim 1)1(lim1221==--=→→t t t t t t ;(5)原式42221lim)22(lim)22()22)(22(lim-=+--=+--=+-+---=→→→t t t t t t t t t t t ;(6)原式=0; (7)原式=21;(8)原式=)23)(4(23lim)23)(4()23)(23(lim22222-+-+-=-+--+--→→x x x x x x x x x x x x x x161)23)(2()1(lim)23)(2)(2()1)(2(lim22=-++-=-++---=→→x x x x x x x x x x x x ;(9)原式323)131(lim)131)(131()131(lim=++=++-+++=→→x x x x x x x x x ;*(10)原式21)11(11lim)11(1)11)(11(lim-=+++-=++++++-=→→t t t t t t t t t .13、解:∵+∞==--→→21lim)(lim xx f x x ,0)2(lim )(lim 20=-=++→→x x x f x x∴0→x 时,f(x)极限不存在.又∵0)2(lim )(lim 222=-=--→→x x x f x x ,0)63(lim )(lim 22=-=++→→x x f x x∴2→x 时极限存在. 由题知,01lim)(lim 2==-∞→-∞→xx f x x ,)(lim x f x +∞→不存在.14、解:由题知,当3→x 时,→+-k x x 22k= -3.*15、解:∵左边011)()1(lim11lim222=+-++--=+----+=∞→∞→x bx b a x a x bax bx axx x x ,∴⎩⎨⎧-==⇒⎩⎨⎧=+=-11001b a b a a . 16、(1)原式2211211lim=--=∞→nn ;(2)原式21)221(lim =-+=∞→n n n .*17、证明:(1)∵1)22(lim 21=++-→x x x ,11lim 1=-→x ,∴由夹逼定理有1)(lim 1=-→x f x .(2)∵2222212111nn nnn n nnn<++⋅⋅⋅++++<+且1lim2=+∞→nn nn ,1lim2=∞→nn n ,∴由夹逼定理有,原式=1,得证.18、(1)原式1cos lim sin limcos sin lim===→→→x xx x xx x x x ;(2)原式2sin lim2sin sin 2lim2===→→xx xx xx x ;(3)原式xx xx n nn =⋅=∞→22sinlim; (4)原式353551sin513131sinlim=⋅⋅=∞→x x x x xxx .19、(1)原式222101)21(lim )21(lim ex x xx xx =+=+=⋅→→++; (2)原式22)11(lim e xx x =+=⋅∞→;(3)原式e x x x =++=-+∞→21212)1221(lim .20、(1)原式31111arccoslim arccoslim 2π=++=++=+∞→+∞→x xx x x x x ;(2)原式3ln 3113lnlim 313lnlim 2222=++=++=∞→∞→xxx x x x .21、(1)∵1lim )(lim 211==--→→x x f x x ,1)2(lim )(lim 11=-=++→→x x f x x ,∴1)(lim 1=→x f x .且==1)1(f )(lim 1x f x →,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数,即)(x f 在 ]1,0[和]2,1(上连续,及)(x f 在]2,0[上连续.(2)∵1lim )(lim 1)(lim 111-==≠=++--→-→-→x x f x f x x x ,∴-1为)(x f 的其间断点.又∵)(lim 1lim )(lim 111x f x x f x x x +--→→→===,且1)1(=f ,∴)(x f 在1=x 处连续.又∵)(x f 在其定义区间上均为初等函数∴)(x f 在)1,(--∞与),1(+∞-内连续.22、解:∵22lim )(lim 11==--→→x x f x x ,d c d cx x f x x +=+=++→→)(lim )(lim 211且d c f +=)1(;dc d cxx f x x +=+=--→→4)(lim )(lim 222,84lim )(lim 22==++→→x x f x x 且d c f +=4)2(,又∵)(x f 在),(+∞-∞上连续,则⎩⎨⎧==⇒⎩⎨⎧=+=+02842d c d c d c .23、(1)∵)(x f 在1-=x 处无定义,∴1-=x 为)(x f 的间断点.(2)∵2)1(lim 11lim)(lim 1211-=-=+-=-→-→-→x x x x f x x x ,且)(lim 6)1(1x f f x -→≠=∴1-=x 是)(x f 的间断点. (3)∵-∞=--=→→))1(1lim()(lim 211x x f x x ,即极限不存在,∴1=x 为)(x f 的间断点.(4)∵1)1(lim )(lim 22-=-=--→→x x f x x ,0)2(lim )(lim 222=-=++→→x x x f x x ,∴)(lim 2x f x →不存在,即2=x 为)(x f 的间断点.24、(1)证明:令32)(45---=x x x x f . ∵075)3(,05)2(>=<-=f f ,∴由介值定理的推论,)(x f 在)3,2(中至少存在一个根. (2)证明:令1)(2+-=x x x f . ∵034)2(,021)1(>-=<-=f f∴. 由介值定理的推论,)(x f 在)2,1(中至少存在一个根.第二章 单元测验题1、(1)原式0cos 1sinlim lim sin lim 21cos sin 21sinlim0000=⋅⋅=⋅⋅=→→→→x xx x x x x x x x x x x x ;(2)原式211lim 2=++=+∞→xx x x ;(3)原式2121lim 1134322321lim=+=+⋅-⋅⋅⋅⋅⋅=∞→∞→n n n n n n n n . 2、解:∵55lim )(lim ,0lim )(lim 01a x a x f e x f x x x x x =+===++--→→→→∴由题知,要使)(x f 在整个数轴上连续,必须满足005=⇒=a a .3、解:∵01sin lim )(lim ,1ln )1ln(lim )(lim 01)1(1=-=-==-=++--→→--⋅-→→x x x f ex x f x x xx x∴)(lim 0x f x →不存在,0=x 是)(x f 的间断点.又∵∞=-=→→1sin lim)(lim 11x x x f x x ,即极限不存在,∴1=x 是)(x f 间断点.因此,)(x f 的连续区间为),1()1,0()0,(+∞⋃⋃-∞.4、解:∵111sinlim22=-+→axxx , ∴左边=aaxxx aaxaxx x x x 2)11(lim )sin (lim 1)11(sin lim220222=++⋅=++→→→,∴2=a .。

