49个运算公式

合集下载

各种计算公式

各种计算公式

计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S== a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径 =πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形 C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长 S=a×a2 、正方体 V:体积 a:棱长表面积=棱长×棱长×6 S表=a ×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长 S面积 a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积 s:面积 a:长 b: 宽 h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积 a底 h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积 a底 h高面积=底×高s=ah7 梯形s面积 a上底 b下底 h高面积=(上底+下底)×高÷2s=(a+b)×h÷28 圆形S面积 C周长∏ d=直径 r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积 h:高 s;底面积 r:底面半径 c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积 h:高s;底面积 r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第一部分:概念1、加法交换律:两数相加交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3、乘法交换律:两数相乘,交换因数的位置,积不变.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×56、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O. 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾.7、什么叫等式等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8、什么叫方程式答:含有未知数的等式叫方程式.9、什么叫一元一次方程式答:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15、分数除以整数(0除外),等于分数乘以这个整数的倒数.16、真分数:分子比分母小的分数叫做真分数.17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18、带分数:把假分数写成整数和真分数的形式,叫做带分数.19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数0除外),分数的大小不变.20、一个数除以分数,等于这个数乘以分数的倒数.21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.分数的乘法则:用分子的积做分子,用分母的积做分母. 22、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.23、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积.25、解比例:求比例中的未知项,叫做解比例.如3:χ=9:1826、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k(k一定)或kx=y27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系. 如:x×y = k( k一定)或k / x = y28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数.百分数也叫做百分率或百分比.29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号.其实,把小数化成百分数,只要把这个小数乘以100%就行了.30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位.31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数.其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了. 32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.33、要学会把小数化成分数和把分数化成小数的化发.34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)35、互质数:公约数只有1的两个数,叫做互质数.36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分.(通分用最小公倍数)38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分.(约分用最大公约数)39、最简分数:分子、分母是互质数的分数,叫做最简分数.40、分数计算到最后,得数必须化成最简分数.41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行42、约分.个位上是0或者5的数,都能被5整除,即能用5进行约分.在约分时应注意利用.43、偶数和奇数:能被2整除的数叫做偶数.不能被2整除的数叫做奇数.44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数).45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.1不是质数,也不是合数.46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.48、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3. 14141451、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数.如3.……52、什么叫代数代数就是用字母代替数.53、什么叫代数式用字母表示的式子叫做代数式.如:3x=ab+c第二部分:定义定理一、算术方面1.加法交换律:两数相加交换加数的位置,和不变.2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.3.乘法交换律:两数相乘,交换因数的位置,积不变. 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0. 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.8.方程式:含有未知数的等式叫方程式.9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式.学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.15.分数除以整数(0除外),等于分数乘以这个整数的倒数. 16.真分数:分子比分母小的分数叫做真分数.17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1.18.带分数:把假分数写成整数和真分数的形式,叫做带分数.19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.20.一个数除以分数,等于这个数乘以分数的倒数.21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.第三部分:几何体1.正方形正方形的周长=边长×4 公式:C=4a正方形的面积=边长×边长公式:S=a×a正方体的体积=边长×边长×边长公式:V=a×a×a2.正方形长方形的周长=(长+宽)×2 公式:C=(a+b)×2长方形的面积=长×宽公式:S=a×b长方体的体积=长×宽×高公式:V=a×b×h3.三角形三角形的面积=底×高÷2. 公式:S= a×h÷24.平行四边形平行四边形的面积=底×高公式:S= a×h5.梯形梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圆直径=半径×2公式:d=2r半径=直径÷2 公式:r= d÷2圆的周长=圆周率×直径公式:c=πd =2πr圆的面积=半径×半径×π公式:S=πrr7.圆柱圆柱的侧面积=底面的周长×高. 公式:S=ch=πdh=2πrh圆柱的表面积=底面的周长×高+两头的圆的面积. 公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高. 公式:V=Sh8.圆锥圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh三角形内角和=180度.平行线:同一平面内不相交的两条直线叫做平行线垂直:两条直线相交成直角,像这样的两条直线,我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足.第四部分:计算公式数量关系式:1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数时间单位换算:1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒1时=3600秒。

