基于MATLAB的物理光学实验仿真平台构建

合集下载

基于MATLAB的光学实验模拟

基于MATLAB的光学实验模拟

光学模拟计算实验报告班级:物理学122班姓名:学号:实验目的:利用MATLAB软件编程实现了用衍射积分的方法对单缝衍射、杨氏双缝干涉、黑白光栅衍射的计算机模拟;以及用傅立叶变换方法对简单孔径衍射、黑白光栅及正弦光栅夫琅和费衍射的模拟。

实验仪器及软件:MATLAB;衍射积分;傅立叶变换;计算机模拟实验原理:大学教学课程中引入计算机模拟技术正日益受到重视,与Basic、C和Fortran相比,用MA TLAB软件做光学试验的模拟,只需要用数学方式表达和描述,省去了大量繁琐的编程过程。

下面来介绍利用MATLAB进行光学模拟的两种方法。

(一)衍射积分方法:该方法首先是由衍射积分算出接收屏上的光强分布,然后根据该分布调制色彩作图,从而得到衍射图案。

1.单缝衍射。

把单缝看作是np个分立的相干光源,屏幕上任意一点复振幅为np个光源照射结果的合成,对每个光源,光程差Δ=ypsinΦ,sinΦ=ys/D,光强I=I0(Σcosα)2+(Σsinα)2,其中α=2Δ/λ=πypys/λD编写程序如下,得到图1lam=500e-9;a=1e-3;D=1;ym=3*lam*D/a;ny=51;ys=linspace(-ym,ym,ny);np=51;yp=linspace(0,a,np);for i=1:nysinphi=ys(i)/D;alpha=2*pi*yp*sinphi/lam;图1 单缝衍射的光强分布 sumcos=sum(cos(alpha));sumsin=sum(sin(alpha));B(i,:)=(sumcos^2+sumsin^2)/np^2;endN=255;Br=(B/max(B))*N;subplot(1,2,1)image(ym,ys,Br); colormap(gray(N)); subplot(1,2,2) plot(B,ys); 2. 杨氏双缝干涉两相干光源到接收屏上P 点距离r 1=(D 2+(y-a/2)2)1/2, r 2=(D 2+(y+a/2)2)1/2,相位差Φ=2π(r 2-r 1)/λ,光强I=4I 0cos 2(Φ/2) 编写程序如下,得到图2 clear lam=500e-9 a=2e-3;D=1;ym=5*lam*D/a;xs=ym;n=101;ys=linspace(-ym,ym,n); for i=1:nr1=sqrt((ys(i)-a/2).^2+D^2); r2=sqrt((ys(i)+a/2).^2+D^2); phi=2*pi*(r2-r1)./lam;B(i,:)=sum(4*cos(phi/2).^2); end N=255;Br=(B/4.0)*Nsubplot(1,2,1) image(xs,ys,Br); colormap(gray(N)); subplot(1,2,2) plot(B,ys) 3. 光栅衍射公式:I=I 0(sin α/α)2(sin(λβ)/sin β)2α=(πa/λ)sin Φ β=(πd/λ)sin Φ编写程序如下:得到图3clearlam=500e-9;N=2; a=2e-4;D=5;d=5*a; ym=2*lam*D/a;xs=ym; n=1001;ys=linspace(-ym,ym,n); for i=1:nsinphi=ys(i)/D;alpha=pi*a*sinphi/lam; beta=pi*d*sinphi/lam;B(i,:)=(sin(alpha)./alpha).^2.*(sin(N*beta)./sin(beta)).^2; B1=B/max(B);end图2 杨氏双缝干涉的光强分布 图3 黑白光栅衍射光强分布NC=255;Br=(B/max(B))*NC; subplot(1,2,1) image(xs,ys,Br); colormap(gray(NC)); subplot(1,2,2) plot(B1,ys);(二)傅立叶变换方法:在傅立叶变换光学中我们知道夫琅和费衍射场的强度分布就等于屏函数的功率谱。