浙江大学城市学院微积分II(丙)练习册全部答案

浙江大学城市学院微积分II(丙)练习册全部答案

第八章 微分方程初步第一节 微分方程的概念1. 验证函数212y C x C x =+是否为微分方程2220yy y x x'''-+=的解.解:122y C C x y C '''=+=2, 2, 代入方程:()221212222222()0y y y C C C x C x C x x x x x'''-+=-⋅+++=22 因此是解。

2.验证由方程22x xy y C -+=所确定的函数为微分方程(2)2x y y x y '-=-的通解.解:对22x xy y C -+=两边求导,有2()20x y xy yy ''-++=,即有 (2)2x y y x y '-=-,是解有因为解中一个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

3.验证函数1212()(,xy C C x e C C -=+为任意常数)是微分方程20y y y '''++=的通解,并求满足初始条件004,2,x x y y =='==-的特解.解:2122122212212()(),()(2),x x x x x x y C e C C x e C C C x e y C e C C C x e C C C x e ------'=-+=--''=----=--- 将上式代入方程左边有:21221212(2)2()()0x x x C C C x e C C C x e C C x e ------+--++=,有因为解中2个任意常数,任意常数个数与微分方程阶数相同,因此是通解。

由004,2,x x y y =='==-得: 124,2C C ==特解:(42)xy x e -=+第二节一阶微分方程1、求下列可分离变量微分方程的通解(或特解)(1)0 xydx=解:1,dyy= 11211,(1)ln, ln,,C Cdy x yyy Cy y e--=-=+==±⋅=⎰(20 +=解:,=,=()21,y=-arcsin,x C=即为通解(3)212,0x yxy xe y-='==解: 22,,x y y xdyxe e e dy xe dxdx-=⋅=()()22222222221,,211,,221111,ln,2224y x y xy x x y x xy x x x xe dy xe dx e xdee xe e dx e xe e dxe xe e C y xe e C===-=-⎛⎫⎛⎫=-+=-+⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰⎰由12xy==,得1,C=211ln()122xy x e⎡⎤=-+⎢⎥⎣⎦(4)23(4),1xx x y y y='-==.解:22,,(4)(4)dy dx dy dxy x x y x x==--⎰⎰()411111ln,ln ln ln4,4441ln ln,,4444Cy dx y x x Cx xC xx xy C y ex x x=+=--+-=+=±⋅=---⎰ 由31xy==,得113C=,43(4)xyx=-。

