高分子金属配合物催化剂的合成(合成化学报告)解析

合集下载

有机金属催化的研究与应用

有机金属催化的研究与应用

有机金属催化的研究与应用有机金属催化是一种重要的有机化学方法,它利用过渡金属配合物作为催化剂,能够实现一系列高效、高选择性的有机反应。

近年来,有机金属催化在化学合成领域得到了广泛应用,并取得了令人瞩目的成就。

本文将从催化机理、反应类型和应用案例三个方面探讨有机金属催化的研究与应用。

一、催化机理有机金属催化是通过配位键的形成和断裂来实现的。

一般来说,过渡金属配合物使底物分子与其配体发生配位作用,形成配合物后底物分子发生骨架改变或生成中间体,并最终通过配体的脱离重新释放出底物产物。

在这一过程中,过渡金属配合物起到了催化剂的作用,加速了反应进程。

二、反应类型有机金属催化可以实现多种类型的有机反应。

以下是几种常见的反应类型:1. 氢化反应:有机金属催化可以促进烯烃、酮、醛等的氢化反应,将它们转化为相应的饱和化合物。

2. 碳—碳键形成反应:有机金属催化可以催化烯烃、炔烃等的碳—碳键形成反应,形成环状化合物或多取代的碳链。

3. 氧、氮等杂原子插入反应:有机金属催化可以促进有机分子中的氧、氮等杂原子插入到碳链上,实现环脱氧、环脱氮等反应。

4. 反应的选择性控制:有机金属催化在一些复杂的反应体系中,可以实现对不同官能团或位置的选择性控制,产生特定的产物。

三、应用案例有机金属催化在有机合成中的应用非常广泛,以下是几个典型的应用案例:1. 医药领域:有机金属催化在药物合成中发挥了重要作用。

例如,利用有机金属催化的方法合成了抗癌药物紫杉醇的前体,为紫杉醇的大规模合成提供了可行路线。

2. 化学品合成:有机金属催化广泛应用于化学品合成中。

例如,利用有机金属催化合成了高附加值的杂环化合物,用于生产高效剂和杀虫剂等。

3. 功能材料制备:有机金属催化在功能材料制备中发挥了重要作用。

例如,利用有机金属催化合成了一系列具有特殊性能的聚合物材料,如导电高分子材料、光电材料等。

总结:有机金属催化是一种重要的有机合成方法,它利用过渡金属配合物作为催化剂,可以实现高效、高选择性的有机反应。

金属有机化学在催化反应中的应用探究

金属有机化学在催化反应中的应用探究

金属有机化学在催化反应中的应用探究引言:金属有机化学是研究金属与有机配体之间相互作用的学科,可以通过合成和研究金属有机化合物来探索其在催化反应中的应用。

金属有机化学在催化领域具有广泛的应用,包括有机合成、聚合反应、氧化还原反应等。

本文将介绍金属有机化学在催化反应中的应用,并着重探究其对催化反应的影响和机理。

一、金属有机化合物在有机合成中的应用1. 碳-碳键形成金属有机化合物在有机合成中常用于催化碳-碳键的形成,特别是勒琼-德平预变原反应和自由基反应中。

例如,羰基化合物与有机金属配合物的反应可以实现碳-碳键形成,催化剂如[Pd(PPh3)4]、PdCl2(PPh3)2等可促进交叉偶联反应和Suzuki反应,实现芳基、脂肪基、vinylic和alkynyl键形成。