高中必背88个数学公式3篇

高中必背88个数学公式3篇

高中必背88个数学公式数学公式是学习数学的基础,掌握数学公式可以帮助我们更好地理解和应用数学知识。

在高中数学学习中,有许多重要的数学公式需要掌握,下面是88个高中数学必背的公式,希望对大家的学习有所帮助。

1. 一次函数的解析式:y=kx+b2. 二次函数的解析式:y=ax^2+bx+c (a≠0)3. 三角函数的正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)4. 三角函数的余弦定理:a^2=b^2+c^2-2bccosA5. 三角函数的正切定理:tanA=(a+b)/(a-b),其中b为切点到直角边的距离6. 直线一般式:Ax+By+C=07. 直线斜截式:y=kx+b8. 直线截距式:y=kx+b9. 圆的标准式:(x-a)^2+(y-b)^2=r^210. 圆的一般式:x^2+y^2+Dx+Ey+F=011. 平移变换:f(x-a)+b12. 对称变换:f(-x)13. 缩放变换:kf(x)14. 一元二次方程:ax^2+bx+c=0 (a≠0)15. 四则运算公式:a+b=b+a,a-b=-(b-a),ab=ba,a/b≠b/a,(a+b)c=ac+bc16. 开平方公式:(a+b)^2=a^2+2ab+b^2,(a-b)^2=a^2-2ab+b^217. 完全平方公式:a^2+2ab+b^2=(a+b)^2,a^2-2ab+b^2=(a-b)^218. 因式分解公式:x^2-y^2=(x+y)(x-y),a^2-b^2=(a+b)(a-b)19. 同底数幂的乘除法:a^m*a^n=a^(m+n),a^m/a^n=a^(m-n)20. 同底数幂的幂次方:(a^m)^n=a^(mn)21. 十进制、二进制、八进制、十六进制:十进制N=(a[n]*10^n)+(a[n-1]*10^(n-1))+...+a[0]*10^0,二进制N=(a[n]*2^n)+(a[n-1]*2^(n-1))+...+a[0]*2^0,八进制N=(a[n]*8^n)+(a[n-1]*8^(n-1))+...+a[0]*8^0,十六进制N=(a[n]*16^n)+(a[n-1]*16^(n-1))+...+a[0]*16^022. 分数通分公式:a/b+c/d=(ad+bc)/bd23. 分数加减法:a/b±c/d=[(ad±bc)/bd]24. 分数乘法:a/b×c/d=(ac/bd)25. 分数除法:a/b÷c/d=(ad/bc)26. 多项式加减法:(a+b)+c=a+(b+c),(a+b)−c=a+(−c+b)27. 多项式乘法:(a+b)(c+d)=ac+ad+bc+bd28. 向量的模:|a|=\sqrt(a[1]^2+a[2]^2+...+a[n]^2)29. 向量的点乘:a·b=|a||b|cosθ (θ为a、b之间的夹角)30. 向量的叉乘:a×b=|a||b|sinθ (θ为a、b之间的夹角)31. 三角函数的倒数关系:sinx/cscx=cosx/secx=tanx/cotx=132. 三角函数的和差化积:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb∓sinasinb33. 三角函数的倍角公式:sin2x=2sinxcosx,cos2x=cos^2x-sin^2x=2cos^2x-1=1-2sin^2x,tan2x=(2tanx)/(1-tan^2x)34. 三角函数的半角公式:sin(x/2)=±√[(1-cosx)/2],cos(x/2)=±√[(1+cosx)/2],tan(x/2)=±√[(1-cosx)/(1+cosx)]35. 三角函数的和化积公式:sinx+siny=2sin[(x+y)/2]cos[(x-y)/2],sinx-siny=2cos[(x+y)/2]sin[(x-y)/2],cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2],cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]36. 反三角函数的定义域和值域:arcsinx∈[-π/2,π/2],arccosx∈[0,π],arctanx∈[-π/2,π/2]37. 