小学五年级乘法原理一
五年级运算定律

五年级运算定律一、加法运算定律。
1. 加法交换律。
- 定义:两个数相加,交换加数的位置,和不变。
- 用字母表示:a + b=b + a。
例如:3+5 = 5+3,结果都是8。
2. 加法结合律。
- 定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
- 用字母表示:(a + b)+c=a+(b + c)。
例如:(2 + 3)+4=2+(3 + 4),(2+3)+4 =5+4=9,2+(3 + 4)=2 + 7 = 9。
二、乘法运算定律。
1. 乘法交换律。
- 定义:两个数相乘,交换因数的位置,积不变。
- 用字母表示:a×b = b×a。
例如:2×3 = 3×2,结果都是6。
2. 乘法结合律。
- 定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。
- 用字母表示:(a×b)×c=a×(b×c)。
例如:(2×3)×4 = 2×(3×4),(2×3)×4=6×4 = 24,2×(3×4)=2×12 = 24。
3. 乘法分配律。
- 定义:两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。
- 用字母表示:(a + b)×c=a×c + b×c。
例如:(2+3)×4=2×4+3×4,(2 + 3)×4=5×4 = 20,2×4+3×4 = 8+12 = 20。
三、减法的性质。
1. 定义:从一个数里连续减去两个数,可以减去这两个数的和。
- 用字母表示:a - b - c=a-(b + c)。
例如:10-3 - 2=10-(3 + 2),10 - 3-2 = 7 -2=5,10-(3 + 2)=10 - 5 = 5。
小学数学点知识归纳乘法的性质

小学数学点知识归纳乘法的性质一、乘法的交换律乘法的交换律是指在数的乘法运算中,交换被乘数和乘数的位置,结果不变。
即:对于任意的实数a和b,有a × b = b × a。
例如,对于两个实数2和3,根据乘法的交换律,我们可以得到2 ×3 = 3 × 2 = 6。
无论是先把2乘以3还是先把3乘以2,最终得到的结果都是6,这就是交换律的作用。
乘法的交换律可以简化计算过程,使得我们在解决问题时更加方便。
当我们需要计算多个数的乘积时,可以根据交换律改变乘法的顺序,以便于更好地计算。
二、乘法的结合律乘法的结合律是指在数的乘法运算中,无论括号内的因式如何加括号,乘积的结果不变。
即:对于任意的实数a、b和c,有(a × b) × c = a × (b × c)。
例如,对于三个实数2、3和4,根据乘法的结合律,我们可以得到(2 × 3) × 4 = 2 × (3 × 4) = 24。
无论是先计算2和3的乘积再与4相乘,还是先计算3和4的乘积再与2相乘,最终得到的结果都是24,这就是结合律的作用。
乘法的结合律使得我们在多个因式相乘的运算中,可以根据需要改变因式的组合顺序,以便于更好地计算。
三、乘法的分配律乘法的分配律是指在数的乘法运算中,把一个因式与括号内的各项相乘,等于把该因式分别与括号内的各项相乘后再相加。
即:对于任意的实数a、b和c,有a × (b + c) = a × b + a × c。
例如,对于三个实数2、3和4,根据乘法的分配律,我们可以得到2 × (3 + 4) = 2 × 3 + 2 ×4 = 14。
先计算括号内的加法运算,再把2与7相乘,得到14。
乘法的分配律在代数表达式的化简和计算中起着重要的作用。
通过运用分配律,我们可以将复杂的代数式转化为更简单的形式,使得计算更加简洁。
理解小学乘法运算的基本原理

理解小学乘法运算的基本原理乘法是小学数学中的一个重要内容,也是学习数学的基础。
