5向量与矩阵的范数
第五章--向量范数和矩阵范数

当 x 时,|| x ||A 0 ;当 x θ 时由 A 对称
正定知 xH Ax 0 ,即 || x ||A 0 。
对于任意 k C ,有 || k x ||A (kx)T A(kx) | k | xT Ax | k | || x ||A
由于 A 为Hermite正定矩阵,故存在酉矩阵 U ,使得
|| x ||2
| x1 |2 | x2 |2
| xn |2
定义的|| ||2 是 F n上的向量范数,称为2-范数或 l2
范数,也称为 Euclid 范数。
例 7 对任意 x ( x1, x2, , xn) T F n,由
|| x ||p
1/ p n
| xi |p , p 1
i1
定义的|| ||p 是 F n 上的向量范数,称为p -范数或 lp
UT AU Λ diag( λ1, λ2, , λn)
这里 A 的特征值 λi (i 1, 2, , n) 都为正数。
从而有
A UΛUT U Λ Λ UT BT B
此时
|| x ||A xT Ax xT BT Bx (Bx)T Bx || Bx ||2
因此对任意 y C n , || x y ||A || B( x y) ||2
数 || A || 表示对于任意向量 x F n , A 可以 “拉伸”向量 x 的最大倍数,即使得不等式
|| A x || C || x || 成立的最小的数 C 。称 || A || 为范数 || || 和 || ||
j1
n
| xj
j1
yj |; yj |;
yj |;
1
yj |m m;
以及与椭圆范数类似的Mahalanobis距离:
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p×q, B q×p, 则|I p+AB|=|I q+BA|证明一:参照课本194页,例4.3.证明二:利用AB和BA有相同的非零特征值的性质;从而I p+AB,I q+BA中不等于1的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:n nii ii1i1tr(A)a====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2. Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4. 1tr(P AP)tr(A)-=;5. H Htr(x Ax)tr(Axx ),x =为向量;6. nnk ki i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A H B)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
向量与方阵的范数

x2 L xn ) ∈ R n , n 维向量空间 R n 上常用的向量范数有:
T
2 2 2
(1) .2-范数: || x || 2 = x1 + x 2 L + x n ; (2) .1-范数: || x ||1 =| x1 | + | x 2 | + L + | x n | ; (3) . ∞ 范数: || x ||∞ = max{ xi };
− A → 0 (k → ∞) 。
练习
⎛ 2 − 4⎞ ⎛ 1 ⎞ 1.设 A = ⎜ ⎟,x = ⎜ ⎟ 。求: x 1 , x 2 , x ∞ , A 1 , A 2 , A ∞ 。 ⎜1 − 3⎟ ⎜ − 2⎟ ⎠ ⎝ ⎝ ⎠
2.设 A 是 n × n 矩阵,证明: n −1 A 2 ≤ n
−1 2
1≤i ≤ n
(4) . p -范数: x
p
=
p
x1 + L + xn
p
p
。
可以证明,它们满足定义 1 中的三条性质。 例1 解:
|| x || 2 = 12 + ( −3) 2 + 0 2 + 2 2 = 14 ;
计算向量 x = (1 − 3 0 2 ) 的 2-范数,1-范数, ∞ 范数和 4-范数。
n
1≤ j ≤ n
(1)1-范数: A 1 = max ∑ aij ;
i =1
(2) ∞ 范数: || A || ∞ = max ∑ aij ;
1≤i ≤ n j =1
n
(3)2-范数: || A || 2 = λ max , λ max 为 AT A 的最大特征值; (4)Frobenius 范数: || A || F =
向量范数与矩阵范数

kA max kAx k max Ax k A .
x 1
x 1
(3) 对任意的n×n矩阵 A 和 B, 有
A B max (A B)x max Ax Bx
x 1
x 1
max Ax Bx x 1
max Ax max Bx A B
正定性三角不等式积的范数小于等于范数的积矩阵范数与向量范数的相容性定义给定向量范数和矩阵范数如果对任和任意的nn矩阵a它们总满足则称所给的矩阵范数与向量范数是相容的
§1.3 向量范数与矩阵范数
为了研究线性方程组近似解的误差估 计和迭代法的收敛性,我们需要对 Rn 中 向量或 Rn×n 中矩阵的“大小”引进某种 度量----向量或矩阵的范数。向量范数是 三维欧氏空间中向量长度概念的推广,在 数值分析中起着重要作用。
1.3.1 向量范数
向量的范数是刻画向量大小的量, 又叫向量的模.
❖定义 Rn 上的实值函数‖·‖称为向量范数,如果 对任意的 x, y∈Rn, 它均满足下列3条性质:
(1)正定性: || x ||,且 0 x 0;|| x || 0
(2)齐次性:对 k ,有R
|| kx |;|| k | || x ||
以及
A. F
解 x | 3| | 5| |1| 9, 1
x 32 (5)2 12 35 2
x max{| 3|,| 5|,|1|} 5,
|1| | 2 | | 3 |,
A
1
max
|
5
|
|1|
|
8
|,
第五专题矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)讲解学习