常用极限:lim(x→0)[(sinx)/x]=1,lim(x→0)[(1-cosx)/x]=0,lim(x→0)[(e^x-1)/x]=1,lim(x→∞)[(1+1/x)^x]=e38. 对数的性质:loga1=0,logaa=1,loga(ab)=logaa+logab,loga(a/b)=logaa−logab,loga(b^n)=nlogab39. 反比例函数的性质:y=k/x,原点位于直线y=x和y=-x的交点上;当x<0时,y<0;当x>0时,y>0;当x=0时,y不存在40. 一元二次不等式:ax^2+bx+c>0 (a>0)41. 一元二次方程的公式解:x=[-b±√(b^2-4ac)]/2a42. 复数的加减乘除:(a+bi)+(c+di)=(a+c)+(b+d)i,(a+bi)−(c+di)=(a−c)+(b−d)i,(a+bi)(c+di)=(ac−bd)+(ad+bc)i,(a+bi)/(c+di)=[(ac+bd)/(c^2+d^2)]+[(bc−ad)/(c^2+d^2)]i43. 平面直角坐标系中点公式:[(x1+x2)/2,(y1+y2)/2]44. 垂直平分线公式:(x-x1)^2+(y-y1)^2=(x-x2)^2+(y-y2)^245. 线段长度公式:√[(x2-x1)^2+(y2-y1)^2]46. 直线的斜率公式:k=(y2-y1)/(x2-x1)47. 直线的法线斜率公式:k=-1/k48. 直线的斜截式公式:y=kx+b49. 直线的截距式公式:y=kx+b50. 直线的一般式公式:Ax+By+C=051. 点到直线的距离公式:d=|(Ax1+By1+C)/√(A^2+B^2)|52. 圆心坐标公式:(a,b)53. 圆的半径公式:r=√[(x-a)^2+(y-b)^2]54. 圆的标准方程公式:(x-a)^2+(y-b)^2=r^255. 圆的一般方程公式:x^2+y^2+Dx+Ey+F=056. 平移变换公式:f(x-a)+b57. 对称变换公式:f(-x)58. 缩放变换公式:kf(x)59. 函数复合公式:f(g(x))60. 函数的奇偶性判断公式:f(-x)=±f(x)61. 关于y轴对称公式:f(-x)=f(x)62. 关于x轴对称公式:f(x)=-f(-x)63. 虚函数公式:f(x)≠064. 函数单调性判断公式:当f'(x)>0时,f(x)单调递增;当f'(x)<0时,f(x)单调递减65. 平均数公式:(a1+a2+...+an)/n66. 中位数公式:当n为奇数时,中位数为第(n+1)/2个数;当n为偶数时,中位数为第n/2个数和第(n/2+1)个数的平均数67. 众数公式:出现次数最多的数即为众数68. 极差公式:最大值与最小值的差69. 方差公式:[(x1-平均数)^2+(x2-平均数)^2+...+(xn-平均数)^2]/n70. 标准差公式:√[方差]71. 等差数列求和公式:S=(a1+an)n/272. 等差数列通项公式:an=a1+(n-1)d73. 等比数列求和公式:S=a1(1-q^n)/(1-q)74. 等比数列通项公式:an=a1q^(n-1)75. 两点之间的距离公式:√[(x2-x1)^2+(y2-y1)^2]76. 点到直线的距离公式:d=|(Ax1+By1+C)/√(A^2+B^2)|77. 反比例函数公式:y=k/x78. 指数函数公式:y=a^x79. 对数函数公式:y=logax80. 三角函数公式:sinx=opp/hyp,cosx=adj/hyp,tanx=opp/adj81. 正弦函数奇偶性公式:sin(-x)=-sinx82. 余弦函数奇偶性公式:cos(-x)=cosx83. 正切函数奇偶性公式:tan(-x)=-tanx84. 对数函数奇偶性公式:loga(-x)不存在85. 指数函数奇偶性公式:a^(-x)不存在86. 三角函数的区间解:sin^-1x+2kπ∈[-π/2+kπ,π/2+kπ],cos^-1x+2kπ∈[0+kπ,π+kπ],tan^-1x+2kπ∈[-π/2+kπ,π/2+kπ]87. 三角函数的正负解:tanx正角的解为[0,π/2),余角的解为[π/2,π);tanx负角的解为(π/2,π),余角的解为(π,3π/2]88. 一元二次方程的判别式公式:Δ=b^2-4ac,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程有两个不相等的虚数根。

