动量例题练习题及测试题大全(含解析答案)

合集下载

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案)
v 25m / s
考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是 两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系 统,由系统动量守恒列出等式,联立求解
2.一质量为 的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧
代入数据解得:E 损=0.25J 答:①碰后 A 球的速度为 1.0m/s; ②碰撞过程中 A、B 系统损失的机械能为 0.25J. 【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.
9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的 B=4T 的匀磁场中,两导轨间 距 L=0.5m,导轨足够长金属棒 a 和 b 的质量都为 m=1kg,电阻 Ra Rb 1 .b 棒静止于轨 道水平部分,现将 a 棒从 h=80cm 高处自静止沿弧形轨道下滑,通过 C 点进入轨道的水平 部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求 a、b 两棒的最 终速度大小以及整个过程中 b 棒中产生的焦耳热(已知重力加速度 g 取 10m/s2)
根据题意: m1 : m2 2
有以上四式解得: v2 2 2gR
接下来男演员做平抛运动:由 4R 1 gt2 ,得 t 8R
2
g
因而: s v2t 8R ; 【点睛】
两演员一起从从 A 点摆到 B 点,只有重力做功,根据械能守恒定律求出最低点速度;女 演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回
Q

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。

在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。

在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析

高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F .【答案】(1)0.32μ= (2)F =130N【解析】试题分析:(1)对A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv ,代入数据解得:F=130N .3.滑冰是青少年喜爱的一项体育运动。

动量定理练习题含答案及解析

动量定理练习题含答案及解析

动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。

(完整版)动量定理精选习题+答案

(完整版)动量定理精选习题+答案

动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。

动量题库大全(含解答)

动量题库大全(含解答)

动量一、选择题1、(开封市06第一次质检)如下图,在地面上固定一个质量为M 的竖直木杆,一个质量为m 的人以加速度a 沿杆匀加速向上爬,经时间t ,速度由零增加到v ,在上述过程中,地面对木杆的支持力的冲量为( C )A. ()Mg mg ma t +-B. ()m M v +C. ()Mg mg ma t ++D. mv2、(涟源市06年第一次检测)如图(a)所示,质量为2m 的长木板,静止地放在光滑的水平面上,另一质量为m 的小铅块(可视为质点)以水平速度V 0滑上木板左端,恰能滑至木板右端且与木板保持相对静止,铅块运动中所受的摩擦力始终不变。

若将木板分成长度与质量均相等(即m 1 = m 2 = m )的两段1、2后紧挨着放在同一水平面上,让小铅块以相同的初速度V 0由木板1的左端开始运动,如图(b)所示,则下列说法正确的是 ADA. 小铅块滑到木板2的右端前就与之保持相对静止B. 小铅块滑到木板2的右端与之保持相对静止C. (a)、(b)两种过程中产生的热量相等D. (a)示过程产生的热量大于(b)示过程产生的热量3、(湖南重点中学06联考)一个γ光子的能量为E ,动量为P ,射到一个静止的电子上,被电子反射回来,其动量大小变为P 1,能量变为E 1,电子获得的动量为P 2,动能为E 2则有 DA 、E 1═E P 1═PB 、E 1 < E P 1 < PC 、E 2 < E P 2 < PD 、E 2 <E P 2>P4、(台州市06调研)关于一对作用力与反作用力在作用过程中的总功W 和总冲量I ,下列说法中正确的是 BA .W 一定等于零,I 可能不等于零B .W 可能不等于零,I 一定等于零C .W 和I 一定都等于零D .W 和I 可能都不等于零。

5、(云南06第一次检测)如图所示,光滑水平面上有两个大小相同的钢球A 、B ,A 球的质量大于B 球的质量,开始时A 球以一定的速度向右运动,B 球处于静止状态.两球碰撞后均向右运动.设碰撞前A 球的德布罗意波长为λ1,碰撞后A 、B 两球的德布罗意波长分别为λ2和λ3.已知运动物体的德布罗意波长和动量之间的关系式为h P λ=,则下列关系式正确的是 DA .λ1=λ2=λ 3B .λ1=λ2+λ 3C .λ1=1212λλλλ- D .λ1=1212λλλλ+9、(郑州一中 开封高中 洛阳一高 信阳高中06四校联考)如图所示,半径为R ,质量为M ,内表面光滑的半球物体放在光滑的水平面上,左端紧靠着墙壁,一个质量为m 的小球从半球形物体的顶端的a 点无初速释放,图中b 点为半球的最低点,c 点为半球另一侧与a 同高的顶点,关于物块M 和m 的运动,下列说法中正确的有 BDA 、m 从a 点运动到b 点的过程中,m 与M 系统的机械能守恒、动量守恒。

