金属配位的有机半导体
共轭配位聚合物

共轭配位聚合物(Conjugated Coordination Polymers,CCPs)是一种独特的金属有机框架(MOFs),具有独特的结构和优异的性能。
它们是通过金属中心与有机配体之间的配位化学反应形成的。
由于配体和过渡金属离子之间存在有效的π-d杂化,使得电子在整个骨架上以离域的状态存在,因此共轭配位聚合物具有高导电性和良好的稳定性。
这些特性使得共轭配位聚合物在许多领域中都有广泛的应用,包括半导体器件、超导体材料、传感器、电化学催化剂和储能装置等。
然而,共轭配位聚合物的合成过程较为复杂,有机配体和金属中心在反应过程中可能会发生原位氧化/还原反应,导致化学状态和结构的不确定性。
此外,由于合成条件的不可控性和复杂的化学反应,所获得的样品结晶性较低,使得对产物的结构分析变得异常困难。
尽管存在这些挑战,共轭配位聚合物仍具有巨大的应用潜力。
随着研究的深入和技术的发展,我们有望开发出性能更加优异、稳定性更高的共轭配位聚合物材料,进一步推动其在各个领域的应用。
金属和半导体的接触

金属和半导体的接触1金属和半导体接触及其能带图金属和半导体的功函数金属1.金属中电子虽然能在金属中自由运动,但绝大多数所处的能级都低于体外能级。
要使电子从金属中逸出,必须有外加能量。
所以金属内部的电子是在一个势阱中运动。
2.金属功函数的定义是真空中静止电子的能量E₀与费米能级Ef能量之差。
表示一个起始能量等于费米能级的电子,由金属内部逸出到真空中所需要的最小能量。
3.功函数的大小标志着电子在金属中束缚的强弱。
W越大,电子越难离开金属。
半导体接触电势差金属与(n型)半导体的接触接触前qФ为金属一边的势垒高度,qVd为半导体一边的势垒高度。
总结当金属与n型半导体接触的时候,若Wm>Ws,能带向上弯曲,即可形成表面势垒,在势垒区中,空间电荷主要由电离施主形成,电子浓度比体内小得多,因此它是高阻域,常称为阻挡层;若是Ws>Wm,能带向下弯曲,此时电子浓度比体内高得多,因而是高电导区域,称为反阻挡层,它是很薄的,对金属和半导体接触电阻的影响很小。
p型半导体和金属接触时与n型半导体的相反。
空间电荷区电荷的积累表面势的形成造成能带的弯曲表面态对接触势垒的影响不同金属与同一半导体材料接触所形成的金属一侧的势垒高度相差不大,金属功函数对势垒高度没有多大影响。
表面能级1.表面处存在一个距离价带顶为qФ₀的能级,若电子正好填满qФ₀以下的所有表面态时,表面呈电中性;若qФ₀以下的表面态空着时,表面带正电,呈现施主型;若qФ₀以上的表面态被电子填空时,表面带负电,呈现受主型。
对于大多数半导体,qФ₀约为禁带宽度的三分之一。
2.假设一个n型半导体存在表面态。
半导体费米能级Ef将高于qФ₀,如果qФ₀以上存在有受主表面态,则在qФ₀到Ef间的能级将基本被电子填满,表面带负电。
如此,半导体表面附近必定出现正电荷,成为正的空间电荷区,结果形成了电子的势垒,势垒高度qVD恰好使得表面态上的负电荷与势垒区的正电荷数量相等,这里着重表明了势垒高度产生的第二层原因。
金属有机配位聚合物的制备及其性能的测试

南京航空航天大学硕士学位论文摘要金属-有机配位聚合物是由金属中心离子与有机配体自组装而形成的。
金属-有机配位聚合物新颖的多样结构导致其许多特殊的性能。
由于含硫芳基多齿配体本身结构的多样性,在与金属离子配位时,可以组装出结构新颖和功能独特的配合物。
它们表现出不同寻常的光、电、磁等性质,在非线性光学,磁性和催化材料等方面具有潜在的应用前景。
本课题为含硫金属-有机配位聚合物的合成和性能表征。
文中对到目前为止的金属-有机配位聚合物的研究成果进行了系统的总结。
本论文分别以对苯二胺和对苯二酚为有机小分子,与二硫化碳在碱性条件下反应,在反复实验的基础上,找到了合适的反应条件,冷凝回流合成出了以硫为配位原子的有机配体。
用均相法和溶剂热合成法,将生成的配体与过渡金属在含有表面活性剂的条件下混合发生配位反应,制备了相应的含硫过渡金属配位聚合物,考察各反应因素对配位聚合物形貌的影响。
最后,通过FTIR,EDS,SEM,TEM,紫外-可见等分析手段对配体和配合物进行表征,发现所合成的镉(Ⅱ)配位聚合物具有半导体的性质。
关键词:金属-有机配位聚合物,溶剂热合成,二硫化碳,配体,表征iABSTRACTMetal-organic coordination polymers are a type of self-assembly formed by organic ligands and metal ions. Diversified structures of the coordination polymers result in unusual properties of the novel materials. Duo to the structure multiformity of multidentate organic ligand with the sulfur and aryl, they can assemble out complexes of novel structures and unique fuctions if coordinated with metal ions. They