ansys热分析

合集下载

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。

其中,ANSYS在热分析方面的应用具有很高的价值,能对复杂结构的温度分布、热应力等问题进行有效的数值模拟和分析。

本文旨在深入探讨ANSYS有限元分析软件在热分析中的应用。

二、ANSYS软件及其热分析功能ANSYS是一款广泛应用于机械、电气、流体等多领域的有限元分析软件。

其强大的功能主要得益于其精细的数值计算方法和广泛的适用性。

在热分析方面,ANSYS可以模拟各种复杂的热传导、热对流和热辐射问题,为工程师提供精确的数值结果和直观的图形展示。

三、ANSYS在热分析中的应用1. 模型建立与网格划分在ANSYS中进行热分析,首先需要建立准确的模型并进行网格划分。

ANSYS提供了强大的建模工具,可以方便地建立各种复杂的模型。

同时,其网格划分功能可以根据模型的特点和需求,自动或手动进行网格的生成和优化。

这为后续的热分析提供了可靠的数值基础。

2. 材料属性设定与载荷施加在热分析中,材料属性设定和载荷施加是关键步骤。

ANSYS 提供了丰富的材料库,可以根据实际需要选择合适的材料并进行属性的设定。

同时,根据问题的需求,可以在模型上施加各种类型的热载荷,如温度、热流等。

3. 求解与结果分析完成模型建立、网格划分、材料属性设定和载荷施加后,就可以进行求解了。

ANSYS采用先进的数值计算方法,可以快速得到求解结果。

同时,ANSYS提供了丰富的后处理功能,可以对求解结果进行可视化展示和分析。

例如,可以绘制温度分布图、热流图等,帮助工程师直观地了解问题的特点。

四、ANSYS在热分析中的优势相比传统的实验方法,ANSYS在热分析中具有以下优势:1. 准确性高:ANSYS采用先进的数值计算方法,可以模拟各种复杂的热传导、热对流和热辐射问题,得到的结果更加准确可靠。

2. 效率高:相比传统的实验方法,ANSYS可以在短时间内得到求解结果,大大提高了工作效率。

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《2024年ANSYS有限元分析软件在热分析中的应用》范文

《ANSYS有限元分析软件在热分析中的应用》篇一一、引言随着科技的不断进步,ANSYS有限元分析软件在工程领域的应用越来越广泛。

其中,热分析作为工程领域的一个重要部分,ANSYS软件在其中发挥了重要作用。

本文将详细探讨ANSYS有限元分析软件在热分析中的应用,包括其基本原理、应用领域、优势及挑战等方面。

二、ANSYS有限元分析软件基本原理ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、电磁场和热分析等领域。

在热分析中,ANSYS利用有限元法将复杂的连续体离散化,将求解域划分为一系列的单元体,然后通过对每个单元进行分析,从而得出整个结构的热行为特性。

三、ANSYS在热分析中的应用1. 稳态热分析稳态热分析主要用于研究物体在恒定温度场下的热行为。

通过ANSYS软件,可以建立物体的三维模型,设置材料属性、边界条件等参数,然后进行稳态热分析。

分析结果可以用于产品设计、优化和性能评估等方面。

2. 瞬态热分析瞬态热分析主要用于研究物体在温度场随时间变化情况下的热行为。

例如,在汽车发动机、电子设备等领域的热管理中,需要了解设备在运行过程中的温度变化情况。

通过ANSYS软件进行瞬态热分析,可以得出设备在不同时间点的温度分布情况,为产品设计、优化和故障诊断提供依据。

四、ANSYS在热分析中的优势1. 高精度:ANSYS软件采用先进的有限元法,可以将求解域划分为足够小的单元体,从而得出较为精确的解。

2. 多物理场耦合分析:ANSYS可以用于多物理场耦合分析,包括热-结构耦合、热-流体耦合等,能够更全面地反映实际工程问题的复杂性。

3. 丰富的材料库:ANSYS拥有丰富的材料库,可以用于模拟各种材料的热性能。

4. 强大的后处理功能:ANSYS具有强大的后处理功能,可以方便地查看和分析计算结果,为工程设计提供有力支持。

五、挑战与展望尽管ANSYS在热分析中具有诸多优势,但仍面临一些挑战。

例如,在处理大规模复杂问题时,计算资源的消耗较大;对于某些特殊材料和复杂结构的建模和分析难度较高;此外,ANSYS软件的学系成本较高,需要专业知识和技能。

《热分析ansys教程》课件

《热分析ansys教程》课件

05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具

热分析(ansys教程)