2. 不对称催化金属有机化合物在不对称催化中发挥了重要作用。

不对称催化是合成手性化合物的关键方法之一,可以选择性地生成手性产物。

选择合适的金属有机配体可以实现不对称催化反应,如Ru、Rh、Pd、Ir等金属配合物经常用于催化不对称氢化反应、不对称氢化酰胺反应和不对称亲核取代反应等。

这些催化反应可有效地节约原料、减少废物产生,对环境友好。

3. 氢化反应金属有机化合物还可以催化氢化反应,例如酮与氢气的催化选择性还原反应,通常使用如[Ru(COD)(COT)]等催化剂。

这类催化反应广泛应用于药物合成和农药合成中,有助于提高合成效率,减少副反应的发生。

金属有机化合物作为催化剂可以选择性地加氢减少产物的杂质含量,提高纯度。

二、金属有机化合物在聚合反应中的应用1. 乙烯聚合金属有机化合物催化剂在乙烯聚合中具有重要作用。

乙烯聚合是合成聚乙烯的关键步骤之一,合适的金属有机化合物可以促进乙烯的聚合反应,如聚合度、分子量分布、立构等方面的控制。

常用的乙烯聚合催化剂包括尼尔森等。

金属有机化合物优于传统的过渡金属氯化物,具有高催化活性和高选择性。

2. 聚合物修饰金属有机化合物在聚合物修饰反应中也占据着重要地位。

金属有机化学在有机合成中的应用

金属有机化学在有机合成中的应用

金属有机化学在有机合成中的应用金属有机化学是有机化学领域中的一个重要分支,主要研究金属与有机化合物的相互作用和反应机理。

金属有机化合物作为催化剂和试剂在有机合成中发挥着重要的作用。

本文将探讨金属有机化学在有机合成中的应用,并介绍一些实际的例子。

一、金属有机化合物作为催化剂金属有机化合物在有机合成中常用作催化剂,可以提高反应速率,降低反应温度,并且能够选择性地催化特定的反应。

其中,过渡金属有机化合物是最为常见的催化剂之一。

1. 钯催化的偶联反应钯催化的偶联反应是有机合成中非常重要的反应之一。

以钯有机化合物为催化剂,能够实现碳—碳键或碳—氮键的形成。

例如,苯基钯(Pd(PPh3)4)在Suzuki反应中催化芳基溴化物与烯丙基硼酸芳基酯之间的偶联反应,产生芳基烯丙基化合物。

2. 铑催化的氢化反应铑催化的氢化反应是有机合成中常用的氢化方法之一。

铑有机化合物能够高效催化烯烃、炔烃和酮等化合物的氢化反应,生成相应的饱和化合物。

例如,二茂铑(RhCl(cod))催化苯乙烯的氢化反应,可以得到环己烷。

二、金属有机化合物作为试剂除了作为催化剂,金属有机化合物也常用作有机合成中的试剂,可以用于特定反应的开展,或者作为中间体参与反应。

1. 金属烷基试剂的引入金属烷基试剂,如格氏试剂(RMgX)和有机锂试剂(RLi),常用于将烷基基团引入到有机分子中。

例如,格氏试剂可以将烷基基团引入到酮中,生成相应的醇。

有机锂试剂则可以与酰氯反应,生成相应的醇酸盐。

2. 金属有机化合物的配体反应金属有机化合物可以与其他有机小分子或配体发生反应,生成新的金属配合物。

这种反应常用于有机合成的前体合成和金属配位化学的研究。

例如,格氏试剂与胺发生缩脲反应,得到相应的金属有机缩脲化合物。

三、金属有机化学在药物合成中的应用金属有机化学在药物合成中具有重要的应用。

金属有机化合物可以作为药物分子的合成中间体或催化剂,为药物的研发和合成提供了有效的方法。

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成(合成化学报告)解析

高分子金属配合物催化剂的合成摘要:催化剂可以分为均相催化剂和多相催化剂。

均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。

新的均相催化体系的应用使得一些新的生产工艺应运而生。

这些工艺操作条件温和,选择性高。

然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。

大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。

因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。

本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。

关键词:催化剂;配合物;高分子;合成;高分子效应1、简介近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。