在MATLAB中进行物理建模和仿真

在MATLAB中进行物理建模和仿真

在MATLAB中进行物理建模和仿真引言:MATLAB是一种强大的数学建模和仿真软件,可以广泛应用于各种学科领域,包括物理学。

通过在MATLAB中进行物理建模和仿真,研究人员可以更好地理解和探索各种物理现象、原理和实验,从而更好地设计和优化物理系统。

一、理论基础在进行物理建模和仿真之前,首先需要对相关的物理理论有一定的了解。

例如,在研究电磁波传播时,需要了解麦克斯韦方程组和电磁波的基本性质;在研究力学系统时,需要了解牛顿力学和拉格朗日力学等理论基础。

二、建立物理模型在MATLAB中建立物理模型是进行物理建模和仿真的重要一步。

物理模型可以是根据物理原理和实验数据建立的数学模型,也可以是经验模型。

在建立物理模型时,需要考虑系统的各个部分和它们之间的相互作用,以及外界因素的影响。

根据不同的物理现象和系统特点,可以选择合适的建模方法,如微分方程、差分方程、概率统计等。

三、数值方法在MATLAB中进行物理建模和仿真时,常常需要使用数值方法求解。

数值方法能够将复杂的数学模型转化为计算机可以处理的形式,从而得到系统的数值解。

常见的数值方法包括欧拉方法、龙格-库塔方法等。

在选择数值方法时,需要考虑精度和计算效率的平衡。

四、验证和优化在进行物理建模和仿真之后,需要对结果进行验证和优化。

验证是指将模型的结果与实验数据进行比较,以评估模型的准确性和可靠性。

优化是指通过调整模型的参数和改进算法,以提高模型的预测能力和计算效率。

通过验证和优化,可以不断改进模型,使其更好地符合实际情况。

五、应用实例MATLAB在物理建模和仿真方面有着广泛的应用。

例如,在光学领域,可以使用MATLAB进行光传输计算、光波导模拟等;在电路设计领域,可以使用MATLAB进行电路分析和优化;在力学系统中,可以使用MATLAB进行结构分析和振动仿真等。

这些应用实例表明,MATLAB为物理学家提供了一个强大的工具,可以更好地理解和解决各种物理问题。

总结:MATLAB作为一种数学建模和仿真软件,在物理建模和仿真方面具有重要作用。

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真

基于Matlab的光学实验仿真一、本文概述随着科技的快速发展,计算机仿真技术已成为科学研究、教学实验以及工程应用等领域中不可或缺的一部分。

在光学实验中,仿真技术能够模拟出真实的光学现象,帮助研究者深入理解光学原理,优化实验设计,提高实验效率。

本文旨在探讨基于Matlab的光学实验仿真方法,分析Matlab在光学实验仿真中的优势和应用,并通过具体案例展示其在光学实验仿真中的实际应用效果。

通过本文的阐述,读者将能够了解Matlab在光学实验仿真中的重要作用,掌握基于Matlab的光学实验仿真方法,从而更好地应用仿真技术服务于光学研究和实验。

二、Matlab基础知识Matlab,全称为Matrix Laboratory,是一款由美国MathWorks公司出品的商业数学软件,主要用于算法开发、数据可视化、数据分析以及数值计算等领域。