第五专题矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p x q, B q x p,则|l p+AB| = |l q + BA|证明一:参照课本194 页,例4.3.证明二:利用AB 和BA 有相同的非零特征值的性质;从而l p+AB ,l q+BA 中不等于1 的特征值的数目相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p+AB|和|I q+BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
nn定义:tr(A) a ii i ,etrA=exp(trA)i 1 i 1性质:1. tr( A B) tr(A) tr(B) ,线性性质;2. tr(A T ) tr(A) ;3. tr(AB) tr(BA) ;14. tr(P 1AP) tr(A) ;5. tr(x H Ax) tr(Axx H),x 为向量;nn6. tr(A) i ,tr(A k) i k;i 1 i 1从Schur 定理(或Jordan 标准形) 和(4)证明;7. A 0,则tr(A) 0 ,且等号成立的充要条件是A=0;8. A B(即A B 0),则tr(A) tr(B),且等号成立的充要条件是A=B( A B i(A) i(B) );9. 对于n阶方阵A,若存在正整数k,使得A k=0, 则tr(A)=0 (从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m x n复矩阵A和B, tr(A H B)是m x n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式2[x,y] w [x,x]. [y,y]得定理:对任意两个m x n 复矩阵A 和B|tr(A H B)|2w tr(冲A) • tr(B H B)这里等号成立的充要条件是A=cB,c为一常数。
第五专题 矩阵的数值特征(行列式、范数、条件数、迹、秩、相对特征根)

第五专题 矩阵的数值特征(行列式、迹、秩、相对特征根、范数、条件数)一、行列式已知A p ×q , B q ×p , 则|I p +AB|=|I q +BA| 证明一:参照课本194页,例.证明二:利用AB 和BA 有相同的非零特征值的性质;从而I p +AB ,I q +BA 中不等于1的特征值的数目 相同,大小相同;其余特征值都等于1。
行列式是特征值的乘积,因此|I p +AB|和|I q +BA|等于特征值(不等于1)的乘积,所以二者相等。
二、矩阵的迹矩阵的迹相对其它数值特征简单些,然而,它在许多领域,如数值计算,逼近论,以及统计估计等都有相当多的应用,许多量的计算都会归结为矩阵的迹的运算。
下面讨论有关迹的一些性质和不等式。
定义:nnii i i 1i 1tr(A)a ====λ∑∑,etrA=exp(trA)性质:1. tr(A B)tr(A)tr(B)λ+μ=λ+μ,线性性质;2.Ttr(A )tr(A)=;3. tr(AB)tr(BA)=;4.1tr(P AP)tr(A)-=; 5.H H tr(x Ax)tr(Axx ),x =为向量; 6. nnkk i i i 1i 1tr(A),tr(A )===λ=λ∑∑;从Schur 定理(或Jordan 标准形)和(4)证明; 7. A 0≥,则tr(A)0≥,且等号成立的充要条件是A=0;8. A B(A B 0)≥-≥即,则tr(A)tr(B)≥,且等号成立的充要条件是A=B (i i A B (A)(B)≥⇒λ≥λ);9. 对于n 阶方阵A ,若存在正整数k,使得A k =0,则tr(A)=0(从Schur 定理或Jordan 标准形证明)。
若干基本不等式对于两个m ×n 复矩阵A 和B ,tr(A HB)是m ×n 维酉空间上的内积,也就是将它们按列依次排成的两个mn 维列向量的内积,利用Cauchy-schwarz 不等式[x,y]2≤[x,x]﹒[y,y]得定理:对任意两个m ×n 复矩阵A 和B |tr(A H B)|2≤tr(A H A)﹒tr(B H B)这里等号成立的充要条件是A=cB,c 为一常数。
向量与矩阵范数习题