高中必背88个数学公式

高中必背88个数学公式

高中必背88个数学公式1. 勾股定理:直角三角形的两条直角边的平方和等于斜边平方。

2. 余弦定理:在任意三角形中,一个角的余弦等于与该角相对的边的平方和减去另外两条边的平方的差再除以两倍的另一条边与该角相对的角的正弦的乘积。

3. 正弦定理:在任意三角形中,一个角的正弦等于与该角相对的边长和另外两条边长的比例的乘积。

4. 长方形面积公式:长方形的面积等于长乘以宽。

5. 平行四边形面积公式:平行四边形面积等于底边长乘以高。

6. 梯形面积公式:梯形的面积等于上底加下底乘以高再除以二。

7. 三角形面积公式:三角形面积等于底边长乘以高再除以二。

8. 圆面积公式:圆的面积等于圆周率乘以半径的平方。

9. 圆周长公式:圆的周长等于直径乘以圆周率。

10. 球体表面积公式:球体的表面积等于四倍的圆面积。

11. 球体体积公式:球体的体积等于四分之三的圆面积乘以半径的立方。

12. 一次函数方程: y = kx + b。

13. 二次函数方程: y = ax² + bx + c。

14. 等差数列通项公式: an = a1 + (n - 1)d,其中a1为首项,d为公差,an为第n项。

15. 等差数列前n项和公式: Sn = n(a1 + an)/2,其中a1为首项,an为第n项,n为项数。

16. 等比数列通项公式:an = a1 × qⁿ⁻¹,其中a1为首项,q为公比,n为项数。

17. 等比数列前n项和公式: Sn = a1(1 - qⁿ)/1 - q,其中a1为首项,q为公比,n为项数。

18. 三角函数正弦的定义:在直角三角形中,任意一锐角的正弦是指这个角的对边与这个角所在的斜边的比值。

19. 三角函数余弦的定义:在直角三角形中,任意一锐角的余弦是指这个角的邻边与这个角所在的斜边的比值。

20. 三角函数正切的定义:在直角三角形中,任意一锐角的正切是指这个角的对边与这个角的邻边的比值。

21. 三角函数余切的定义:在直角三角形中,任意一锐角的余切是指这个角的邻边与这个角的对边的比值。

各种计算公式

各种计算公式

计算公式1、长方形的周长=(长+宽)×2C=(a+b)×2?2、正方形的周长=边长×4C=4a?3、长方形的面积=长×宽S=ab?4、正方形的面积=边长×边长S=a.a=a?S=2πr+2πrh=2π(d÷2)?+2π(d÷2)h=2π(C÷2÷π)+Ch?17、圆柱的体积=底面积×高V=Sh?V=πrh=π(d÷2)h=π(C÷2÷π)h?18、圆锥的体积=底面积×高÷3?V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3?19、长方体(正方体、圆柱体)的体?1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数?2、1倍数×倍数=几倍数?几倍数÷1倍数=倍数几倍数÷倍数=1倍数?2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长?V=a×a×a?3、长方形?C周长S面积a边长? 周长=(长+宽)×2?C=2(a+b)?面积=长×宽?S=ab?s面积a底h高?面积=底×高?s=ah?7梯形?s面积a上底b下底h高? 面积=(上底+下底)×高÷2? s=(a+b)×?h÷2?8圆形?体积=底面积×高÷3?总数÷总份数=平均数?和差问题?(和+差)÷2=大数?(和-差)÷2=小数?和倍问题?和÷(倍数-1)=小数?小数×倍数=大数?(或者和-小数=大数)?全长=株距×株数?株距=全长÷株数?⑶如果在非封闭线路的两端都不要植树,那么:? 株数=段数-1=全长÷株距-1?全长=株距×(株数+1)?株距=全长÷(株数+1)?2封闭线路上的植树问题的数量关系如下? 株数=段数=全长÷株距?全长=株距×株数?流水问题?顺流速度=静水速度+水流速度?逆流速度=静水速度-水流速度?静水速度=(顺流速度+逆流速度)÷2?水流速度=(顺流速度-逆流速度)÷2?浓度问题?溶质的重量+溶剂的重量=溶液的重量?溶质的重量÷溶液的重量×100%=浓度?溶液的重量×浓度=溶质的重量?平年全年365天,闰年全年366天?1日=24小时1时=60分?1分=60秒1时=3600秒积=底面积×高V=Sh? 第一部分:概念?1、加法交换律:两数相加交换加数的位置,和不变.?2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变.?3、乘法交换律:两数相乘,交换因数的位置,积不变.?4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再数是一次的等式叫做一元一次方程式.?学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.?10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.?11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.?12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.? 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.?13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.?22、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3? 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变.?23、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18?24、比例的基本性质:在比例里,两外项之积等于两内项之积.?25、解比例:求比例中的未知项,叫做解比例.如3:χ=9:18?26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.如:y/x=k(?k一定)或kx=y?数.?33、要学会把小数化成分数和把分数化成小数的化发.?34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数.(或几个数公有的约数,叫做这几个数的公约数.其中最大的一个,叫做最大公约数.)?35、互质数:公约数只有1的两个数,叫做互质数.?36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.?37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)?47、利率:利息与本金的比值叫做利率.一年的利息与本金的比值叫做年利率.一月的利息与本金的比值叫做月利率.?48、自然数:用来表示物体个数的整数,叫做自然数.0也是自然数.?49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数.如3.141414??51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.?6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.?等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.?8.方程式:含有未知数的等式叫方程式.?9.一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫数大于或等于1.?18.带分数:把假分数写成整数和真分数的形式,叫做带分数.?19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.?20.一个数除以分数,等于这个数乘以分数的倒数.? 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.? 第三部分:几何体?1.正方形?正方形的周长=边长×4公式:C=4a?梯形的面积=(上底+下底)×高÷2公式:S=(a+b)h÷2? 6.圆?直径=半径×2?公式:d=2r?半径=直径÷2公式:r=d÷2?圆的周长=圆周率×直径公式:c=πd=2πr?圆的面积=半径×半径×π?公式:S=πrr?7.圆柱?1、?每份数×份数=总数总数÷每份数=份数总数÷份数=每份数?2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数?3、?速度×时间=路程路程÷速度=时间路程÷时间=速度?4、单价×数量=总价总价÷单价=数量总价÷数量=单价?5、?工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率?1日=24小时1时=60分?1分=60秒?1时=3600秒?。