多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。

因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。

1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。

近年来,高分子负载型催化剂得到了迅猛发展。

高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。

其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。

杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。

研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。

配合物的合成与性质

配合物的合成与性质

热稳定性:配合物在加热 条件下保持稳定的能力
化学稳定性:配合物抵抗 化学反应的能力
结构稳定性:配合物在结 构上保持稳定的能力
配位稳定性:配合物在配 位环境中的稳定性
配合物与反应介质 的作用
配合物在反应中的 稳定性
配合物的反应速率 与机理
配合物在合成与其 他化学反应中的应 用
催化剂:配合物可用于制造各种工业催化剂,提高化学反应速率和选择性。 药物研发:配合物可用于药物设计和合成,治疗各种疾病。 环保领域:配合物可用于处理工业废水、废气,降低环境污染。 农业领域:配合物可用于农药和肥料的生产,提高农作物产量和品质。
配合物在生物体内 的存在形式和作用 机制
配合物在生物催化 剂中的应用
配合物在药物设计 和治疗中的应用
配合物在生物成像 和检测技术中的应 用
催化剂:配合物可用于合成化学反 应的催化剂,提高反应速率和选择 性。
生物成像:配合物可用于荧光、磁 共振等生物成像技术,有助于生物 医学研究。
添加标题
添加标题
新能源开发:利用配合物提高太阳 能电池的效率
红外光谱:确定配合物中的配 体和金属中心
核磁共振谱:研究配合物中原 子核的磁性
紫外可见光谱:分析配合物的 电子跃迁
X射线衍射:确定配合物的晶 体结构和分子构型
配合物的组成:由中心原子或离子 和配体组成
配合物的键合方式:包括配位键和 共价键等
添加标题
添加标题
添加标题
添加标题
配合物的几何构型:常见的有四面 体型、八面体型和直线型等
配合物的性质表征:如颜色、溶解 度、磁性等
溶解性:配合物的溶解度及其影响 因素
磁性:配合物的磁性及其影响因素
添加标题

有机催化导论第三章:配合物催化反应及其作用机制-精品文档

有机催化导论第三章:配合物催化反应及其作用机制-精品文档
三原子蔟配合物:三角形 四原子蔟配合物:四面体或变型四面体 五原子蔟配合物:三角方锥和四方锥 六原子蔟配合物:八面体或变型八面体
➢典型金属原子簇配合物
三原子
Os3(CO)12 [Re3Cl12]2六原子
[ Mo6Cl14 ]2[Au6(PR3)6]2+
九原子
Bi95+ ; Sn94[ Pt9(CO)18]2-
X X
M X
MX
X 双键原子簇å
形成M—M键的重要条件 要求金属处于较低的氧化态 原子蔟合物大都是由低氧化态(0,1,2)的金属形成的,氧化 态为5或更高的金属原子很少发现有金属-金属键的生成。
➢以羰基为配体的金属原子簇合物,金属的氧化数是0或者甚至是 负值:
[M2(CO)10]-2,M=Cr、Mo、W
➢低价态的卤化物的金属原子簇合物,金属的氧化数通常是2和3; ➢表观氧化数为4的金属原子之间,有时也有金属-金属键的生成:
(1) 金属原子簇概念
a) Cotton定义:由二个或二个以上的同类(同核)或异类(异核) 金属原子借金属-金属键结合(单键、双键三键、四键)在一 起的化合物。
b) 徐光宪定义:由三个或三个以上的有效原子直接键合(单键、 双键三键、四键),组成多面体或缺顶点多面体骨架为特征的 分子或离子。该定义包括了硼烷、碳硼烷、金属硼烷、碳金属 硼烷。
3.2.1 Werner配合物
1)概念:
a)Werner配合物: Lewis酸和Lewis碱直接作用形成的一种最简单的配合物 Werner配合物:Lewis酸碱的加合物
Alfred Werner (1866-1919) 瑞士化学家,配位化学之父、奠基 人。1893年,提出了配位化合物的 配位理论。1913年诺贝尔奖金获得 者,是第一个认识到金属离子可以 通过不只一种“原子价”同其他分 子或离子相结合以生成相当稳定的 复杂物。