Matlab以其强大的矩阵计算能力和丰富的函数库,在光学实验仿真领域具有广泛的应用。

Matlab中的变量无需预先声明,可以直接使用。

变量的命名规则相对简单,以字母开头,后面可以跟字母、数字或下划线。

Matlab支持多种数据类型,包括数值型(整数和浮点数)、字符型、逻辑型、结构体、单元数组和元胞数组等。

Matlab的核心是矩阵运算,它支持多维数组和矩阵的创建和操作。

用户可以使用方括号 [] 来创建数组或矩阵,通过索引访问和修改数组元素。

Matlab还提供了大量用于矩阵运算的函数,如矩阵乘法、矩阵转置、矩阵求逆等。

Matlab具有强大的数据可视化功能,可以绘制各种二维和三维图形。

在光学实验仿真中,常用的图形包括曲线图、散点图、柱状图、表面图和体积图等。

用户可以使用plot、scatter、bar、surf和volume 等函数来创建这些图形。

Matlab支持多种控制流结构,如条件语句(if-else)、循环语句(for、while)和开关语句(switch)。

这些控制流结构可以帮助用户编写复杂的算法和程序。

《2024年基于Matlab的光学实验仿真》范文

《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。

然而,实际的光学实验通常涉及到复杂的光路设计和精密的仪器设备,实验成本高、周期长。

因此,通过基于Matlab的光学实验仿真来模拟光学实验,不仅能够为研究提供更方便的实验条件,而且还可以帮助科研人员更深入地理解和掌握光学原理。

本文将介绍基于Matlab的光学实验仿真的实现方法和应用实例。

二、Matlab在光学实验仿真中的应用Matlab作为一种强大的数学计算软件,在光学实验仿真中具有广泛的应用。

其强大的矩阵运算能力、图像处理能力和数值模拟能力为光学仿真提供了坚实的数学基础。

1. 矩阵运算与光线传播Matlab的矩阵运算功能可用于模拟光线传播过程。

例如,光线在空间中的传播可以通过矩阵的变换实现,包括偏振、折射、反射等过程。

通过构建相应的矩阵模型,可以实现对光线传播过程的精确模拟。

2. 图像处理与光场分布Matlab的图像处理功能可用于模拟光场分布和光束传播。

例如,通过傅里叶变换和波前重建等方法,可以模拟出光束在空间中的传播过程和光场分布情况,从而为光学设计提供参考。

3. 数值模拟与实验设计Matlab的数值模拟功能可用于设计光学实验方案和优化实验参数。

通过构建光学系统的数学模型,可以模拟出实验过程中的各种现象和结果,从而为实验设计提供依据。

此外,Matlab还可以用于分析实验数据和优化实验参数,提高实验的准确性和效率。

三、基于Matlab的光学实验仿真实现方法基于Matlab的光学实验仿真实现方法主要包括以下几个步骤:1. 建立光学系统的数学模型根据实际的光学系统,建立相应的数学模型。

这包括光路设计、光学元件的参数、光束的传播等。

2. 编写仿真程序根据建立的数学模型,编写Matlab仿真程序。

这包括矩阵运算、图像处理和数值模拟等步骤。

在编写程序时,需要注意程序的精度和效率,确保仿真的准确性。

3. 运行仿真程序并分析结果运行仿真程序后,可以得到光束传播的模拟结果和光场分布等信息。

《2024年基于Matlab的光学实验仿真》范文

《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。

然而,由于实验条件的限制和复杂性,实验过程往往需要耗费大量的时间和资源。

因此,基于Matlab的光学实验仿真成为了一种有效的替代方法。

通过仿真,我们可以在计算机上模拟真实的光学实验过程,获得与实际实验相似的结果,从而节省实验成本和时间。

本文将介绍基于Matlab的光学实验仿真的基本原理、方法、应用和优缺点。

二、Matlab在光学实验仿真中的应用Matlab是一种强大的数学计算软件,具有丰富的函数库和强大的计算能力,可以用于光学实验的仿真。

在光学实验仿真中,Matlab可以模拟各种光学元件、光学系统和光学现象,如透镜、反射镜、干涉仪、光谱仪等。

此外,Matlab还可以通过编程实现复杂的算法和模型,如光线追踪、光场计算、光波传播等。

三、基于Matlab的光学实验仿真方法基于Matlab的光学实验仿真方法主要包括以下几个步骤:1. 建立仿真模型:根据实验要求,建立相应的光学系统模型和算法模型。