热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。

在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。

下面将详细介绍ANSYS热分析的原理与流程。

首先,在进行ANSYS热分析前,需要进行前期准备工作。

包括建立几何模型,定义边界条件和导入材料参数等。

在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。

然后,需要定义材料参数,如热导率、比热等。

最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。

接下来,进行热传导分析。

热传导分析是热分析的基础,用于计算物体内部的温度分布。

在ANSYS中,可以选择稳态或者瞬态分析。

对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。

对于瞬态分析,需要设置时间步长和总的仿真时间。

在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。

在得到物体内部的温度分布后,可以进行热应力分析。

热应力分析是在热传导分析的基础上引入力学应力计算的过程。

在ANSYS中,可以通过多物理场耦合分析的功能来实现。

首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。

然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。

除了热应力分析,还可以进行热辐射分析。

热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。

在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。

常用的辐射模型包括黑体辐射模型和灰体辐射模型等。

通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。

最后,进行结果分析和后处理。

在ANSYS中,可以对热分析的结果进行可视化和数据分析。

可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。

此外,还可以导出计算结果,并进行后续的工程设计和优化。

ANSYS热分析简介1

ANSYS热分析简介1

ANSYS热分析简介1⽬录1. ANSYS热分析简介1. ANSYS热分析基于能量守恒原理的热平衡⽅程,⽤有限元的⽅法计算各节点的温度,并导出其他物理参数。

2. ANSYS热分析包括热传导、热对流和热辐射三种热传递⽅式,此外还可以分析相变、有内热源、接触热阻等问题。

3. ANSYS中耦合场的分析种类有热-结构耦合、热-流体耦合、热-电耦合、热-磁耦合、热-电-磁-结构耦合等。

4. 对于不同的零件,之间可以采⽤GLUE进⾏粘接,或者采⽤Overlap等⽅法,也可以建⽴接触。

1.1 传导传导:两个良好接触的物体之间的能量交换或⼀个物体内由于温度梯度引起的内部能量交换。

对流:在物体和周围介质之间发⽣的热交换。

由温差存在⽽引起的热量交换,可以分为⾃然对流和强对流。

对流⼀般作为⾯边界条件施加。

热对流⽤⽜顿冷却⽅程来描述。

辐射:⼀个物体或者多个物体之间通过电磁波进⾏能量交换。

热辐射指物体发射电磁能,并被其他物体吸收转变为热的热量交换过程。

物体温度越⾼,单位时间辐射的热量越多。

热传导和热对流都需要传热介质,⽽热辐射⽆需任何介质,且在真空中的效率最⾼。

可以看出辐射分析是⾼度⾮线性的。

1.2 热载荷分类(1)DOF约束:温度(2)集中载荷:热流(3)⾯载荷:热流,对流(4)体载荷:体积或者区域载荷。

1.2.1 载荷施加序号APDL含义备注1TUNIF施加均匀初始温度2IC施加⾮均匀的初始温度1.3 热分析分类1.3.1 稳态热分析如果热能的流动不随时间变化的话,热传递就成为是稳态的。