49个号码计算公式

49个号码计算公式

49个号码计算公式在数学中,我们常常会遇到各种各样的计算公式,它们可以帮助我们解决各种问题,从简单的加减乘除到复杂的微积分和线性代数。

今天,我们将讨论一个特殊的计算公式,它涉及到49个号码的计算。

首先,让我们来看看这个计算公式的具体内容。

这个计算公式是一个简单的数学公式,它涉及到49个号码的计算。

这个公式的具体形式如下:X = (a + b) (c d) / (e + f) (g h) / (i + j) (k l) / (m + n) (o p) / (q + r) (s t) / (u + v) (w x) / (y + z)。

在这个公式中,a到z代表了49个不同的号码,它们可以是任意的数字。

根据这个公式,我们可以通过给定的49个号码来计算出X的值。

这个公式看起来很复杂,但实际上它只是一个简单的乘法和除法的组合,只不过它涉及到了很多个数字而已。

接下来,让我们来看看这个计算公式的应用。

这个计算公式可以用于各种不同的情况,比如统计学、金融学、工程学等等。

在统计学中,我们可以用这个公式来计算一组数据的均值、方差、标准差等统计量。

在金融学中,我们可以用这个公式来计算投资组合的收益率、风险等指标。

在工程学中,我们可以用这个公式来计算各种物理量的数值,比如速度、加速度、力等等。

除了这些应用之外,这个计算公式还可以用于解决一些实际生活中的问题。

比如,我们可以用这个公式来计算一组数据的平均值,然后根据这个平均值来做出一些决策。

我们还可以用这个公式来计算一些复杂的物理量,比如机械系统的能量、动量等等。

总之,这个计算公式有着广泛的应用领域,它可以帮助我们解决各种不同的问题。

最后,让我们来谈谈这个计算公式的意义。

这个计算公式的意义在于它可以帮助我们理解数学中的一些基本概念,比如乘法、除法、优先级等等。

通过学习这个计算公式,我们可以更好地理解数学中的一些重要概念,从而提高我们的数学水平。

此外,这个计算公式还可以帮助我们解决一些实际生活中的问题,比如统计、金融、工程等领域的问题。

六年级数学上册计算运算规律公式大全

六年级数学上册计算运算规律公式大全

六年级数学上册『计算运算规律公式大全』一、五大运算定律:(1)加法交换律:a+b=b+a;(2)加法结合律:a+b+c=(a+b)+c=a+(b+c);(3)乘法交换律:a×b=b×a;(4)乘法结合律:a×b×c=(a×b)×c=a×(b×c);(5)乘法分配律:(a+b)×c=a×c+b×c;(a-b)×c=a×c-b×c;二、五大运算性质:(1)加减法的运算性质:a+b-c=a-c+b;a-b-c=a-c-b=a-(b+c);(2)乘除法的运算性质:a×b÷c=a÷c×b;a÷b÷c=a÷c÷b=a÷(b×c);(3)除法分配性质:(a±b)÷c=a÷c±b÷c;(4)商不变性质:a÷b=(a×m)÷(b×m)=(a÷n)÷(b÷n) (5)积不变性质:a×b=(a×m)×(b÷m)六年级数学上册『计算运算规律公式大全』三、添(去)括号法则:(1)a+b-c=a+(b-c)a-(b-c)=a-b+c;(2)a×b÷c=a×(b÷c)a÷(b÷c)=a÷b×c;四、等差数列求和公式(1)和=(首项+末项)×项数÷2(2)末项=首项+(项数-1)×公差(3)项数=(末项-首项)÷公差+1(4)公差=(末项-首项)÷(项数-1)五、方幂巧算公式(1)平方差公式:a2-b2=(a+b)×(a-b)(2)完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2;(3)“咬尾和”公式:1×2+2×3+3×4+4×5+…+(n-1)×n=(n−1)n(n+1)3 (4)连续数平方和公式:12+22+32+42+52+…+n2=n(n+1)(2n+1)6(5)连续数立方和公式:13+23+33+43+53+…+n3=(1+2+3+4+5+…+n)2。

数学公式大全

数学公式大全