2019版 2微积分练习题(下) 第二章 答案

2019版 2微积分练习题(下) 第二章 答案

dx f (x, y)dy
1
1
x
13
33
dy f (x, y)dx dy f (x, y)dx
1
1
3
y
1y
12
练习题 7
班级
学号
姓名
1. 把下列二重积分化为累次积分.
(1) f (x, y)d ,其中 D 是由 y x ,
D
x 2 及 x 轴所围成的闭区域;
解:原式= 2 x f (x, y)dydx . 00
2. 交换下列二次积分的积分次序(要求画出积 分区域的图形):
1
y
(1) dy f (x, y)dx ;
0
y
1x
解:原式= dx f (x, y)dy . 0 x2
1x
2 2x
(3) dx f (x, y)dy + dx f (x, y)dy .
00
1
0
1 2 y
解:原式= dy f (x, y)dx .
积函数关于 x 轴、 y 轴不对称,所以该式不
成立.
2.计算二重积分:
(| x | y)dxdy , D : x y 1;
D
解:积分区域 D 关于 x 轴、 y 轴都对称, y 关于
y 是奇函数, ydxdy 0
D
1 1x
x dxdy 2 xdxdy 2 dx xdy
D
D1
0 x1
2
2
cos
原式=
2
0
f ( cos , sin )dd
2
2.利用极坐标计算下列各题:
(1) e x2 y2 dxdy , D : x 2 y 2 4 ; D
解:设 x r cos , y r sin .则

微积分(二)综合练习题2答案

微积分(二)综合练习题2答案

《微积分》下册 综合练习题2参考答案一、填空题(每小题2分,共10分): 1.函数z =2{(,)|0,0,}D x y x y x y =≥≥≥。

2. 设()()2222,x y f x y x y e x y ++-=-,则f =22e 。

3.设y x z =,则1y z yx x -∂=∂,ln y zx x y∂=∂。

4. 设()22,f xy x y x y xy +=++,则(),f x y x∂=∂ - 1。

5. 函数z 是由方程0=-xyz e x 所确定的二元函数,则全微分edy dz -=)1,1(|.6. 若级数11(1)n n α∞=+∑α发散,则的取值范围是1α≤。

7.级数∑∞=-0)3(n nx 的和函数是01()(3)4nn S x x x∞==-=-∑,且收敛域是 (2,4) 。

8.设D 为1x y +≤, 则Ddxdy =⎰⎰___2__。

9. 若交换积分次序,则二重积分⎰-1010),(dy y x f dx x=110(,)ydy f x y dx -⎰⎰。

10.方程y dxdy x2-=的通解为 2Cy x =。

二、单项选择(每小题2分,共10分):1.已知a a n n =∞→lim ,则)(11-∞=-∑n n n a a ( C )。

(A )收敛于0 (B )收敛于a(C )收敛于0a a - (D )发散2.设生产函数为32313K L Q =,其中Q 为产品的产量,K 为资本投入,L 为劳动投入。

则当L = 27, K = 8时,资本投入K 的边际生产率为( D )。

(A )94 (B )836(C )3 (D )27363.设D 是圆122=+y x 所包围的在第一象限的区域,则在极坐标变换下,二重积分=⎰⎰Ddxdy y x f ),(( B )。

(A )⎰⎰100)sin ,cos (rdr r r f d θθθπ (B )⎰⎰1020)sin ,cos (rdr r r f d θθθπ(C )⎰⎰202)sin ,cos (rdr r r f d θθθπ (D )⎰⎰200)sin ,cos (rdr r r f d θθθπ 4.设D 由x 轴,e x x y ==,ln 围成,则=⎰⎰Ddxdy y x f ),(( A )。