have shown distinctive optical, electrical, and magnetic properties, thus they have a potential applied prospect in nonlinear optics, magnetic and catalytic materials.The subject is to synthesize and analyze the property of sulfur metal-organic coordination polymers. In this dissertation, we do the summary of the development and achievements of metal-organic coordination polymers. In this paper, we use p-phenylenediamine or p-dihydroxybenzene as small organic molecules to react with carbon bisulfide in alkaline condition. We find out the appropriate reaction condition on the basis of repeated experiments, and synthesize organic ligand with the sulfur as coordination atom in the condition of refluxing. Then we use the acquired ligands to react with transition metal ions under surfactant by solvothermal and homogeneous techniques and get the corresponding transition metal complexes with the sulfur atom. We have explored the influences of all kinds of synthesis factors for their morphologies. Finally, through analytical methods such as FTIR, EDS, SEM, TEM, UV-vis, we characterize the ligands and complexes, and suggest that the Cd(Ⅱ) complex is a semi-conductor.Keywords: metal-organic coordination polymers, solvothermal synthesis, carbon bisulfide, ligand, characterizeii图表清单图清单图1.1 金属-有机配位聚合物的金属中心 (5)图1.2 组装金属-有机配位聚合物使用的多齿配体 (6)图3.1 配体合成实验装置图 (19)图4.1 实验Pt-02-04配体L的红外谱图 (34)图4.2 实验Pt′-03-04配体L′的红外谱图 (35)图4.3 实验Pt-02-04配体L的能谱分析图 (35)图4.4 实验Pt′-03-04配体L′的能谱分析图 (36)图4.5 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 5%) (37)图4.6 均相法合成的Cd(Ⅱ)配位聚合物TEM图(PEG-400, 2%) (38)图4.7 特殊形貌的Ni(Ⅱ)配位聚合物的SEM图 (39)图4.8 特殊形貌的Co(Ⅱ)配位聚合物的SEM图 (40)图4.9 特殊形貌的Cd(Ⅱ)配位聚合物的SEM图 (40)图4.10 特殊形貌的Cu(Ⅰ)配位聚合物的SEM图 (41)图 4.11 不同温度下所得Cd(Ⅱ)配位聚合物的SEM图 (a)120℃ (b) 150℃ (43)图 4.12不同降温速率下所得Cu(Ⅰ)配位聚合物的SEM图 (a)5℃/h (b)2℃/h (44)图4.13 添加不同的表面活性剂所得产物的SEM图 (45)图4.14添加不同量的表面活性剂所得产物的SEM图 (46)图4.15 Cd(Ⅱ)配位聚合物液态紫外可见图 (47)图4.16 Cd(Ⅱ)配位聚合物的能谱分析图 (48)Ⅱ配位聚合物(A)固态紫外-可见图;(B)吸收系数与光子能图4.17 Cd()量的关系图 (49)表清单表1.1 几个对应金属-有机配位聚合物的基本概念 (4)vi南京航空航天大学硕士学位论文表3.1 实验所用药品 (17)表3.2 合成配体主要药品物性 (18)表3.3 仪器及设备 (19)表3.4 以对苯二胺为有机小分子R合成配体 (20)表3.5 以对苯二酚为有机小分子R′合成配体 (21)表3.6 均相法合成配位聚合物的实验结果 (23)表3.7 溶剂热合成配位聚合物的实验结果 (24)vii承诺书本人郑重声明:所呈交的学位论文,是本人在导师指导下,独立进行研究工作所取得的成果。
一种金属有机骨架的制备方法和应用