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析

物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。

用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。

另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。

求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。

【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。

(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。

2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。

⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。

2.动量守恒定律的表达形式 (1)朋口 巾=朋科 +禺卩;,即 p i p 2=p l/ p 2/ , (2) 巾1 Zp2=0,巾仁-巾2 3.应用动量守恒定律解决问题的基本思路和一般方法 (1 )分析题意,明确研究对象。

(2) 对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。

(3) 确定过程的始、末状态,写出初动量和末动量表达式。

注重:在研究地面上物体间相互作用的过程时, 各物体运动的速度均应取地球为参考系。

(4)建立动量守恒方程求解。

V 1V 4.注重动量守恒定律的 整体性;③矢量性;④相对性; 二、动量守恒定律的应用 1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。

碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。

五性”①条件性;② ⑤同时性. 如:光滑水平面上,质量为 m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B的左端连有轻弹簧分析:在I位置A B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到n位置A B速度刚好相等(设为v),弹簧被压缩到最短;再往后A B远离,到川位位置恰好分开。

(1)弹簧是完全弹性的。

压缩过程系统动能减少全部转化为弹性势能,n状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此I、川状态系统动能相等。

这种碰撞叫做弹性碰撞。

由动量守恒和能量守恒可以证实A、B的最终速度分别为:t刑]-刖T十2拠1V1 二--- -------- 二------------------------- 巧:;-1 ■ -\ ;r. - 。

(这个结论最好背下来,以后经常要用到。

)(2)弹簧不是完全弹性的。

压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,n状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。

(3)弹簧完全没有弹性。

压缩过程系统动能减少全部转化为内能,n状态没有弹性势能;由于没有弹性,A B不再分开,而是共同运动,不再有分离过程。

可以证实, A B最r ~r 叫v L = v2 =——-—片终的共同速度为“1 ;一。

在完全非弹性碰撞过程中,系统的动能损失最大,为:(这个结论最好背下来,以后经常要用到。

)v1【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。

质量为m的小球以速度v1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H和物块的最终速度V。

2 •子弹打木块类问题【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块, 并留在木块中不再射出,子弹钻入木块深度为d o求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

3 •反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。

这类问题相互作用过程中系统的动能增大,有其它能向动能转化。

可以把这类问题统称为反冲。

【例4】质量为m的人站在质量为M长为L的静止小船的右端,小船的左端靠在岸边。

当他向左走到船的左端时,船左端离岸多远?【例5】总质量为M的火箭模型从飞机上释放时的速度为v O,速度方向水平。

火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4 •爆炸类问题【例6】抛出的手雷在最高点时水平速度为 10m/s,这时忽然炸成两块,其中大块质量 300g 仍按原方向飞行,其速度测得为 50m/s,另一小块质量为 200g,求它的速度的大小和方向。

5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成B角时,圆环移动的距离是多少?mv O,6.物块与平板间的相对滑动【例8】如图所示,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 的小木块A ,m< MA B 间动摩擦因数为 卩,现给A 和B 以大小相等、方向相反的初速度 使A 开始向左运动,B 开始向右运动,最后 A 不会滑离B,求: (1) A 、B 最后的速度大小和方向;【例9】两块厚度厂,:二丘,&'二「二,它们的下底面光滑,上表面粗糙;另有一质量的滑块C (可视为质点),以 由于摩擦,滑块最后停在木块 -■的速度恰好水平地滑到 A 的上表面,如图所示, B 上,B 和C 的共同速度为 3.0m/s ,求:(1)木块A 的最终速度丄三、针对练习练习11. 质量为M 的小车在水平地面上以速度 v 0匀速向右运动。

当车中的砂子从底部的漏斗 中不断流下时,车子速度将( )A. 减小B .不变C.增大D.无法确定2•某人站在静浮于水面的船上,从某时刻开始人从船头走向船尾,设水的阻力不计, 那么在这段时间内人和船的运动情况是( )A 人匀速走动,船则匀速后退,且两者的速度大小与它们的质量成反比B.人匀加速走动,船则匀加速后退,且两者的速度大小一定相等(2)滑块C 离开A 时的速度C. 不管人如何走动,在任意时刻两者的速度总是方向相反,大小与它们的质量成反比D. 人走到船尾不再走动,船则停下3•如图所示,放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们各安闲桌面上滑行一段距离后,飞离桌面落在地上。