微积分第二章习题参考答案

微积分第二章习题参考答案
2 a 1, a 1.
f ( 0 )
lim
x 0
(2e x
1) x
1
2,
f ( 0 )
lim
x 0
(x2
bx x
1)
1
b ,
b
2.
当 a 1,b 2时 , f ( x )在 x 0处 可 导 .
5.设 t时 刻 水 面 的 高 度 为 h , 液 面 半 径 为 r ,则 r R h , H
2.当 0时 ,函 数 在 x 0处 连 续 ,
当 0时 ,函 数 在 x 0处 不 连 续 ;
当 1时 ,函 数 在 x 0处 可 导 ,
当 1时 ,函 数 在 x 0处 不 可 导 .
五 .证 明.
设 切 点 为( x0, y0 ),
y( x0 )
a2
x
2 0
y0 x0
y
x
y y( y x ln y) . x( x y ln x)
3.解 : y ln(1 t) ln(1 t),
y(n)
(1)n1 [(1 t)n
1 (1 t)n
](n 1)!.
4.解 : f (0 0 ) lim (2e x a ) 2 a , x 0 f (0 0) lim ( x 2 bx 1) 1, x 0
,
切线方程为
:
y
y0
y0 x0
(x
x0 ),其 截 距 式 为
xy 1,
2 x0 2 y0
切线与两坐标轴构成的三角形面积
S
1 2
| 2x0
|
| 2 y0
|
2a 2为 常 数 ,与 切 点 无 关 .
§2.2求导法则(21-22)