发明名称本发明公开了一种基于混合有机配体的金属有机骨架X ⊂UiO ‑66‑(NH 2)2,以2,5‑二氨基对苯二甲酸((NH 2)2‑BDC)和5,10,15,20‑四(4‑羧基苯基)金属卟啉或卟啉为有机配体,通过一锅法制备了该金属有机骨架材料;该骨架材料呈现出近似八面体结构,骨架材料的主体结构为UiO ‑66‑(NH 2)2,在骨架结构中(NH 2)2‑BDC配体的一部分位置被PdTCPP配体取代;该金属有机骨架材料具有较大的比表面积,优异的可见光吸收能力,适用于光催化分解水制氢应用,在可见光照射下,其光催化制氢速率达高达1126μmol g ‑1h ‑1;四个循环周期催化性能没有明显的降低,具有较好的循环稳定性;本发明制备方法工艺简一种金属有机骨架的制备方法和应用摘要单,产率高达80%以上,值得市场推广。
一种金属有机骨架的制备方法和应用技术领域[0001]本发明属于新材料技术领域,具体涉及一种金属有机骨架X ⊂UiO ‑66‑(NH 2)2的制备方法及其在光催化制氢领域中的应用。
背景技术[0002]全球能源与环境问题已引起广泛关注,成为学术界研究的热点。
化石能源的消耗导致了能源问题。
太阳能被认为是一种很有前途的清洁能源。
然而,太阳能的利用和转化效率有限,其利用和储存面临着重大挑战。
自从1972年Fujishima和Honda报道了利用TiO 2光催化剂进行太阳能转换的开创性工作以来,已经取得了巨大的进展。
光催化制氢是利用太阳能的一种有效途径。
基于光响应的半导体材料近年来受到了广泛关注。
光催化制氢能够将太阳能转化为化学能,光催化制氢成为解决能源和环境危机的一种友好方式。
目前,研究人员已经开发了许多材料作为光催化剂,最早的研究是基于TiO 2半导体材料及其改性。
然而,寻找新型、高效的光催化制氢催化剂仍然是一个挑战。
[0003]到目前为止,光催化剂如TiO 2,ZnO,CdS、氮化碳(C 3N 4)及其复合材料或异质结材料表现出优异的光催化制氢性能。
酞菁铜有机半导体调研报告

实习(调研)报告一、课题的来源及意义1907 年Braun和Tchemiac两人在一次实验中偶然得到了一种蓝色物质,当时他们两人正在研究邻氰基苯甲酰胺的化学性质,当他们将这种无色的物质加热后得到了微量的蓝色物质,这就是现在被人们称为酞菁的化合物。
1923 年Diesbach等人发现可以用邻二苄溴与氰化亚铜反应制得邻二苄腈,于是他们想用邻二溴苯与氯化亚铜反应来制备邻苯二腈。
可实验结果出乎他们的意料,他们并未得到所期望的邻苯二腈,而是得到一种深蓝色的物质,并且产率达到 23%。
这种蓝色物质就是现在被称为酞菁铜的化合物。
至此,酞菁和金属酞菁化合物被发现。
二、国内外发展状况及酞菁类物质性质1929年,在英国的ICI公司的资助下,伦敦大学的Linstead教授和他的合作者开始进行这类新物质的结构测定工作。
1933 年他们用综合分析法测定了该类化合物的结构后,便用phthalocyanine一词来描述这类新化合物。
1935 年Linstead教授和他的合作者采用 500℃以上的高温和低气压,用CO2作载气制得了酞菁化合物的单晶,Robertson教授用X射线衍射分析法对酞菁及金属酞菁化合物的单晶进行结构分析,至此,酞菁自正式被发现到首个单晶生成共经历了12 年。
根据他的报道,酞菁及金属酞菁分子组成的晶体属单斜晶系,空间群为P2/a。
每个晶胞中有两个分子,每个分子都呈现出高度平面的结构。
所得分子结构的结果与Linstead教授的结果完全一致,从而酞菁的化学结构得到了进一步的证实。
酞菁分子的这种结构使得它具有非常稳定的特性,耐酸、耐碱、耐水浸、耐热、耐光以及耐各种有机溶剂。
一般酞菁化合物的热分解温度在 500℃以上,在有机溶剂中的溶解度极小,并且几乎不溶于水。
相对而言,铜酞菁在冷的浓硫酸中较稳定,它可以溶解在其中,并且当硫酸浓度降低时又可从中析出来。
铜酞菁的这种特性常常被用来提高它的纯度。
由于上述代表性的工作,酞菁及金属酞菁化合物的化学结构才为世人所知,从此,酞菁及金属酞菁化合物的研究及应用也进入了一个崭新的阶段。
有机半导体器件中电荷传输机制的研究

有机半导体器件中电荷传输机制的研究随着电子技术的快速发展,有机半导体材料逐渐成为一种备受关注的材料。
有机半导体器件的研究成为了现代电子学领域中的重要问题之一,而其中电荷传输机制就是研究的关键之一。
有机半导体器件的特点是具有可塑性强、可通过化学方法进行制备、成本低廉等优势。
同时,有机半导体器件的性能稳定性和效率方面也有所提高。
因此,有机半导体器件被广泛地应用于各种领域,如平板显示、可穿戴电子设备、太阳能电池等领域。
然而,有机半导体器件中的电荷传输机制却是一个十分复杂的问题。
其核心机制是载流子(电子和空穴)在有机半导体材料中的移动和输运过程。
这个过程受到诸多因素的影响,如有机半导体结构、界面特性、晶体缺陷等。
有机半导体器件中电荷传输机制的研究具有非常重要的意义。
首先,了解电荷传输机制有助于提高有机半导体器件的性能。
其次,可以通过控制电荷传输机制来实现制备新型有机半导体器件。
最后,对电荷传输机制的深入研究可以为未来的有机半导体器件研究提供重要的参考。
有机半导体器件中电荷传输机制的研究,可从不同角度出发进行探讨。