2. 设置仿真参数:根据实际需求,设置仿真参数,如光源类型、光束尺寸、光路走向等。

3. 编写仿真程序:使用Matlab编写仿真程序,实现光路计算、光场分析和结果输出等功能。

4. 运行仿真程序:运行仿真程序,获取仿真结果。

5. 分析结果:对仿真结果进行分析和讨论,得出结论。

四、应用实例以透镜成像为例,介绍基于Matlab的光学实验仿真的应用。

首先,建立透镜成像的仿真模型,包括光源、透镜和屏幕等元件。

然后,设置仿真参数,如光源类型、透镜焦距、屏幕位置等。

接着,使用Matlab编写仿真程序,实现光线追踪和光场计算等功能。

最后,运行仿真程序并分析结果。

通过仿真结果,我们可以观察到透镜对光线的聚焦作用和成像效果,从而验证透镜成像的原理和规律。

五、优缺点分析基于Matlab的光学实验仿真具有以下优点:1. 节省时间和成本:通过仿真可以快速获得实验结果,避免实际实验中的复杂性和不确定性。

基于MATLAB的波动光学实验仿真系统的构建

基于MATLAB的波动光学实验仿真系统的构建

毕业设计(论文)基于MATLAB的波动光学实验仿真系统的构建本科生毕业设计(论文)任务书设计(论文)主要容:在MATLAB环境下,编写程序,实现几个波动光学实验项目的计算机仿真,包括光学拍实验、球面波干涉实验、氏干涉实验、等倾等厚干涉实验、夫琅和费衍射实验、费涅尔衍射实验和光栅衍射实验;编制仿真程序的图形用户界面,实现各个实验项目中相关参数的直接设置及结果显示,实现人机交互;创建独立的仿真应用程序。

要求完成的主要任务:1、查阅不少于15篇的相关资料,其中英文文献不少于3篇,完成开题报告。

2、熟悉MATLAB的相关操作,学习MATLAB语言。

3、编写出仿真程序代码,制作GUI界面。

4、完成不少于5000字的英文文献翻译。

5、完成12000字的毕业设计论文。

必读参考资料:[1]敬辉,达尊,阎吉祥.物理光学教程[M].:理工大学,2005.[2]王正林,明.精通MATLAB7[M].:电子工业,2007.[3]平等.MATLAB基础与应用[M].:航空航天大学,2005.指导教师签名系主任签名院长签名(章)目录摘要 (I)Abstract (II)1 绪论 (1)1.1 波动光学的历史及研究对象 (1)1.2 光学实验仿真 (3)1.3 MATLAB仿真的特点 (4)1.4 设计思路 (5)2 光的干涉实验仿真 (7)2.1 光波的叠加原理 (7)2.2 光学拍的实验仿真 (9)2.3 球面波干涉实验仿真 (12)2.4 氏干涉的实验仿真 (20)2.5 等倾和等厚干涉实验仿真 (27)2.6 本章小结 (34)3 光的衍射实验仿真 (35)3.1 光的衍射现象及其分类 (35)3.2 夫琅和费衍射及其仿真实现 (37)3.3 菲涅耳衍射及其仿真实现 (43)3.4 光栅衍射及其仿真实现 (49)3.5 本章小结 (51)4 仿真系统图形用户界面设计 (53)4.1 波动光学主界面的仿真 (53)4.2 仿真模拟 (57)4.3 本章小结 (71)5 结束语 (72)参考文献 (74)附录 (75)致 (98)摘要本文利用MATLAB强大的矩阵运算功能和图形绘制功能,在波动光学相关理论的基础上,通过编程实现了几种常见的干涉和衍射现象的仿真,将其结果形象、直观地体现出来,对于波动光学的教学和学习具有很好的帮助作用。

Matlab GUI在光学实验仿真中的应用

Matlab GUI在光学实验仿真中的应用

r s l s o h tt ep af r h st d a t g fma - c ieitra efin l o eain smpe, aa tr du tb e p e e ut h wst a h lto m a hea v n a eo n ma hn e fc re d y, p rto i l p r mee sa jsa l ,s e d n
新 的途 径 。
合 成 波强 度 为
I =A。 aCS 一4 。 O
一 £ 一2 。1 o (k 一2 f] ) a[ +c s 2 w )
() 5
由式 ( ) 知 , 成 波 强 度 随 时 问 和 位 置 在 0 5可 合 ~
1 光 学 拍 的基 本 原 理
两个 振 动方 向相 同、 幅相 同 、 率接 近 的单 色光 振 频
则式 ( ) 表示 为 3可
E— Ac s k - wt o ( x- ) () 4
本 文 以光 学拍 的理 论 为基础 , 助 Malb图形 用户 界 借 t a 面 ( a hcUsrItra e GUI设 计 了光 学 拍 实 验 Grp i e n efc : ) 仿 真 平 台 , 物理 光学 的理 论 研究 和 实验 教 学 开 辟 了 为
厚度 、 电 系数 、 力 波等 重要 物理 量 的精 密测 量 。 压 压 设 两列 角 频率 分 别 为 W W 和 的单 色 波 沿 方
因而 A变 化 缓慢 而 E变换 极快 。
2 仿 真 过 程 及 结 果
光 学拍 实验 仿 真 思路 是 先 通 过 Malb实 现 光 学 t a 拍的动画演示 . 文件 , m 然后 通 过设 计 GUI 面 , 界 实

matlab光学仿真课程设计

matlab光学仿真课程设计

matlab光学仿真课程设计一、课程目标知识目标:1. 掌握MATLAB软件的基本操作和常用命令;2. 理解光学仿真原理,了解光学仿真中常用的数学模型;3. 学会运用MATLAB进行光学仿真实验,分析仿真结果。