2 2
=
M (α1x1 + α2x2 + · · · + αnxn)
2 2
−
M (λ1α1x1 + λ2α2x2 + · · · + λnαnxn)
2 2
≥
M (α1x1 + α2x2 + · · · + αnxn)
2 2
−
maxi
|λi
|2
·
M (α1x1 + α2x2 + · · · + αnxn)
ν(AB) =
m i=1
n j=1
|
s k=1
αik
βkj
|
≤
m i=1
n j=1
s k=1
|αik||βkj
|
≤
m i=1
nj=1[(
s k=1
|αik|)(
s k=1
|βkj
|)
=
(
m i=1
s k=1
|αik|)(
n j=1
s k=1
|βkj |)
=AB
10
五、证明
1: A ∈ Cnn×n, λ 为其特征值,则:
U H
·
U
√ λ1
√ λ2
λn
记
M =U
√ λ1
√ λ2
... √
U H ,
λn
... √
U H
λn
则有
M = MH , A = M · M = MH · M
于是
A − BH AB = M H M − BH M H M B
对任意 x ∈ Cn,有二次型
向量与矩阵的范数

那么
n
X X H *
xi
X 1
i 1
矩阵旳谱半径及其性质
定义:设 A C mn ,A 旳 n 个特征值为 1, 2, , n ,我们称
( A) max{ 1 , 2 , , n }
为矩阵 A 旳谱半径。 例 1 :设 A C mn ,那么
( A) A
这里 A 是矩阵 A 旳任何一种范数。
F
F
于是有
AB A B
F
F
F
例 4 :对于任意 A C nn ,定义
A
[Tr
(
AH
A)]
1 2
证明如此定义旳 A 是矩阵 A 旳范数。
证明: 首先注意到这么一种基本事实,
即
[Tr( AH
1
A)] 2
(
m
n
aij
2
)
1 2
i1 j1
由一种例题可知此定义满足范数旳性质。
Frobenious范数旳性质:
(1)' n
1
(2)' n
2
1
2
(3)' n
2
引理(Hoider不等式):设
a1, a2, , an T , b1, b2, , bn T Cn
则
n
n
aibi (
ai p ) 1 p ( n
bi
q)
1 q
i 1
i 1
i 1
其中 p 1,
q1 且
1p
是矩阵范数。
证明:非负性,齐次性和三角不等式轻易 证得。目前我们考虑乘法旳相容性。设
A C nn , B C nn ,那么
n
n
AB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d1
A
A d2
A,
A C mn
诱导范数
定 数义 ,: 如设果对X于任是何向矩量阵范A数与,向A量
是矩阵范
X 都有
AX A X
则称矩阵范数 的。
A 与向量范数
X 是相容
例 1 :矩阵的Frobenius范数与向量的2-范
数是相容的.
证明 : 因为
d1
b
a
d2
,
b
V
定理:有限维线性空间 V 上的任意两个向
量范数都是等价的。
利用向量范数可以去构造新的范数。
例 :设 g b是 Cm 上的向量范数,且
ACmn , rank( A) n ,则由
A , Cn
a
b
所定义的 g a是 Cn 上的向量范数。
例 : 设 V 数域 F 上的 n 维线性空间,
a (k) 21
1
r k (r
1),
那么
a (k) 22
k2 k2
k k
1 lim A(k) A 3
0
k
1 1
定理: 矩阵序列{A(k )} 收敛于 A 的充分必
要条件是
lim A(k) A 0
k
其中 A(k) A 为任意一种矩阵范数。
证明:取矩阵范数
mn
A aij
i1 j1
(1)如果 A 1 2 L n ,那么
n
A 2 F
2 i2
i 1
n
(2) A 2 TR( AH A) F
i ( AH A)
i 1
(3)对于任何 m 阶酉矩阵 U 与 n 阶酉矩阵
V 都有等式
A UA AH
F
F
F
AV UAV
F
F
关于矩阵范数的等价性定理。
定理:设 A , A 是矩阵 A 的任意两
mn
1 22
A ( F
aij )
i1 j1
n
X ( 2
xi 2 ) 12 ( X H X )1 2
i 1
根据Hoider不等式可以得到
2
mn
mn
AX 2 2
aij x j ( aij x j )2
i1 j1
i1 j1
m n
2n
2
[( aij )( x j )]
i1 j1
j 1
第五章 向量与矩阵的范数
定义: 设V 是实数域 R(或复数域 C )上 的 n 维线性空间,对于V 中的任意一个向量 按照某一确定法则对应着一个实数,这个
实数称为 的范数,记为 ,并且要求
范数满足下列运算条件:
(1)非负性:当 0, 0 只 有且仅有当 0, 0
(2) 齐次性: k k , k 为任
bkj
A B
因此 A 为矩阵 A 的范数。
例 3 :对于任意 A Cmn,定义
m n
21
A ( F