下面,我们从有机半导体材料的结构以及其对电荷传输机制的影响、有机半导体器件中的界面特性、晶体缺陷等方面进行论述。
1. 有机半导体材料的结构及其对电荷传输机制的影响有机半导体材料的结构对其电荷传输机制有重要的影响。
在有机半导体材料中,载流子的移动过程主要是在分子层面上进行的。
因此,有机半导体材料的分子结构和分子排列方式对载流子的输运过程起着决定性作用。
研究表明,对于具有芳香环结构的有机半导体材料,其分子结构中的π电子云对载流子的输运起着重要作用。
当芳香环数目增加,分子间距减小时,材料的π-π堆积作用加强,载流子的传输性能也得到了明显的提高。
此外,有机半导体材料的晶体结构、材料形态等也会对其电荷传输机制产生影响。
如有机单晶和有机薄膜材料之间的载流子输运差异较大。
有机单晶材料的载流子直接在晶格中移动,因此其传输性能比有机薄膜材料好得多。
有机电致发光发展历程及TADF材料的发展进展

有机电致发光发展历程及TADF材料的发展进展有机电致发光发展历程及TADF材料的发展进展1.1引⾔有机光电材料(Organic Optoelectronic Materials),是具有光⼦和电⼦的产⽣、转换和传输等特性的有机材料。
⽬前,有机光电材料可控的光电性能已应⽤于有机发光⼆极管(Organic Light-Emitting Diode,OLED)[1,2,3],有机太阳能电池(Organic Photovoltage,OPV)[4,5,6],有机场效应晶体管(Organic Field Effect Transistor,OFET)[7,8,9],⽣物/化学/光传感器[10,11,12],储存器[13,14,15],甚⾄是有机激光器[16,17]。
和传统的⽆机导体和半导体不同,有机⼩分⼦和聚合物可以由不同的有机和⾼分⼦化学⽅法合成,从⽽可制备出⼤量多样的有机半导体材料,这对于提⾼有机电⼦器件的性能有⼗分重要的意义。
其中,有机电致发光近⼗⼏年来受到了⼈们极⼤的关注。
有机电致发光主要有两个应⽤:⼀是信息显⽰,⼆是固体照明。
在信息显⽰⽅⾯,⽬前市⾯上主流的显⽰产品是液晶显⽰器(Liquid Crystal Display,LCD),它基本在这个世纪初取代了阴极射线管显⽰,被⼴泛应⽤于各种信息显⽰,如电脑屏幕,电视,⼿机,以及数码照相机等。
但是,液晶显⽰器也有其特有的缺点,⽐如响应速度慢,需要背光源,能耗⾼,视⾓⼩,⼯作温度范围窄等。
所以⼈们也迫切需要寻求⼀种新的显⽰技术来改变这种局⾯。
有机发光⼆级管显⽰器(OLED)被认为极有可能成为下⼀代显⽰器。
因为其是主动发光,相对于液晶显⽰器有着能耗低,响应速度快,可视⾓⼴,器件结构可以做的更薄,低温特性出众,甚⾄可以做成柔性显⽰屏等优势。
但是,有机发光显⽰技术⽬前还有许多瓶颈需要解决,尤其是在蓝光显⽰上,还需要⾯对蓝光显⽰的⾊度不纯,效率不⾼,材料寿命短的挑战。
金属-半导体

金属-半导体
金属-半导体是一种由金属和半导体材料组成的结构或器件,它结合了金属和半导体的特性,具有独特的电学、光学和磁学性质。
金属通常具有良好的导电性和导热性,而半导体则具有较高的电阻率和可控的电导率,可以通过掺杂或施加外部电场来调节其导电性。
金属-半导体结构的形成可以通过将金属薄膜沉积在半导体衬底上,或者将金属纳米颗粒嵌入半导体材料中来实现。
这种结构在电子学中有广泛的应用,例如金属-半导体场效应晶体管(MESFET)和金属-半导体二极管。
MESFET 是一种晶体管,其中金属栅极与半导体之间的界面形成了一个可控的导电通道,可以用于放大和开关电子信号。
金属-半导体二极管则利用金属和半导体之间的能带结构差异,实现了单向导电性。
此外,金属-半导体结构还在光电子学中有重要应用,例如金属-半导体光电探测器和金属-半导体激光器。
在这些器件中,金属和半导体的结合可以增强光吸收和光发射效率。
总的来说,金属-半导体结构的研究和应用涉及到多个学科领域,包括物理学、电子工程、材料科学等。
对于深入理解半导体器件的性能和开发新型电子和光电子器件具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有机半导体材料合成与改性》第五章 金属配位的有机半导体陈军武 材料学院 高分子光电材料与器件研究所纲 要一、基本的金属配位化学反应 二、重要的金属配合物半导体的应用 三、 三线态发光(磷光)一、基本的金属配位化学反应1、金属配合物的特征 从试剂商网站了解金属配合物的特征先认识一些钯(palladium)的配合物Bis(triphenylphosphine)palladium(II) dichlorideSuzuki偶联催化剂(Ph3P)2PdCl2Tetrakis(triphenylphosphine)palladium(0)Suzuki偶联催化剂Bis(benzonitrile)palladium(II) chloride注意体会钯的价态(0价,2价)Bis(dibenzylideneacetone)palladium(0)Bis(3,5,3’,5’-dimethoxydibenzylideneacetone)palladium(0)Bromo(tri-tert-butylphosphine)palladium(I) dimerBis(acetonitrile)dichloropalladium(II)注意体会钯的价态(0价,1价,2价)钯的配合物有很多,上述钯的配合物是其中的部分代表, 它们通常用作化学反应催化剂, 而非有机半导体。