第一部分:小学数学图形计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径 ?=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积 =长×宽×高 V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高 S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高 V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体正方体的体积=边长×边长×边长公式:V=a×a×a长方体的体积=长×宽×高公式:V=a×b×h第二部分:数量关系公式1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数第三部分:其它数学公式一、和差问题(和+差)÷2=大数(和-差)÷2=小数二、和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)三、差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)四、植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数五、盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数六、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间七、追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间八、流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2九、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量十、利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)十一、时间单位换算1世纪=100年 1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时 1时=60分1分=60秒 1时=3600秒积=底面积×高 V=Sh第四部分:概念1、加法交换律:两数相加交换加数的位置,和不变。

人类最美的54个公式

人类最美的54个公式

人类最美的54个公式作为一种方式来描述和解释自然现象和数学常识的工具,公式在人类的历史中起着重要的作用。

在众多公式中,有一些被视为人类创造的最美之作。

以下是人类认为最美的54个公式。

1. 欧拉公式:e^(iπ) + 1 = 0。

这个公式将数学中的五个最基本的数——0、1、e、i和π联系在了一起。

2. 直线方程:y = mx + b。

这个简单而经典的公式描述了直线的关系,具有重要的几何和物理意义。

3. 平方差公式:(a + b)^2 = a^2 + 2ab + b^2。

它展示了两个数的平方和与其各自平方之和的关系。

4. 费马小定理:对于素数p和整数a,a^p ≡ a (mod p)。

这个公式是数论中的基石之一,深刻揭示了整数的特性。

5. 波尔-爱因斯坦关系:E = mc^2。

它描述了质量与能量之间的等价关系,是相对论中最著名的公式之一。

6. 黎曼猜想:ζ(s) = 0。

这是数论中的一个重要猜想,关于复数域上的黎曼ζ函数零点的分布。

7. 斯特恩-盖恩斯公式:2^n = nC0 + nC1 + ... + nCn。

它表示一个集合中所有子集的总数等于2的n次方。

8. 高斯公式:∑n = (n(n+1))/2。

这个公式描述了整数从1累加到n的和,被高斯称为等差数列的和公式。

9. 球体表面积公式:4πr^2。

这个公式表示球体表面的面积与半径的平方成正比,是几何学中的重要公式之一。

10. 波长和频率公式:v = λf。

这个公式描述了波长、频率和波速之间的关系,为声波、光波等的研究提供了基础。

11. 黄金分割公式:φ = (1+√5)/2。

这个公式描述了一种美学比例,被广泛应用于艺术和设计领域。

12. 傅里叶级数:f(x) = a0 + ∑(an*cos(nx) + bn*sin(nx))。

它将一个函数展开为一组三角函数的线性组合,具有极大的实用价值。

13. 熵公式:S = -k∑(p*log(p))。

这个公式描述了热力学中的熵,用于衡量系统的无序程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是 1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。