高分子担载氨基酸希夫碱过渡金属配合物的合成及表征

高分子担载氨基酸希夫碱过渡金属配合物的合成及表征

-_ _ 一
郝 成 君 褚 松 茂
( 平顶 山学 院化 学 化工 学 院 , 河南 平 顶 山 4 7 0 ) 6 00



合 成 了 4种 高 分 子 担 载 的赖 氨 酸 希 夫 碱 过 渡金 属 配 合 物 P —Sl y —c 、S a一Cs n P —Sl y S a—C s oP —s1 y —M 、 S a—C s
维普资讯
第2 1卷 第 8期 20 0 7年 8月
化 工 时刊
Ch m ia n s r m e e c lI du ty Ti s
VoI21, . No. 8 Aug. 20 7 8. 0
-- .
同 子 担 载 氨 基 酸 希 夫 碱 过 渡 分 金 属 配合 物 的 合 成 及 表 征
N 、S a—Cs u对 配合 物 进 行 了红 外 光 谱 分 析 、 P i —Sl y —C , P X S分 析 , 定 了 配 合 物 的 金 属 含 量 (C 测 IP法 ) 进 行 了 热 重 一 ,
差热分析 。
关 键 词 高 分 子 担 载 的赖 氨 酸希 夫碱 过 渡 金属 配合 物 合 成 表 征
f rn ilt ema n y i . e e t h r la a ss a l Ke wo d p lme -b u d N — s lc ld n a n c d ta st n measc mpe e s n h ss c aa trz t n y r s o y r— o n — aiyi e e mi o a i r ii t o lx s n o l y t e i h r ce ai i o
Ab ta t F urc mp e e fp lme — b u d N — S iy ie e m n cd ta sto t swe es n h sz d。a d te sr c o o lx so oy r o n l a c l n a o a i r i n mea r y t e ie n h y d i n i l

有机合成中的金属有机化学与配位化学

有机合成中的金属有机化学与配位化学

有机合成中的金属有机化学与配位化学有机合成是一门关于合成有机化合物的科学,通过不同的反应步骤,由简单的有机物合成出复杂的分子结构。

金属有机化学和配位化学在有机合成中扮演着重要的角色,为不同的反应提供了催化剂和配体。

本文将重点介绍金属有机化学与配位化学在有机合成中的应用。

一、金属有机化学的基础知识金属有机化学是研究金属原子与有机化合物之间相互作用的领域。

金属有机化合物是指含有金属键的有机分子。

金属有机化合物通常具有较高的反应活性和选择性,可以作为催化剂参与到有机合成反应中。

1.1 金属有机化合物的合成方法金属有机化合物可以通过直接反应或配位基团转移反应来合成。

直接反应是指金属与有机物直接发生反应,产生金属有机键。

配位基团转移反应是指金属有机化合物中的一个配体被另一个有机基团取代。

1.2 金属有机化合物的性质与反应金属有机化合物的性质与金属和有机基团的特性有关。

金属有机化合物可以通过配位键的形成与断裂参与到有机合成反应中,常见的反应包括还原、氧化、烷基化等。

二、配位化学在有机合成中的应用配位化学是研究配位化合物的合成和性质的学科,配位化合物是指通过配位键将金属离子与配体连接而形成的化合物。

在有机合成中,配位化学扮演着重要的角色。

2.1 配位化合物在有机合成催化中的应用配位化合物常用作有机合成催化剂,可以提高反应速率和选择性。

催化剂参与到反应中,通过提供活性位点促进反应的进行。

常见的有机合成催化反应包括羰基合成、氢化反应等。

2.2 双金属配合物在有机合成中的应用双金属配合物指含有两个金属中心的配合物。

双金属配合物在有机合成中具有较高的催化活性和选择性,常用于各种有机合成反应中。

例如,Ir-Rh双金属催化剂在不对称氢化反应中具有良好的催化性能。

三、金属有机化学与配位化学在有机合成中的案例金属有机化学与配位化学在有机合成中有着广泛的应用。

以下列举几个实际案例来说明其在合成复杂分子结构中的作用。

3.1 交叉偶联反应交叉偶联反应是一种重要的有机合成方法,通过金属有机化合物作为催化剂将两个不同的有机基团连接起来,形成新的有机分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高分子金属配合物催化剂的合成摘要:催化剂可以分为均相催化剂和多相催化剂。