金属配合物有很多种类,以及各式各样的用途,比如:酞菁金属配合物卟啉(4N-大环配体)金属配合物酞菁(8N-大环配体)金属配合物N N N NH N N HN NIntroduction.Phthalocyanine metal complexes (MPc’s) are structurally related to porphyrin complexes, which are widely used by nature in the active sites of enzymes responsible for catalytic aerobic (有 氧的) oxidations, reduction and transport of dioxygen (分子氧), and destruction of peroxides. Although phthalocyanines are purely synthetic ligands (配体) they can, therefore, be regarded as related to bioinspired chemistry usually associated with porphyrin complexes. Among a large variety of porphyrinoid macrocyclic complexes such as porphyrins, porphyrazines, corroles, and corrolazines, MPc’s are probably the most accessible from a preparation point of view.N NH N HNporphyrinporphyrazine四氮杂卟啉corrolecorrolazineporphyrazine四氮杂卟啉Porphyrazines, or tetraazaporphyrins, are tetrapyrrole macrocycles similar to porphyrins and phthalocyanines. Pioneered by R. P. Linstead as an extension of his work on phthalocyanines, porphyrazines differ from porphyrins in that they contain -meso nitrogen atoms, rather than carbon atoms, and differ from phthalocyanines in that their β-pyrrole positions are open for substitution. These differences confer physical properties that are distinct from both porphyrins and phthalocyanines.A corrole is an aromatic organicchemical, the structure of which is similar to the corrin ring, which is also present incobalamin (vitamin B12). The ring consists of nineteen carbonatoms , with four nitrogen atoms in the core of the molecule. In this sense, corrole isvery similar toporphyrin , which is also an organic macrocycle but has twenty carbon atoms and is found in hemoglobin (血红蛋白) and chlorophyll (叶绿素).corroleChlorophyll a(叶绿素)Cobalamin may refer to severalchemical forms of vitamin B12, depending on the upper axial ligandof the cobalt ion.2、代表性的金属配合物有机半导体举例:铂配合物(卟啉铂)铜配合物(酞菁铜, CuPc)锌配合物钌配合物铼配合物锇配合物铜配合物铕配合物3、金属配合物的反应过程举例双金属配合物中间体并被继续转化均配异配铱(iridium)配合物乙酰丙酮(acac )是重要的异配体环金属配体二齿辅助配体均配异配2006异配Chen CH,异配Chen CH,有众多的配体被用于制备双环金属配合物更多的结构变化4个蓝光配合物两种芴基吡啶配合物acac的变化形式:不同的R取代基铂(platinum)配合物含金属配合物的半导体聚合物金属位于侧链金属连接主链TAPC有机发光二极管的第一篇报导Alq3 发绿光,效率居中,性质稳定C.W. Tang (邓青云)发光光谱包括绿光、黄光、橙光获得了极高的电致发光效率这些配合物被分散在CBP 中成膜为发光层典型的发红、绿、蓝光(RGB三色)的铱配合物的结构:红光绿光蓝光选择了三种金属配合物参混在半导体聚合物中实现了白光蓝光绿光红光获得了很高的电致白光效率金属配合物作为三色白光聚合物的红光单元其中一个聚合物的电致发光光谱:属于白光区2、有机薄膜晶体管酞菁铜大环金属配合物酞菁氧钒Organic field-effect transistors with VOPc/ p-6P films as active layers realized high mobility of above 1 cm2/V s.3、有机太阳能电池的给体以酞菁铜为代表受体给体CuPc酞菁铜受体给体ECE = 1.8% CuPcCuPc效率可达5%三、三线态发光(磷光)1、电致磷光的简要原理用于OLED 中的发光材料可分为两类. 一类是荧光材料, 一类是磷光材料. 根据自旋量子统计理论, 电子和空穴复合后, 单重态激子和三重态激子的形成概率比例是1∶3, 即单重态激子仅占“电子-空穴对”的25%,75%的“电子-空穴对”由于形成了自旋禁阻的三重态激子对“电致发光”没有贡献. 因此, 单纯依靠单重态激子辐射衰减发光的荧光发光材料, 其电致发光的最大内量子效率为25%. 磷光材料能够通过系间窜越, 实现混合了单重态和三重态发光的磷光发射.金属配合物(看作染料)分散在半导体聚合物(看作主体)中时,相互间所能发生的能量转移理论上, 利用磷光材料制作的OLED 内量子效率可达100%, 它的发光效率比荧光材料提高三倍. 20 世纪90 年代末, 美国普林斯顿大学的Forrest 教授和南加州大学的Thompson 教授两个研究小组合作, 成功地利用铂-卟啉配合物, 环金属化的铱-苯基吡啶配合物作为磷光染料与电荷传输主体材料通过共蒸镀的方法制作有机电致发光器件中的发光层, 器件的外量子效率分别达到4%和8%, 相对于电致荧光器件得到了极大的提高. 近几年, 基于重金属配合物, 特别是铱配合物电致磷光材料和器件的研究已成为目前有机电致发光领域研究的热点. 其中, 利用铱配合物作为磷光材料而制作的多层OLED 器件, 其最大外量子效率已达到了19.2%, 能量转换效率为72 lm/W (65 cd/m2)。
卟啉铂PtOEP 第一次获得了电致磷光,效率约4%2、金属配合物小分子的电致磷光p151-154M. A. Baldo et al., Nature, 1998, 395, 151-154.The efficiency of electroluminescent organic light-emitting devices can be improved by the introduction of a fluorescent dye. Energy transfer from the host to the dye occurs via excitons, but only the singlet spin states induce fluorescent emission; these represent a small fraction (about 25%) of the total excited-state population (the remainder are triplet states). Phosphorescent dyes, however, offer a means of achieving improved light-emission efficiencies, as emission may result from both singlet and triplet states.Here we report high-efficiency (90%) energy transfer from both singlet and triplet states, in a host material doped with the phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP). Our doped electroluminescent devices generate saturated red emission with peak external and internal quantum efficiencies of 4% and 23%, respectively. The luminescent efficiencies attainable with phosphorescent dyes may lead to new applications for organic materials. Moreover, our work establishes the utility of PtOEP as a probe of triplet behaviour and energy transfer in organic solid-state systems.发光光谱包括绿光、黄光、橙光电致发光效率大幅提高到16%高效率蓝光(白光照明)。