依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是 1000+700*3=3100(个)20000页中有多少6就是 2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二,握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。

按照排列组合假设总数为X人则Cx取3=152 但是在计算X时却是相当的麻烦。

我们仔细来分析该题目。

以某个人为研究对象。

则这个人需要握x-3次手。

每个人都是这样。

则总共握了x×(x-3)次手。

但是没2个人之间的握手都重复计算了1次。

则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为: x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X , Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。

1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。

证明:设A、B两地相距S,则往返总路程2S,往返总共花费时间 s/a+s/b故 v=2s/(s/a+s/b)=2ab/(a+b)六,空心方阵的总数空心方阵的总数= (最外层边人(物)数-空心方阵的层数)×空心方阵的层数×4= 最外层的每一边的人数^2-(最外层每边人数-2*层数)^2=每层的边数相加×4-4×层数空心方阵最外层每边人数=总人数/4/层数+层数方阵的基本特点:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层边上的人数就少2;②每边人(或物)数和四周人(或物)数的关系:③中实方阵总人(或物)数=(每边人(或物)数)2=(最外层总人数÷4+1)2例:①某部队排成一方阵,最外层人数是80人,问方阵共有多少官兵?(441人)②某校学生刚好排成一个方队,最外层每边的人数是24人,问该方阵有多少名学生?(576名)解题方法:方阵人数=(外层人数÷4+1)2=(每边人数)2③参加中学生运动会团体操比赛的运动员排成了一个正方形队列。

如果要使这个正方形队列减少一行和一列,则要减少33人。

问参加团体操表演的运动员有多少人?(289人)解题方法:去掉的总人数=原每行人数×2-1=减少后每行人数×2+1典型例题:某个军队举行列队表演,已知这个长方形的队阵最外围有32人,若以长和宽作为边长排出2个正方形的方阵需要180人。

则原来长方形的队阵总人数是( )A、64,B、72C、96D、100【解析】这个题目经过改编融合了代数知识中的平方和知识点。

长方形的(长+宽)×2=32+4 得到长+宽=18。

可能这里面大家对于长+宽=18 有些难以计算。

你可以假设去掉4个点的人先不算。

长+宽(不含两端的人)×2+4(4个端点的人)=32 ,则计算出不含端点的长+宽=14 考虑到各自的2端点所以实际的长宽之和是14+2+2=18 。

求长方形的人数,实际上是求长×宽。

根据条件长×长+宽×宽=180 综合(长+宽)的平方=长×长+宽×宽+2×长×宽=18×18 带入计算即得到B。

其实在我们得到长宽之和为18时,我们就可以通过估算的方法得到选项B七,青蛙跳井问题例如:①青蛙从井底向上爬,井深10米,青蛙每跳上5米,又滑下4米,这样青蛙需跳几次方可出井?(6)②单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米来,问小赵几次才能爬上单杠?(7)总解题方法:完成任务的次数=井深或绳长 - 每次滑下米数(遇到半米要将前面的单位转化成半米)例如第二题中,每次下滑半米,要将前面的4米转换成8个半米再计算。

完成任务的次数=(总长-单长)/实际单长+1八,容斥原理总公式:满足条件一的个数+满足条件2的个数-两个都满足的个数=总个数-两个都不满足的个数【国2006一类-42】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人? A.27人 B.25人 C.19人 D.10人上题就是数学运算试题当中经常会出现的“两集合问题”,这类问题一般比较简单,使用容斥原理或者简单画图便可解决。

但使用容斥原理对思维要求比较高,而画图浪费时间比较多。

鉴于此类问题一般都按照类似的模式来出,下面华图名师李委明给出一个通解公式,希望对大家解题能有帮助:例如上题,代入公式就应该是:40+31-x=50-4,得到x=25。

我们再看看其它题目:【国2004A-46】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是多少?A.22 B.18 C.28 D.26代入公式:26+24-x=32-4,得到x=22九,传球问题这道传球问题是一道非常复杂麻烦的排列组合问题。