均相催化剂如金属配合物、有机金属配合物在最近几十年内受到催化科学界的广泛关注。

新的均相催化体系的应用使得一些新的生产工艺应运而生。

这些工艺操作条件温和,选择性高。

然而,在大规模生产中均相催化剂存在着难回收、不稳定、有腐蚀性的缺点。

大多数的多相催化剂在高温、高压下才能较好地发挥催化作用,并且其选择性、活性较弱。

因此,人们开始设想通过高分子负载的方法转化均相催化剂使之兼具二者的优点。

本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。

关键词:催化剂;配合物;高分子;合成;高分子效应1、简介近几十年来,均相催化剂由于其较高的催化活性受到了科学界和工业界的广泛重视与应用,但均相反应的催化剂一般来说存在价格昂贵、易流失、较难回收操作等缺点;另一方面,均相催化剂往往要使用重金属离子,这样既会对产物和反应后处理过程造成污染,又使得反应的催化剂难于回收,导致均相催化剂在有机合成和工业上的应用受到了很大的限制。

多相催化剂虽然回收简单,但是,机理研究比价复杂,选择性和活性较低。

因此寻找能够重复使用且回收操作简单的催化剂成为有机催化反应领域的研究热点之一。

1963年,Merrifield和Letstinger等人[1, 2]首次将聚苯乙烯引入到多肽和低聚糖的合成中,开创了高分子化合物在有机合成中应用的先例。

近年来,高分子负载型催化剂得到了迅猛发展。

高分子催化剂集合了多相催化剂、均相催化剂的优点[3]。

其具有较高的催化活性、立体选择性、较好的稳定性和重复使用性能,并且后处理简单,在反应完成后可方便地借助固-液分离方法将高分子催化剂与反应体系中其他组分分离、再生和重复使用,可降低成本和减少环境污染[4]。

杨小暾与江英彦[3]指出,若将多相催化剂、均相催化剂视为第一代、第二代催化剂,那么高分子金属络合物催化剂就是第三代催化剂。

研究表明高分子不仅是负载金属催化剂的惰性载体,而且还可以对催化剂的活性中心进行修饰,并使催化剂的结构发生变化,形成通常在小分子配合物中很难看到的特殊结构,从而影响催化剂的催化反应过程,即同种金属使用不同的载体所得到的化剂其催化活性可能相差很大。

此为高分子的基体效应。

本文主要介绍高分子金属催化剂的合成、高分子效应及其应用。

2、高分子金属催化剂的合成根据金属配合物的特点,高分子负载金属催化剂有以下几种合成方法:(1)通过有机反应先对高分子进行官能化,形成新的官能团,然后再与催化活性中心连接;(2)高分子骨架中己具备有效官能团,可以通过与催化剂前体进行亲核取代或亲电加成等反应,直接将催化活性物质通过共价键链接到高分子;(3)通过具有催化活性单体共聚形成高分子负载催化剂,可以通过控制聚合的条件,以得到合适的孔径、粒度、强度的凝胶或粉末。

其中第一种方法最为常用。

但是作为金属络合物的配位体,在分子中必须具有以下两类结构之一,一类是分子结构中含有P、S、O、N等可以提供未成键电子的所谓配位原子,含有这类结构的化合物种类繁多,比较常见的如乙二胺四乙酸(EDTA)、胺类、酸类及杂环类化合物等;另一类是分子结构中具有离域性强的P电子体系,如芳香族化合物和环戊二烯等均是常见配位体。

(1)通过有机反应先对高分子进行官能化,形成新的官能团,然后再与催化活性中心连接:该方法是有机高分子负载催化剂方法中应用最多的一种方法,其最大的特点在于配体设计极其灵活,制备过程简单。

通过基本的有机反应引入高效的配体,最后通过配位作用将金属催化剂固载化,如图1所示[5, 6]。

图1 高分子负载金属钯催化剂的制备何英[4]以Wang树脂为基础载体,通过有机合成反应对树脂进行改性,进而制得高分子负载微粒钯催化剂。

其具体合成方法如下:在50mL单口烧瓶中依次加入0.50 g (1.04mmol OH/g) Wang树脂,0.48 g (2.60mmol)三聚氯氰,0.14 g (1.10 mmol) N,N-二异丙基乙胺(DIPEA)和20mL氯仿,室温反应18h。