技能目标:1. 能够运用MATLAB编写光学仿真程序,实现光学现象的模拟;2. 能够熟练运用MATLAB处理光学数据,绘制相关图表;3. 能够运用光学仿真技术解决实际问题,提高实践操作能力。

情感态度价值观目标:1. 培养学生对光学仿真的兴趣,激发学生探索光学领域的精神;2. 增强学生团队合作意识,培养学生沟通、交流和协作能力;3. 使学生认识到光学仿真在科研和工程领域的重要性,培养学生的创新意识和责任感。

课程性质:本课程为选修课程,旨在提高学生的实践操作能力和光学仿真技术水平。

学生特点:学生具备一定的物理学和数学基础,对光学现象有一定了解,但对MATLAB软件和光学仿真技术较为陌生。

教学要求:结合学生特点,注重理论与实践相结合,通过案例分析和实际操作,使学生掌握光学仿真的基本技能,并能够运用所学知识解决实际问题。

在教学过程中,关注学生的情感态度价值观培养,提高学生的综合素质。

将课程目标分解为具体的学习成果,以便于后续教学设计和评估。

二、教学内容1. MATLAB软件基础操作与常用命令学习;- 熟悉MATLAB界面及基本功能;- 掌握数据类型、矩阵运算、函数编写等基本操作;- 了解常用的绘图命令和数据可视化方法。

2. 光学仿真原理与数学模型;- 学习光学仿真基本原理,如干涉、衍射、折射等;- 掌握光学仿真中常用的数学模型,如波动方程、衍射积分等;- 分析实际光学问题,选择合适的数学模型进行仿真。

3. MATLAB在光学仿真中的应用实例;- 通过案例学习,掌握MATLAB在光学仿真中的具体应用;- 学习如何利用MATLAB解决实际问题,如光学元件设计、光学信号处理等;- 分析仿真结果,优化光学系统性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)开题报告题目:基于Matlab的物理光学实验仿真平台构建
院(系)光电工程学院
专业光信息科学与技术
班级120110
姓名闫武娟
学号120110127
导师刘王云
年月日
开题报告填写要求
1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。

此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成。

2.开题报告内容必须按教务处统一设计的电子文档标准格式(可从教务处网页上下载)填写并打印(禁止打印在其它纸上后剪贴),完成后应及时交给指导教师审阅。

3.开题报告字数应在1500字以上,参考文献应不少于15篇(不包括辞典、手册,其中外文文献至少3篇),文中引用参考文献处应标出文献序号,“参考文献”应按附件中《参考文献“注释格式”》的要求书写。

4.年、月、日的日期一律用阿拉伯数字书写,例:“2005年11月26日”。

输入与图像的绘制,不同的参数便可模拟出不同的物理光学实验的条纹以及光强分布图,改变参数可模拟出另一组图像,与前一组可进行观察对比,可模拟平面图像,也可模拟出三维光强图像[15]。

这些仿真平台的使用不仅方便了教学,而且也使学生更容易理解物理光实验的基本原理,加深对理论知识的理解与记忆。

2.课题研究的主要内容和拟采用的研究方案、研究方法
2.1课题研究的主要内容
(1). 在光的干涉基本理论基础上,实现两束平面波、球面波的干涉实验,杨氏双缝和杨氏双孔干涉实验,平行平板的等倾干涉实验,楔形平板的等厚干涉实验,牛顿环干涉实验,迈克尔逊干涉实验以及平行平板的多光束干涉实验。