理解小学乘法运算的基本原理,对于孩子们掌握乘法的概念、方法和技巧都有着重要的帮助。
本文将从乘法的概念、乘法的性质以及乘法中的注意事项三个方面进行论述。
一、乘法的概念乘法是基于加法的运算,它表示将两个或多个数相乘的结果。
乘法的两个数称为乘数和被乘数,相乘的结果称为积。
具体而言,乘法运算符号为“×”,两个数的乘法表达为“A × B = C”,其中A和B为乘数,C为积。
乘法具有交换律,即A × B = B × A。
例如,2 × 3 = 3 × 2。
这意味着乘法的顺序可以交换,结果不变。
二、乘法的性质乘法具有许多重要的性质,包括乘法的结合律、乘法的分配律和乘法的零元。
1. 乘法的结合律乘法的结合律规定,当有三个或更多个数连续相乘时,它们的顺序可以任意调换,结果不变。
即(A × B) × C = A × (B × C)。
例如,(2 × 3) × 4 = 2 × (3 × 4)。
2. 乘法的分配律乘法的分配律规定,当一个数字同时与两个或更多个数相加时,可以分别与每个数相乘,然后把两个积相加,结果不变。
即A × (B + C)= A × B + A × C。
例如,2 × (3 + 4) = 2 × 3 + 2 × 4。
3. 乘法的零元乘法的零元是指任何数乘以零都等于零。
即A × 0 = 0。
例如,2 × 0 = 0。
三、乘法中的注意事项在进行乘法运算时,有一些注意事项需要特别注意:1. 乘法的顺序在计算多个数的乘法时,需要按照从左到右的顺序逐个运算。
例如,2 × 3 × 4要按照2 × 3的结果再乘以4。
乘法原理_精品文档

乘法原理一、知识解析:二、乘法原理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法, 当计算一共有多少种完成方法时就要用到乘法原理、三、乘法原理: 一般地,如果完成一件事需要n个步骤, 其中, 做第一步有m1种不同得方法,做第二步有m2种不同得方法 ,…,做第n步有mn种不同得方法,则完成这件事一共有N=m1×m2×…×mn种不同得方法.四、乘法原理运用得范围:这件事要分几个彼此互不影响得独立步骤来完成,这几步就是完成这件任务缺一不可得, 这样得问题可以使用乘法原理解决.我们可以简记为:“乘法分步, 步步相关”、五、乘法原理解题三部曲1.完成一件事分N个必要步骤;2.每步找种数(每步得情况都不能单独完成该件事);六、 3.步步相乘七、乘法原理得考题类型1.路线种类问题—-比如说从A地到B地有三种交通方式,从B地到C地有2种交通方式,问从A地到C地有多少种乘车方案;2、字得染色问题—-比如说要3个字,然后有5种颜色可以给每个字然后,问3个字有多少种染色方法;3.地图得染色问题——同学们可以回家瞧地图, 比如中国每个省得染色情况,给您几种颜色,问您一张包括几个部分得地图有几种染色得方法;4.排队问题——比如说6个同学,排成一个队伍, 有多少种排法;【例 1】5、数码问题-—就就是对一些数字得排列, 比如说给您几个数字, 然后排个几位数得偶数,有多少种排法。
【例 2】例题精讲:【巩固】马戏团得小丑有红、黄、蓝三顶帽子与黑、白两双鞋, 她每次出场演出都要戴一顶帽子、穿一双鞋、问:小丑得帽子与鞋共有几种不同搭配?【巩固】康康到食堂去买饭, 主食有三种, 副食有五种,她主食与副食各买一种, 共有多少种不同得买法?【例 3】从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路、问: 从甲地经乙、丙两地到丁地,共有多少种不同得走法?【巩固】邮递员投递邮件由A村去B村得道路有3条, 由B村去C村得道路有2条,那么邮递员从A村经B村去C村,共有多少种不同得走法?【巩固】用5种不同颜色得笔来写“我爱数学”这几个字, 相邻得字颜色不同, 共有多少种写法?【例 4】“IMO”就是国际数学奥林匹克得缩写, 把这3个字母写成三种不同颜色、现在有五种不同颜色得笔, 按上述要求能写出多少种不同颜色搭配得“IMO”?【巩固】从全班20人中选出3名学生排队, 一共有多少种排法?如果将四面颜色不同得小旗子挂在一根绳子上,组成一个信号, 那么这四面小旗子可组成种不同得信号。