微积分II课程微积分2答案

微积分II课程微积分2答案

I 10.令 x = asect第四章 不定积分答案2 24. I = sin x sinxdx = - 1-cosxdcosx 、填空题 2.F x |亠 C 3.1 二-cosx — \ 3 1 31 3 cos x J ■ C cos x-cosx C3 3x C 5.4. -C In 2 」x 335.一丄Cxxe (e x ) +1dx 二一de _2 二 arctang XC ’1+(e x ) 6. 6e x C 7.-3sin x C I 二 t 2—1 t 2tdt =2 t 4 -t 2 dt8. 3x x arcta n x C 39.x r 2 C1-In 3x + 2x +C 2 1 2 10. In 2x C 2 -cos2x C 12. le 7x C7114. 丄 In 1+2x+C 2 13. 7. 令 t = 6x11.15.1—2x C 1 316. 「cosx cos x C 3 8. 17. e" 1 x C 18. 6"dt t 123t 2—6t +6ln t +1 +C1 13x^ -6x® +6 In x令 x= si nt3I =1 - sin 2t 2costdt - I i cost dt二、 单项选择题 1 . C 2 . A 3 . D 4 7 . D 8 . D 9 . 12.B 三、 计算题 1 .A10.A.B11.Bx二 sec 2 tdt 二 tant CCTT79 .令 x =ta ntseC tdt (1+tan 2t j2 .■sec 4-dt二 costdt sec t2 -.2 -x 2d 2 -x2 -x 2 C2. 1 x 2 = l n 1 x 2 C-exd ;1 111 cos2t dt t —sin2t C2 2 4 11 1x t sintcost C arctanx 2 C 2 2 21 x 23.1-e" C.a2 sect -1 asectantdt =a tarn tdtasec=a lise^t -1 dt =a tant -t Cf'-2—2 、x -a aarccos a x4C=Jx2 217. a-a -aarccos Cx2x 2 _xI = - x de = x e_ 2xe*dx-x2e» -2 xde^-x2e» -2xe" 2 e^dx_x2 _2x_2 e」C11. I =dx2、厂1_ 1 sect tant3 ta nt22令x^sect secttantdt 18.=1J322Jsec t -1dt^1sectdt31=Tn sect +tant 3 C = 】ln33x站4219.12.1 d 3x-1 _J(3X-12+6 3=]| n j9x2-6x+7+3x-1+C13. 2 2I =xln 1 X - xdln 1 x2 =xln 1 x2 =xln 1 x -x^dx;_2x 2arctanx C20.14.xde x = xe x - e x dx =xe x-e x C15.I = x arccosx - xd arccosxx arccosx dx1-x21「1 ,2 .= xarccosx-—J ;2d(1-x )21.16.x arccosx - 1 - x2 CI = lnxdl 」一hx ^dx — Sx」C x x x x x4 4二(ln x)2d£4(ln x)2-4 41 3x ln xdx = — (ln x)21 4| 1x ln x8 81 4 1 4--x ln x x C8 324x 2(ln x)44=—(ln x)24x4 (ln x)4=sin xde xx41(2ln x)—dx44 x4、4 1 .x dxx=e x sin x - e x cosxdx=e x sin x - cosxde xX ・x x .=e sin x -e cosx e dcosx= e x(sin x-cosx) - ' e x sin xdxe x sin xdx = - e x(sin x -cosx) C2I = sec x secxdx = secxd tan x=secxtanx- 'tanx tanx secxdx=secxtanx- '(sec x-1)secxdx=secxtan x- sef xdx亠i secxdx3=secxtanx- Jsec xdx + In secx +31[sec xdx = —(secxtanx + ln secx +2x-8 ln xdx4tanxtanx C令t=, xI二.eStdt = 2 tdd =2td -2 ddt= 2td -2& C =2 =e x-2e x C22. l=Jlnlnxdlnx =(lnlnx)nx —J Inxd(lnlnx) 21.=lnlnx lnx- lnx —-dxlnx x =lnlnx lnx-lnx C 23.24.F b —F a1e --e22.5ln623.d cos2x = 4 xcos2x sin2xC4 825.1 26. JI227. e-2 28.4 29. 2,3-2arctan f 3 - arctan f 124. l = ln xd3 1 3x lnx x ——■C3 9第五章定积分及其应用答案32.5633.e 34. _135.<36. 1 37. 38. 