(2). 在菲涅尔衍射及夫琅和费衍射基本理论基础上,实现矩孔、单缝、圆孔、双缝、多缝、平面光栅及闪耀光栅的衍射实验。

2.2 研究方法及方案
物理光学实验可分为两大类:干涉与衍射。

光的干涉有光源、干涉装置和干涉图形三个基本要素;衍射分为菲涅尔衍射和夫琅禾费衍射。

光学领域的大部分图像及曲线分布都可以用MATLAB软件加以计算和实现[16],
以杨氏双缝干涉为例,简述实验方案
杨氏双缝干涉模型是典型的分波面干涉,其干涉装置图如图所示,用一个单缝与一个双缝,从同一波面上分出两个同相位的单色光,进而获得相干光源并观察分析干涉图样。

图1.1 杨氏双缝干涉实验装置图
2.2.1数学建模
根据干涉的基本原理,点光源S发出的光波经双缝分解为次波源S1、S2,这两个次波源发出的光波在空间相干叠加,继而在其后的接收屏形成一系列明暗相间的干涉条纹。

设入射光波波长为λ,两个次波源的强度相同,且间距为d
(1)位相差的计算:
221)2
(y d
x r ++
= 222)2
-
(y d
x r += (2.1)
)(*12r r n -=∆ (2.2)
∆=
∆λ
π
ϕ2 (2.3)
(2)光强的计算:
)2
(
cos 42

∆=I I (2.4) 干涉条纹明纹的位置:d
mD y λ
=
, (m=0,±1,±2,...) (2.5) 干涉条纹暗纹的位置:d
D m y λ)21(+
=, (m=0,±1,±2,...) (2.6) 干涉条纹间距: d
D e λ
=
(2.7) 2.2.2杨氏双缝干涉程序流程图
图1.2 杨氏双缝干涉实验仿真程序流程图
开始
输入参数波长,缝宽,观察距离等
Linspace()确定x ,y 方向的范围并确定采样点
利用光强分布公式计算每一个采样点的光强I(x,y)
调用plot(),imshow ()函数显示光强灰度及分布图
结束
2.2.3用户界面的设计
图形用户界面(GUI )是指由窗口、菜单、图标、光标按键、对话框和文本等各种图形对象组成的用户界面。

它让用户定制用户与MATLAB 的交互方式,而命令窗口不是唯一与MATLAB 的交互方式 (1)用户界面设计图如下:
图1.3 物理光学实验仿真平台布局思路图
(2)各个实验界面的设计:
每一个干涉或衍射实验都可以看作是一个独立的单元。

设计一个专用的界面,在这一界面中,主要包括图形显示,参数输入,以及实验仿真的结束。

本文的设计思路是通过按钮控件,图形显示控件,静态文本框控件以及编辑框控件来实现。

思路构图如下:
图1.4 物理光学实验仿真平台各实验界面构图
物理光学实验 干涉实验 衍射实验
球 面平 面 波 杨 氏 干 涉 等 倾 干 涉 等 厚 干 涉 多 光 束 单 缝 衍 射
圆 孔 衍 射
多 缝 衍 射
双 缝 衍 射
光 栅 衍 射
矩 孔 衍 射
光强分布图
干涉或衍射图样
实验参数变化
实验参数变化 实验参数变化
启动
结束
(3)用户界面思路流程图:
开始

仿真文件是否存在

在参数输入窗口输入所要用到的参数值
利用光强分布公式计算光强分布
绘制光强分布二维图样及灰度图样
结束
图1.5 物理光学实验仿真平台用户界面程序流程图
3. 本课题研究的重点及难点,前期已开展工作
3.1本课题研究的重点
(1)光的干涉原理的理论基础;
(2)各类干涉实验的过程以及实验的结果;
(3)光的衍射原理的理论基础;
(4)各类衍射实验的过程以及实验的结果;
(5)物理光学实验的计算机仿真。

3.2本课题研究的难点
(1)仿真程序的编写;
(2)用户界面的设计。

3.3前期已开展的工作
完成选题后,在指导老师的指导下学习基础理论知识,在掌握了一定的理论知识的基础上完成资料的初步查阅,并对所选课题加深了解。

将所查阅的资料进
注:1、正文:宋体小四号字,行距22磅。

2、开题报告装订入毕业设计(论文)附件册。

相关文档
最新文档