过滤,依次用氯仿和THF洗涤树脂,60℃真空干燥24h,得到0.56g树脂1[7, 8]。

将0.20g (2.08mmol) 2-氨基吡啶溶于20mL DMF,依次向其加入0.56g树脂1及0.19g (1.5mmol) DIPEA,混合物于100℃反应24 h。

反应结束后,冷却至室温,树脂过滤,依次用乙醇和二氯甲烷洗涤后,真空干燥,得浅黄色树脂2。

在10mL单口烧瓶中依次加入0.030g (0.17mmol) PdCl2,0.011g (0.19mmol) NaCl和1mL甲醇,室温搅拌24h。

过滤,将滤液转入25mL单口烧瓶中,依次加入14mL甲醇,0.2g树脂2,60℃反应24h,生成树脂负载Pd2+配合物。

反应结束冷至室温,加入0.095g(1.16mmol)乙酸钠,室温搅拌1h,Pd2+被还原为纳米Pd(0)微粒。

过滤,依次用甲醇、水和丙酮洗涤,真空干燥制得高分子负载微粒钯催化剂WRP-Pd。

催化剂的制备过程如图2所示。

图2 高分子负载钯催化剂的制备(2)高分子骨架中已具备有效官能团,可以通过与催化剂前体进行亲核取代或亲电加成等反应,直接将催化活性物质通过共价键链接到高分子:此法制备方法简单,但是高分子骨架中必须具备有效官能团,才能将活性物质通过共价键接到高分子上从而形成有效的催化剂[9, 10]。

(3)通过具有催化活性单体共聚形成高分子负载催化剂,可以通过控制聚合的条件,以得到合适的孔径、粒度、强度的凝胶或粉末:该方法的主要优点在于配体设计灵活性高,且在均相体系中进行,反应活性高,如图3所示[11]。

图3 单体共聚法制备负载锰催化剂余汉成等[12, 13],用铁(III)卟啉丙烯酸酯单体与苯乙烯单体共聚得到铁(III)卟啉丙烯酸酯-苯乙烯共聚物。

把0.0200g铁(III)卟啉丙烯酸酯和少许过氧化苯甲酰加入到2.0g苯乙烯中,搅拌使其充分溶解,再加入20mL φ=0.1%聚乙烯醇水溶液,在85℃磁力搅拌15h后升温至100℃,1h后再把温度降至50℃,过滤,以温水多次洗涤球状微粒,干燥。

把以上球状微粒溶解于氯仿中,慢慢滴加于处于搅拌状态的甲醇液中,抽滤(以甲醇洗涤至滤液无色),干燥,粉碎(约50目)后,在索氏提取器上以乙醇抽提24h,真空干燥后得棕红色产物铁(III)卟啉丙烯酸酯-苯乙烯共聚物1.4417g,产率71%。

该催化剂由铁(III)卟啉丙烯酸酯单体与苯乙烯单体共聚而成,虽然粉碎为微粒,但部分铁(III)卟啉仍然不可避免地被包埋于共聚物内部而不能发挥催化活性。

其结构如图4所示。

图4 铁(III)卟啉丙烯酸酯-苯乙烯共聚物的结构岳瑞瑞[14]通过化学法合成的导电高分子为聚(3,4-乙撑二氧噻吩)(PEDOT)。

首先,将一定量的单体EDOT溶于乙醇中,将该乙醇溶液迅速加入H2PdCl4溶液中,室温下搅拌反应3h(该过程中EDOT单体被氧化聚合生成PEDOT聚合物,同时Pd2+被还原为Pd纳米颗粒);然后,向上述溶液中加入一定量的H2PdCl4及不同量的氧化石墨烯(GO)分散液,超声分散2h;磁力搅拌下向该溶液中再逐滴加入NaBH4水溶液,反应液中过量的Pd2+被NaBH4进一步的还原,另外,GO被NaBH4还原为还原态的石墨烯(GE)。