【李委明解三】不免投机取巧,但最有效果(根据对称性很容易判断结果应该是3的倍数,如果答案只有一个3的倍数,便能快速得到答案),也给了一个启发----传球问题核心公式N个人传M次球,记X=[(N-1)^M]/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数。

大家牢记一条公式,可以解决此类至少三人传球的所有问题。

四人进行篮球传接球练习,要求每人接球后再传给别人。

开始由甲发球,并作为第一次传球,若第五次传球后,球又回到甲手中,则共有传球方式:A.60种B.65种C.70种D.75种x=(4-1)^5/4 x=60十,圆分平面公式:N^2-N+2,N是圆的个数十一,剪刀剪绳对折N次,剪M刀,可成M*2^n+1段将一根绳子连续对折3次,然后每隔一定长度剪一刀,共剪6刀。

问这样操作后,原来的绳子被剪成了几段?A.18段B.49段C.42段D.52段十二,四个连续自然数,性质一,为两个积数和两个偶数,它们的和可以被2整除,但是不能被4整除性质二,他们的积+1是一个奇数的完全平方数十三,骨牌公式公式是:小于等于总数的2的N次方的最大值就是最后剩下的序号十四,指针重合公式关于钟表指针重合的问题,有一个固定的公式:61T=S(S为题目中最小的单位在题目所要求的时间内所走的格书,确定S后算出T的最大值知道相遇多少次。

)十五,图色公式公式:(大正方形的边长的3次方)—(大正方形的边长—2)的3次方。

十六,装错信封问题小明给住在五个国家的五位朋友分别写信,这些信都装错的情况共有多少种 44种f(n)=n!(1-1/1!+1/2!!-1/3!......+(-1)n(1/n!))或者可以用下面的公式解答装错1信 0种装错2信:1种3 24 95 44递推公式是S(n)=n.S(n-1)+(-1)^n~~~~~如果是6封信装错的话就是265~~~~十七,伯努利概率模型某人一次涉及击中靶的概率是3/5,设计三次,至少两次中靶的概率是集中概率3/5,则没集中概率2/5,即为两次集中的概率+三次集中的概率公式为 C(2,3)*[(3/5)^2]*[(2/5)^1]+C(3,3)[(3/5)^3]*[(2/5)^0]81/125十八,圆相交的交点问题N个圆相交最多可以有多少个交点的问题分析 N*(N-1)十九,约数个数问题M=A^X*B^Y 则M的约数个数是(X+1)(Y+1)360这个数的约数有多少个?这些约数的和是多少?解〕360=2×2×2×3×3×5,所以360的任何一个约数都等于至多三个2(可以是零个,下同),至多两个3和至多一个5的积。

如果我们把下面的式子(1+2+4+8)×(1+3+9)×(1+5)展开成一个和式,和式中的每一个加数都是在每个括号里各取一个数相乘的积。

由前面的分析不难看出,360的每一个约数都恰好是这个展开式中的一个加数。

由于第一个括号里有4个数,第二个括号里有3个数,第三个括号里有2个数,所以这个展开式中的加数个数为4×3×2=24,而这也就是360的约数的个数。

另一方面,360的所有约数的和就等于这个展开式的和,因而也就等于(1+2+4+8)×(1+3+9)×(1+5)=15×13×6=1,170答:360的约数有24个,这些约数的和是1,170。

甲数有9个约数,乙数有10个约数,甲、乙两数最小公倍数是2800,那么甲数和乙数分别是多少?解:一个整数被它的约数除后,所得的商也是它的约数,这样的两个约数可以配成一对.只有配成对的两个约数相同时,也就是这个数是完全平方数时,它的约数的个数才会是奇数.因此,甲数是一个完全平方数.2800=24×52×7.在它含有的约数中是完全平方数,只有1,22,24,52,22×52,24×52.在这6个数中只有22×52=100,它的约数是(2+1)×(2+1)=9(个).2800是甲、乙两数的最小公倍数,上面已算出甲数是100=22×52,因此乙数至少要含有24和7,而24×7=112恰好有(4+1)×(1+1)=10(个)约数,从而乙数就是112.综合起来,甲数是100,乙数是112.二十,吃糖的方法当有n块糖时,有2^(n-1)种吃法。

相关文档
最新文档