乘法公式知识点讲解

乘法公式知识点讲解乘法公式是数学中常用的一种运算规则,用于求解两个或多个数的乘积。
乘法公式是各个数学分支中基础且重要的内容,涉及到一系列的运算法则和性质。
本文将从基本的乘法性质和运算法则出发,逐步介绍乘法公式的相关知识点。
一、基本的乘法性质1.乘法的交换律乘法的交换律指出,两个数相乘,其积不受因数的位置交换的影响。
即a×b=b×a,其中a和b是任意实数。
这个性质可以通过实际数的例子进行验证,比如3×4=12,4×3=12,结果都是122.乘法的结合律乘法的结合律指出,三个数相乘,在保持因数的顺序不变的情况下,可以任意选择两个因数进行先乘后乘的运算。
即(a×b)×c=a×(b×c),其中a、b和c是任意实数。
这个性质也可以通过具体的实例进行验证,比如(2×3)×4=6×4=24,2×(3×4)=2×12=24,结果仍然是243.乘法的分配律乘法的分配律是乘法运算与加法运算之间的关系。
乘法分配律分为左分配律和右分配律:-左分配律:a×(b+c)=a×b+a×c,其中a、b和c是任意实数。
-右分配律:(a+b)×c=a×c+b×c,其中a、b和c是任意实数。
以上三种基本的乘法性质可以通过简单的代数运算进行验证,也是进行乘法公式推导的基础。
二、乘法公式的运算法则有了基本的乘法性质为基础,可以进一步推导得到一系列的乘法公式。
以下是其中一些常见的乘法公式及其应用。
1.平方公式平方公式是一种常见的乘法公式,用于计算一个数的平方。
平方公式可以表示为:(a + b)² = a² + 2ab + b²,其中a和b是任意实数。
应用平方公式,可以求得两个数的和的平方,例如(3 + 4)² = 3² + 2 × 3× 4 + 4² = 492.二次方差公式二次方差公式是根据平方公式推导得到的,用于计算两个数相乘后的差的平方。
五年级加法原理和乘法原理

加法原理和乘法原理一、原理描述加法原理:如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。
例、从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?乘法原理:如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
例、用1、2、3这三个数字可以组成多少个不同的三位数?二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。
从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。
三、加法原理和乘法原理的应用例1.从1、2、3、4、5这五个数字中选3个来组成一个三位数,可以组成多少个没有重复数字的三位数?例2.从数字1、2、3、4、5中选若干个数字组成一个三位数,可以组成多少个三位数(数字可以重复用)?例3.从0、1、2、3、4这五个数字中选3个来组成一个三位数,可以组成多少个没有重复数字的三位数?例4.从0、1、2、3、4这五个数字中选3个来组成一个三位数,可以组成多少个没有重复数字的三位偶数?例5.从1到400的所有自然数中,不含数字3的自然数有多少个?例6.有6个同学排成一排照相,共有多少种不同的站法?例7.A、B、C、D、E 5人排成一排,如果C不站在中间,一共有多少有种不同的排法?例8.(涂色问题)如图,用红、绿、蓝、黄四色去涂编号为1、2、3、4号的长方形,要求任何相邻的两个长方形的颜色都不相同,一共有多少种不同的涂法?例9.