反应结束后,将产物过滤并用蒸馏水、乙醇多次冲洗至滤液无色,60℃烘箱中干燥后便得Pd-PEDOT/GE复合催化剂粉末。

3、合成方法的比较通过文献查阅以及分析比较我们可以对以上三种合成高分子金属催化剂的方法进行简单评价。

第二种方法是利用高分子骨架中已具备有效官能团,通过与催化剂前体进行亲核取代或亲电加成等反应,直接将催化活性物质通过共价键链接到高分子。

这种方法虽然简单,不需要对高分子骨架进行修饰,但是其局限性较大,对高分子骨架要求较高。

与第二种方法的局限性相比,我们很容易发现第一种方法的优点。

通过有机反应先对高分子进行官能化,形成新的官能团,然后再与催化活性中心连接。

这种合成方法也较为简单,对于高分子配体的设计灵活性较大。

但是,催化剂的形态较难控制。

第三种方法,通过单体共聚的方法合成高分子催化剂。

该方法可以通过控制反应的条件控制催化剂的结构,灵活性较大。

但是,通过以上几个实例我们不难发现,第三种方法操作相对复杂,合成的产物中金属活性中心很容易被包到共聚物内部而使其不能发挥催化活性。

三种合成方法各有自己的优缺点,目前第一种方法应用最为广泛,第三种方法研究前景较为广阔。

我们在实际过程中可以根据原料的性质、产品的要求合理的选择合成方法。

4、高分子载体对催化剂性能的影响当一种高活性、高选择性的小分子金属催化活性物种被负载于高分子时,其稳定性、催化活性及选择性都会发生变化,当高分子载体、配体结构使用恰当时,高分子母体对催化活性物种有增稳、助活、提高选择性效应等作用[4, 15]。

下面我将从多个方面,通过高分子金属催化剂与普通金属催化剂的比较,以说明高分子金属催化剂的优点。

(1)基位隔离效应基位隔离效应是指被键联于高分子的催化活性功能基团由于高分子链的刚性而处于彼此隔离的状态。

Grubbs等将可溶性的均相二茂铁络合物应用于烯烃催化加氧时,发现其催化活性并不好,并且催化剂不能回收利用。

研究发现,这是由于在氢化反应条件下生成了一种无催化活性的二聚体。

而键联于交联度20%的聚苯乙烯载体的二茂铁络合物,其催化加氧活性较二茂铁的活性高60倍。

这是由于键合在一定刚性聚合物链上的二茂钛由于基位隔离效应,使其发生的二聚副反应的可能性降低,使其活性的得到了增强。

(2)增稳效应均相络合催化剂是一类相对比较容易失活的催化剂,将其负载于高分子上之后,催化剂的稳定性将得到很大的提高。

膦化交联聚苯乙烯的胶态钯催化剂对于1, 5, 9-环十二碳三烯(Z, E, E-CDT)的催化加氢活性要比非负载的钯催化剂col-Pd(0)提高16倍。

X射线衍射光谱(XRD)证明在膦化交联聚苯乙烯上钯原子族的颗粒直径为4.2 nm,催化剂重复使用20次后钯原子族粒径未发生明显变化(4.8 nm)。

而原位制备的胶态钯催化剂在催化反应后则聚集成了无催化活性的钯黑。

(3)选择效应通过对高分子载体结构的控制制得的高分子负载金属催化剂,往往会比对应小分子催化活性物种呈现更高的催化选择性,这对于精细化工有着重要的意义。

①尺寸选择性高分子负载金属催化剂的尺寸选择性主要包括两个方面。

一方面,一定孔径的多孔性聚合物负载金属催化剂对于分子尺寸不同的底物显示不同的催化活性。

另一方面,对于同一种类的高分子负载金属催化剂而言,髙分子载体的孔径与底物分子尺寸匹配效应同样会明显影响催化反应的结果。

相关文档
最新文档