12 2 3兀 139. 一2 _2二单项选择题30.0 31.0、填空题[f (x pxb a4.2.03.5.负6.正7. l1>l28. 1. A 2 . D 3 . B 4 . C 5 . A 6 . C7. C 8 . B9 . A 10.C 11.C 12.D 13.C 14.C 15.B 16.C17.A 18.B 19.B 20.A 21.B22.C 23.B 24.A 25.C 26.A三、证明题1冃2 9. l1>l2 证:令u=a, b-a,则10.- 11. 12. baf x dx du 二b-a dx,所以13. 2xe x14. sin xb - a ] I f || a b - a x dx =1 1f u du = 0 f x dx-x sin3fi x 16.10,1 2x1 cos2 x215.2.证:令u)]17.1 18.fx3f (x2=x2,则du = 2xdx ,所以1 a2.d^=- 0 uf udu=? 0 1 a220xf x dx19. f 12f0=03 20. 3.证:令u -二-x,则du - -dx,则IT- -2:xf sinxdx 二:】灵-u f sin u du 二負「x f sinx dx 23x2sin 1 x3 31 u 2所以 o xf sinx dx 二 o 2xf sinx dx - xf sin0 0 5fnxdx 飞2x -3-2x x-1x-2 e , x 二 = 二 02xf sinx ck 02 二-x f sinxck v 02得fin^dx 一1:: 0, f 2 二 e* 0, e JI 4.证:x 4令,有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A = −3 B 或 A =
n = PQ × s = (3,15,3) = 3(1,5,1) 方程为 ( x − 2) + 5 y + ( z + 1) = 0 ,即 x + 5 y + z − 1 = 0 x y −1 z −1 = = 与平面π : (1)求证 L 与 π 相交,并求交点坐标; 六、设直线 L : 2x + y − z − 3 = 0 , −1 1 2 (3)求过 L 与 π 交点且与 L 垂直的平面方程; (4)求过 L 且与 π 垂直的 (2)求 L 与 π 交角; 平面方程; (5)求 L 在 π 上的投影直线方程. (1) L : x = −t , y = t + 1, z = 2t + 1 ,代入平面得 t = −1 ,交点为 (1, 0, −1) −2 + 1 − 2 1 π = ,θ = (2) sin θ = 2 6 6⋅ 6 (3) −( x − 1) + y + 2( z + 1) = 0 ,即 x − y − 2 z − 3 = 0
微积分(二)同步练习答案
§8.1 向量及其线性运算(1) 、 (2) 、 (3) 、 (4) 一、设 u = 2a − b + c , v = a + 2b + c ,试用 a , b , c 表示 2u − 4v .
2u − 4v = −10b − 2c 二、 a , b , c 为三个模为 1 的单位向量,且有 a + b + c = 0 成立,证明: a , b , c 可构成一个等边三角形.
2 2
§8.5 平面及其方程(1)
⎧ x2 + y 2 = 1 z2 = 0 与平面 z = 3 的交线圆的方程是( ⎨ ) ,其圆心坐标是 9 = z 3 ⎩ ( (0, 0,3) ) ,圆的半径为( 1 ) .
2.曲线 ⎨
⎧ x2 + y 2 = 1 ⎧2 y − ( z − 1) 2 = 1 ⎪ 在 yoz 面上的投影曲线为( ⎨ ) . 2 2 2 x = 0 x y z ( 1) ( 1) 1 + − + − = ⎪ ⎩ ⎩ z ⎧ ⎪ y = a sin . 3.螺旋线 x = a cos θ , y = a sin θ , z = bθ 在 yoz 面上的投影曲线为( ⎨ b ) ⎪ ⎩x = 0
(1) ( a ib ) c − ( a ic ) b = −2c − 5b = (−7,3,5)
(1) ( a ib ) c − ( a ic ) b ;
( 2) ( a + b ) × (b + c ) ;
( 3) ( a × b )ic .
( 3) ( a × b )ic = (−2,3, −5) ⋅ (1,1, 0) = 1 六、设 a = ( 2, −1,3) , b = ( −1, 2, −1) ,问 λ 和μ 满足何关系时,可使 λ a + μ b 与 z 轴垂直?
计算向量 M 1M 2 的模、 方向余弦和方向角, 并求与 M 1M 2 二、 设已知两点 M 1 5, 2, 2 和M 2 ( 4, 0,3) , 方向一致的单位向量.
(
)
1 2 1 M 1M 2 = (−1, − 2,1) , M 1M 2 = 2 , cos α = − , cos β = − , cos γ = 2 2 2 ° 2π 3π π 1 2 1 α= ,β = , γ = , M 1M 2 = (− , − , ) 2 2 2 3 3 4 三、设 m = 2i + 3 j + 4k , n = 4i − j + 2k及p = −i + 2 j + 3k ,求 a = 2m + 3n − 2 p 在 x 轴上的投影及在 z 轴上的分向量. a = (18, −1,8) , Pr jx a = 18 , az k = 8k