成都市的电话号码全是8位数,第一位必须是8,问成都市一共可以有多少个不同的电话号码?五、练习1、用2、4、6、8这四个数字可以组成多少个没有重复数字的4位数?2、用2、4、6、8这四个数字可以组成多少个4位数(数字可以重复用)?3、用1、2、3、4这四个数字可以组成多少个没有重复数字的4位偶数(双数)?4、从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地到丙地有3条路可走,那么,从甲地到丙地共有多少种走法?5、从1到100的所有自然数中,不含数字2的自然数有多少个?6、有5个同学排成一排照相,共有多少种不同的站法?7、A、B、C、D、E、 5人排成一排,如果A不站在最左端并且E不站在最右端,一共有多少有种不同的排法?8、A、B、C、D、E、 5人排成一排,如果A不能站在最左端也不能站在最右端,一共有多少有种不同的排法?9、编号是1、2、3、4的四位同学,坐在编号是1、2、3、4的四个位置上,要求编号和位置要不同(比如1号同学不能坐在1号位置上),一共有多少种坐法?10、用红、黄、蓝三种颜色去涂下面的图形,要求相邻的区域不能同色,一共有多少种涂法?。
乘法的原理知识点总结

乘法的原理知识点总结一、乘法的概念乘法是指将一个数复制若干次再相加,或者将一个数分别加若干次。
简单地说,乘法就是重复加法的过程。
二、乘法的表示我们可以用符号“×”来表示乘法,比如,表示2乘以3,即为2×3,读作“2乘3”。
同时,我们也可以用字母表示未知数的乘法,比如,表示a乘以b,即为a×b,读作“a乘以b”。
三、乘法的性质1. 乘法的交换律即乘法可以交换次序,比如,对于任意实数a、b,有a×b=b×a。
这说明,在乘法中,乘数和被乘数可以交换位置,不影响结果。
2. 乘法的结合律即乘法可以结合进行,比如,对于任意实数a、b、c,有(a×b)×c=a×(b×c)。
这说明,在乘法中,乘数的顺序不同,但是乘法的结果是相同的。
3. 乘法的分配律即乘法可以与加法相互分配,比如,对于任意实数a、b、c,有a×(b+c)=a×b+a×c。
这说明,在乘法中,如果有一个数与其他两个数相加,可以先将该数与另外两个数分别相乘,再将两个乘积相加,结果是相同的。
四、乘法的应用1. 乘法在几何中的应用在几何学中,我们经常用到乘法。
比如,计算矩形的面积就是将长和宽相乘。
同样地,计算三角形的面积也可以用到乘法。
2. 乘法在日常生活中的应用在日常生活中,我们也经常用到乘法。
比如,计算购物的总价、计算体积、计算距离和速度等等,都需要用到乘法。
3. 乘法在进阶数学中的应用在进阶的数学学科中,乘法也有着各种应用。
比如,在代数学中,乘法是不可缺少的基本运算之一。
在微积分中,我们也需要用到乘法。
在数论中,乘法也是一个非常重要的概念。
五、乘法的计算方法1. 竖式乘法竖式乘法是我们在小学学习的一种基本乘法计算方法,它包括了逐位进行乘法运算、进位和相加等步骤。
2. 交叉乘法交叉乘法是一种简便的乘法计算方法,它通过在两个数的个位以上的位上进行乘法运算,然后交叉相加得到结果。
五年级奥数乘法原理

乘法原理上一讲我们学习了用“加法原理”计数,这一讲我们学习“乘法原理”。
什么是乘法原理呢?我们来看这样一个问题:从甲地到乙地有3条不同的道路,从乙地到丙地有4条不同的道路。
从甲地经过乙地到丙地,共有多少种走法?我们这样思考:从甲地到乙地的3条道路中任意选一条都可以从甲地到乙地,再从乙地大丙地的4条道路中任意选一条都可以从乙地到丙地,那么,从甲地到乙地的3条道地第一条到达乙地后,可以走从乙地到丙地的任意一条路,这样就有了4种不同的走法。
从甲地到乙地的第二条、第三条路到达乙地后,仍可以从乙地到丙地的4条路中任选一条到丙地,如图所示:从图中可以看出,从甲地到丙地共有3 X 4 =12(种)走法。