A的落地点与桌边水平距离0.5m, B的落地点距离桌边 1m那么()A. A、B离开弹簧时的速度比为 1 : 2B. A B质量比为2 : 1C. 未离开弹簧时,A B所受冲量比为1 : 2D. 未离开弹簧时,A B加速度之比1 : 24. 连同炮弹在内的车停放在水平地面上。

炮车和弹质量为M炮膛中炮弹质量为 m炮车与地面同时的动摩擦因数为仏炮筒的仰角为a设炮弹以速度"()射出,那么炮车在地面上后退的距离为 __________________ 。

5. 甲、乙两人在摩擦可略的冰面上以相同的速度相向滑行。

甲手里拿着一只篮球,但总质量与乙相同。

从某时刻起两人在行进中互相传球,当乙的速度恰好为零时,甲的速度为___________________ ,此时球在 ________________ 位置。

6. 如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为 M=6.0kg。

当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=50cm,而木块所受的平均阻力为 f=80N。

若爆竹的火药质量以及空气阻力可忽略不计,g取求爆竹能上升的最大高度。

练习31在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是()A. 若两球质量相同,碰后以某一相等速率互相分开B. 若两球质量相同,碰后以某一相等速率同向而行C. 若两球质量不同,碰后以某一相等速率互相分开D. 若两球质量不同,碰后以某一相等速率同向而行2. 如图所示,用细线挂一质量为M的木块,有一质量为 m 的子弹自左向右水平射穿此木块,穿透前后子弹的速度分别为"()和v (设子弹穿过木块的时间和空气阻力不计),木块的速度大小为()A (朋%+ 协)W B.(朋%叽.(用%- +m]C(朋%+ 协)*M+3. 载人气球原静止于高h的空中,气球质量为 M,人的质量为m。

若人要沿绳梯着地,则绳梯长至少是()A. ( m M) h/M B . mh/M C. Mh/m D. h4. 质量为2kg 的小车以2m/s的速度沿光滑的水平面向右运动,若将质量为2kg的砂袋以3m/s的速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是()A. 2.6m/s,向右B. 2.6m/s,向左C. 0.5m/s,向左D. 0.8m/s,向右5. 在质量为M的小车中挂有一单摆,摆球的质量为櫛0,小车(和单摆)以恒定的速度V沿光滑水平地面运动,与位于正对面的质量为 m的静止木块发生碰撞,碰撞的时间极短。

在此碰撞过程中,下列哪个或哪些说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别变为片、”2、”,满足(M +妁)7二矽1 +用巾+朋0乃B. 摆球的速度不变,小车和木块的速度变为:1和二,满足臥C. 摆球的速度不变,小车和木块的速度都变为v,满足MV( M m vD. 小车和摆球的速度都变为丘,木块的速度变为二,满足(M+他)7二(M+确)内+輕6•车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。

设子弹质量为出口速度V,车厢和人的质量为 M,则子弹陷入前车壁后,车厢的速度为()A. mv/M| 向前B. mv/M,向后C. mv/ (m M,向前D. 07•向空中发射一物体,不计空气阻力。

当此物体的速度恰好沿水平方向时,物体炸裂成a、b两块,若质量较大的 a块的速度方向仍沿原来的方向,则()A. b的速度方向一定与原速度方向相反B. 从炸裂到落地的这段时间里,a飞行的水平距离一定比b的大C. a、b 一定同时到达水平地面D. 在炸裂过程中,a、b受到的爆炸力的冲量大小一定相等&两质量均为 M的冰船A B静止在光滑冰面上,轴线在一条直线上,船头相对,质量为m的小球从A船跳入B船,又马上跳回,A B两船最后的速度之比是________________________ 答案【例1】解析:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系统动量守恒得:■■:V' - ?-mv? = —[M + 佛»占 + mgH由系统机械能守恒得:解得777777< 全过程系统水平动量守恒,机械能守恒,得对子弹用动能定理:对木块用动能定理:后共同运动的类型,全过程动能的损失量均可用公式:2mv = ------- v点评:本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性 势能。

【例3】解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:wv 0 二+ 那)v从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为s i 、s 2,如图所示,显然有 s 1-s 2=d点评:这个式子的物理意义是:f ?d 恰好等于系统动能的损失;根据能量守恒定律,系 统动能的损失应该等于系统内能的增加;可见 \f-d = Q ,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦 力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

相关文档
最新文档