D
). (B) 、平行 oy 轴 (D) 、通过 oy 轴
4.下列平面中通过坐标原点的平面是( C ). (B)、 x + 2 y + 3 z + 4 = 0 (C)、 3( x − 1) − y + ( z + 3) = 0 (A) 、 x =1
(D)、 x + y + z = 1
三、化曲线 ⎨
⎧ x2 + y 2 + z 2 = 9 为参数方程. ⎩y = x
四、求通过 z 轴,且与平面 2 x + y − 5 z − 7 = 0 的夹角为 设所求平面为 Ax + By = 0 ,则
π
3
的平面方程.
2A + B 10 A + B
2 2
=
1 2 2 , 3 A + 8 AB − 3B = 0 2
B ,故 x + 3 y = 0 或 3 x − y = 0 3 x +1 y z−2 = = 的平面方程. 五、求通过点 P(2, 0, −1) ,且又通过直线 2 3 −1 取 Q( −1, 0, 2) , n ⊥ PQ = (−3, 0,3) , n ⊥ s = (2, −1,3)
M 1M 2 = (0, −4, −4) , −3M 1M 2 = (0,12,12)
一、试证明以三点 A (10, −1, 6 ) 、B ( 4,1,9 ) 、C ( 2, 4,3) 为顶点的三角形是等腰直角三角形. §8.1 向量及其线性运算(5) §8.2 数量积 向量积
AB = 7 , BC = 7 , AC = 7 2
( z + a)
2
= x 2 ,绕 z 轴;或 ( z + a ) = y 2 ,绕 z 轴
2 2 2
六、指出下列方程所表示的曲面:
1.x + 2 y − z = 2 ;
2 2 2
2.x − y − 3 z = 3
2
x2 y2 z 3. + = 3 4 5
椭圆抛物面
单叶双曲面;
双叶双曲面
§8.4 空间曲线及其方程 一、填空题: 1.曲面 x + y −
x+3 y+4 z = = 与平面 π : 4 x − 2 y − 2 z = 3 的关系是( A ). 3 −2 −7 (D)相交但不垂直 (A)平行 (B)垂直相交 (C) L 在 π 上
3.设直线 L1 : (A) π /6
x −1 5 − y z + 8 ⎧x − y = 6 = = 与 L2 : ⎨ ,则 L1 与 L2 的夹角为( C ). 1 2 1 ⎩2 y + z = 3 (B) π /4 (C) π /3 (D) π /2
(A) 、x + y =a
2 2 2
(B)、 x = a cos
z b
(C)、 y = a sin
z b
3.平面 x − 2 z = 0 的位置是( (A) 、平行 xoz 坐标面。 (C) 、垂直于 oy 轴
z ⎧ x = a cos ⎪ ⎪ b (D)、 ⎨ ⎪ y = a sin z ⎪ b ⎩
⎧ x2 + y 2 ≤ 1 x 2 + y 2 ( 0 ≤ z ≤ 1 )在 xoy 面上的投影为( ⎨ ) ,在 xoz 面上的投影 ⎩z = 0
4.上半锥面 z =
为( ⎨
⎧ ⎪ x ≤ z ≤1 ) ,在 yoz 面上的投影为( ⎪ ⎩y = 0
⎧ ⎪ y ≤ z ≤1 ) . ⎨ ⎪ ⎩x = 0
四、已知 a , b , c 为三个模为 1 的单位向量,且 a + b + c = 0 ,求 a ib + b ic + c ia 之值.
2π 3 , a ib + b ic + c i a = − 3 2 五、已知 a = 2i + 3 j + k , b = i − j − k 和c = i + j ,计算: (a, b) = (b, c) = (c, a) =
2 2 2 2 2 2
直线,平面 五、说明下列旋转曲面是怎样形成的?
1. y = 2 x + 4 ;
2.3 x 2 − 2 y 2 = 6 .
双曲线,双曲柱面
1.x 2 + 2 y 2 + 2 z 2 = 6 ;
2. ( z + a ) = x 2 + y 2 .
2
x 2 + 2 y 2 = 6 ,绕 x 轴;或 x 2 + 2 z 2 = 6 ,绕 x 轴
x=
3 2 3 2 cos θ , y = cos θ , z = 3sin θ 2 2
四、求通过三点 (1,1,1) 、 ( −2, −2, 2) 和 (1, −1, 2) 的平面方程.
x − 3y − 6z + 8 = 0
§8.5 平面及其方程(2)(3) 一、填空题: 1.过点 P (4, −1,3) 且平行于直线 §8.6 空间直线及其方程
二、选择题: 1.下列直线中平行与 xoy 坐标面的是( D ).
x −1 y + 2 z + 3 = = (A) 1 3 2
2.直线 L :
x +1 y −1 z (C) = = 0 0 1
⎧4 x − y − 4 = 0 (B)⎨ ⎩x − z − 4 = 0
⎧ x = 1 + 2t ⎪ (D)⎨ y = 3t ⎪z = 4 ⎩
a , b , c 可构成一个三角形 ⇔ a + b + c = 0 ,且 a , b , c 两两不共线 三 、 把 △ ABC 的 BC 边 四 等 分 , 设 分 点 依 次 为 D1、D2、D3 , 再 把 各 分 点 与 点 A 连 接 , 试 以
相关文档
最新文档