如果完成一件事情需要几个步,完成第一步有m1 种不同的方法,完成第二步有m2 种不同的方法,…那么,完成这件工作共有N = m1 x m2 x m3 x … x m n 种不同的方法。
这就是乘法原理。
例1 书架上有4本故事书,7本科普书,志远从书架上任取一本故事书和一本科普书,共有多少种不同的取法?例2 从2、3、5、7、11这五个数字中每次取出2个数字,分别作为一个分数的分子和分母,一共可以组从多少个分数?其中有多少个真分数?例3 用9、8、7、6这四个数可以组成多少个没有重复数字的三位数?这些位数的和是多少?例4 如图,A 、B 、C 、D 四个区域分别用红、黄、蓝、白四种颜色中的某一种染色。
若要求相邻的区域染不同的颜色,问:共有多少种不同的染色方法?例5 如图,小明家到学校有3条东西向的马路和5条南北向 的马路。
他每天步行从家到学校(只能向东或向南走),最多有多少种不同的走法?小明家学校练习与思考1.从甲地到乙地有两条河,从乙地到丙地有3条路可走,从甲地经乙地到丙地共有 种走法。
2.书架的上、中、下层各有3本、5本、、4本故事书。
若要从每层书架上任取一个本书,共有 种不同的取法。
3.有1,2,3,三数字,一共可以组成 个没有重复数字的三位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法原理(一)
[知识点]做一件事,如果需要分成n个步骤,做第一步有a1种不同的方法,做第二步有a2种不同的方法┅┅做第n步有an种不同的方法,那么完成这件事共有:N=a1╳a2╳┅┅an种不同的方法。
例:1. 从甲地到乙地有2班火车、3班汽车,那么从甲地到乙地乘汽车或火车共有多少种不同的走法。
2. 从甲地到乙地有2条路可以走,从乙地到丙地有3条路可以走,试问从甲地经乙地到丙地共有多少种不同的走法。
3.小冬到书店去买书,他喜欢的数学书有5种,科幻小说有3种,歌曲集有2种,3种书他各买一本有多少种不同的选法
4、有足球、篮球、排球、垒球四种球,三个小朋友各选一件,那么共有多少种结果?
5、有足球、篮球、排球、垒球四个球,三个小朋友各选一件,那么共有多少种结果?
6、丰满区固定电话号码为七位数,以46开头,这样丰满区共有多少个电话号码?
7、运行于南京和海之间的特快列车,中途要停靠六个车站。
这列火车要准备多少种不同的车票?
乘法原理习题(一)姓名:
1.书架上有6本不同的数学书,4本不同的语文书,(1)从中任取一本书,有()种不同的取法。
(2)数学、语文书各取一本,有()种不同的取法。
2.王英、赵明、李刚三人报名参加校运动会的跳高、跳远、100米跑和掷垒球四项中的一项比赛,问报名的结果会出现()种不同的情形。
3.王芳有四件上衣,三条裤子,两双皮鞋,她能有()天穿束不同?
4. 往返于吉林到北京间的272次列车中途要停12站,问这个列车要准备()种车票。
5. 一张桌子周围有四把椅子,三个客人坐这桌吃饭,共有( )种坐法。
6. 商店有三种小凳子,3.1班五名同学每人买一把,会有( )种结果.
7.某市的电话号码是七位数,首位不能是“0”,其余各位可以是0-9中任何一个数,这个城市最多可以容纳多少部电话?
8. 两个学校进行围棋比赛,双方各出5名男运动员和3名女运动员;①每一方的一名队员都要和另一方的每一个运动员进行一场比赛,一共要进行()场比赛。
②若每一方的男队员和另一方的男队员都赛一场,每一方的女队员都要和另一方的女队中员赛一场,而男女队员之间不进行比赛,一共要比赛()场。
9. 足球彩票竞猜欧洲13场比赛的结果,玩法是每场比赛的结果记一个数,如主队胜记3,平记1,主队负记0。
这样形成一个13位数(每一位上只能是0、1、3三个数中的一个),如果买一注(猜一次)花2元钱,要花()元钱才能确保肯定中得一等奖。
加试题:有人民币一元的4张,二元的2张,十元的3张,如果至少取一张,至多取9张可以配成( )种不同的钱数?。