aij ) 2
i1 j1
可以证明 A 也是矩阵 A 的范数。我们称此 范数为矩阵 A 的Frobenious范数。
证明:此定义的非负性,齐次性是显然的。
利用Minkowski不等式容易证明三角不等式。 现在我们验证乘法的相容性。
于是有
n
x(
p
yi p ) 1 p
i 1
另一方面 n
1 yi p n
i 1
n
1
1
1 ( yi p ) p n p
i 1
故
n
lim(
p i1
yi p ) 1 p
1
由此可知
lim
p
p
x
max
1in
ai
定 上义 定:义设的两种a向, 量范 数b ,是如n果维存线在性两空个间与V 无关的正数 d1 , d2 使得
A(k ) A
lim k i1
a (k) ij
aij
j 1
0
那么对每一对 i, j 都有
lim
k
a (k) ij
aij
0
(i 1, 2,L , m; j 1, 2,L , n)
即
lim
k
aij
(
k
)
aij
(i 1, 2,L , m; j 1, 2,L , n)
故有
lim
k
A(k )
A
A 1 0 0 或 A 0 1 0
i 0 0
0 0 1
分别计算这两个矩阵的 A , A , A
和A 。
1
2
F
例 2 :证明:对于任何矩阵 A Cmn 都有
AH AT A
1
1
AH AT A
2
2
2
AH A A 2
2
2
A 2 A A
2
1
如何由矩阵范数构造与之相容的向量范数?
定理:设 A 是矩阵范数,则存在向量范数 X 使得 *
引理(Minkowski不等式):设
a1,a2,L ,an T , b1,b2,L ,bn T Cn
则
n
(
ai bi p ) 1 p ( n
ai p ) 1 p ( n
bi p ) 1 p
i 1
i 1
i 1
其中实数 p 1 。
几种常用的范数
定义:设向量 a1, a2,L , an T ,对任
AX A X *
证明:对于任意的非零向量 ,定义向量范
数 X X H ,容易验证此定义满足向
量范数的三个性质*,且
AX AX H A X H
*
*
*
A X *
例:已知矩阵范数
mn
A A *
aij
i1 j1
求与之相容的一个向量范数。
解:取 0 1 L 0 T 。设 X x1 x2 L xn T
意的数 p 1 ,称
n
( p
ai p ) 1 p
为向量
的
i 1
p 范数。
常用的 p 范数:
n
(1)1-范数
1
ai
i 1
(2)2-范数
n
( 2
ai
2
)
1 2
( H )1 2
i 1
也称为欧氏范数。
(3)
-范数 lim
p
p
定理:
max 1in
ai
证明:令
max
1in
ai
,则
yi ai x , i 1, 2,L , n
都收敛,则称矩阵序列{A(k )} 收敛。
进一步,如果
那么
lim
k
aij
(
k
)
aij
lim
k
A(k )
A
[aij ]
我们称矩阵 A 为矩阵序列 {A(k )} 的极限。
例 :如果设 A(k ) aij(k ) C22 ,其中
a (k) 11
k 1, 3k
a (k) 12
rk (0
r
1)
mn p
mn p
AB
aikbkj
aik bkj
i1 j1 k 1
i1 j1 k 1
mn
p
p
[( aik )( bkj )]
i1 j1 k 1
k 1
mp
np
( aik )( bkj )
i1 k 1
j1 k 1
A B
例 2 :设矩阵 A Cnn ,证明:
A
n max i, j
aij
是矩阵范数。
应的一个实数,且满足
(1)非负性:当 A 0, A 0 只有 且仅有当 A 0, A 0
(2) 齐次性: kA k A , k 为任
意复数。 (3) 三角不等式:对于任意两个同种形
状矩阵 A, B 都有
AB A B
(4)矩阵乘法的相容性:对于任意两个可以
相乘的矩阵 A, B ,都有
AB A B
设 ACml , B Cln ,则
mn l
2
mn l
AB 2 F
aikbkj
( aik bkj )2
i1 j1 k 1
i1 j1 k 1
m
n
l
[(
l
aik 2 )(
2
bkj )]
i1 j1 k 1
k 1
m
(
l
n
aik 2 )(
l
2
bkj )
i1 k 1
j1 k 1
A 2B 2
2
定理:设 A Cmn ,则
m
(1)
A 1
max( j i1
aij
),
j 1, 2,L , n
我们称此范数为矩阵A 的列和范数。
(2)
A
2
max( j
j
(
AH
A))
1 2
,
j ( AH A)
表示矩阵AH A 的第 j 个特征值。我们称此范 数为矩阵 A 的谱范数。
n
(3)
A
max( i
j 1
证。现在考虑矩阵范数的相容性。
设 B 0 ,那么
ABX
A(BX )
AB max
max(
i
X 0
X
X 0 BX
A(BX )
BX
max
max
BX 0 BX
X 0 X
AX
BX
max
max
X 0 X
X 0 X
A B
i
i