由于热能流动不随时间变化,系统的温度和热载荷也都不随时间变化。

稳态热平衡满⾜热⼒学第⼀定律。

通常在进⾏瞬态分析前,进⾏稳态分析⽤于确定初始温度分布。

对于稳态传热,⼀般只需要定义导热系数,他可以是恒定的,也可是是随温度变化的。

1.3.2 瞬态热分析瞬态热分析⽤于计算⼀个系统的随时间变化的温度场及其他热参数。

在⼯程上⼀般⽤瞬态热分析计算温度场,并将之作为热载荷进⾏应⼒分析。

ANSYS热分析详解

ANSYS热分析详解

ANSYS热分析详解ANSYS(工程仿真软件)是一种广泛应用于工程领域的有限元分析软件。

它不仅可以进行结构力学分析,还可以进行热分析。

热分析是通过数值模拟来研究物体在不同温度和热载荷条件下的热行为。

下面将详细介绍ANSYS热分析的一般步骤和常见应用。

热分析的步骤通常包括几个关键步骤:1.几何建模:通过ANSYS软件创建物体的三维几何模型。

可以使用软件内置的几何建模工具或从其他CAD软件导入几何模型。

2.材料定义:选择适当的材料,并在ANSYS中定义其热特性,如导热系数、比热容和线膨胀系数等。

3.网格划分:将几何模型分割成许多小单元,称为有限元。

每个有限元具有一组方程来描述其热行为。

网格划分的质量直接影响到最终结果的准确性,因此需要仔细选择合适的网格划分方法。

4.边界条件:指定物体的边界条件,如温度、热流、辐射、对流等。

这些边界条件会影响物体的热传导和热平衡。

5.求解:通过解决一组非线性偏微分方程来计算物体的温度分布。

ANSYS使用有限元方法来求解这些方程,并返回物体在不同点上的温度值。

6.后处理:对计算结果进行可视化和分析。

ANSYS可以绘制温度分布图、热通量图、温度梯度图等,以帮助用户更好地理解和分析物体的热行为。

1.电子器件散热分析:在电子设备中,散热问题常常是一个关键问题。

通过ANSYS热分析,可以评估电子器件所产生的热量,以及散热器的性能,从而确保设备的可靠性和性能。

2.汽车发动机冷却分析:汽车发动机的性能和寿命受限于冷却系统的效果。

ANSYS热分析可以帮助评估不同冷却系统的性能,并优化设计以提高发动机的效率和耐久性。

3.压力容器热应力分析:在高温和高压条件下,压力容器可能会发生热应力。

ANSYS热分析可以帮助评估容器的热应力,并指导合适的设计改进。

4.太阳能热系统分析:太阳能是一种可再生能源,可以通过太阳能热系统将太阳能转化为热能。

ANSYS热分析可以帮助评估太阳能热系统的性能,并优化设计以提高能量转化效率。

ANSYS热分析分析指南

ANSYS热分析分析指南

ANSYS热分析指南第一章 简介 (2)第二章 基础知识 (4)第三章 稳态热分析 (8)第四章 瞬态热分析 (43)第五章 表面效应单元 (66)第六章 热辐射分析 (90)第七章 热应力分析 (120)第一章 简介1.1 热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有:温度的分布热量的增加或损失热梯度热流密度热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。

通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。

1.2 ANSYS中的热分析ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、ANSYS/FLOTRAN四种产品中支持热分析功能。

ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。

ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。

ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。

1.2.1 对流热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。

首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。

如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。

1.2.2 辐射ANSYS提供了四种方法来解决非线性的辐射问题:辐射杆单元(LINK31)使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)在AUX12中,生成辐射矩阵,作为超单元参与热分析使用Radiosity求解器方法有关辐射的详细描述请阅读本指南第四章。

1.2.3 特殊的问题除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章稳态热分析3.1稳态传热的定义ANSYS/Multiphysics,ANSYS/Mechanical,ANSYS/FLOTRAN和ANSYS/Professional这些产品支持稳态热分析。

稳态传热用于分析稳定的热载荷对系统或部件的影响。

通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。

也可以在所有瞬态效应消失后,将稳态热分析作为瞬态热分析的最后一步进行分析。

稳态热分析可以计算确定由于不随时间变化的热载荷引起的温度、热梯度、热流率、热流密度等参数。

这些热载荷包括:对流辐射热流率热流密度(单位面积热流)热生成率(单位体积热流)固定温度的边界条件稳态热分析可用于材料属性固定不变的线性问题和材料性质随温度变化的非线性问题。

事实上,大多数材料的热性能都随温度变化,因此在通常情况下,热分析都是非线性的。

当然,如果在分析中考虑辐射,则分析也是非线性的。

3.2热分析的单元ANSYS和ANSYS/Professional中大约有40种单元有助于进行稳态分析。

有关单元的详细描述请参考《ANSYS Element Reference》,该手册以单元编号来讲述单元,第一个单元是LINK1。

单元名采用大写,所有的单元都可用于稳态和瞬态热分析。

其中SOLID70单元还具有补偿在恒定速度场下由于传质导致的热流的功能。

这些热分析单元如下:表3-1二维实体单元单元维数形状及特点自由度PLANE35 二维六节点三角形单元温度(每个节点)PLANE55 二维四节点四边形单元温度(每个节点)PLANE75 二维四节点谐单元温度(每个节点)PLANE77 二维八节点四边形单元温度(每个节点)PLANE38 二维八节点谐单元温度(每个节点)表3-2三维实体单元单元 维数形状及特点自由度SOLID70 三维 八节点六面体单元 温度(每个节点) SOLID87 三维 十节点四面体单元 温度(每个节点) SOLID90三维 二十节点六单元温度(每个节点)表3-3辐射连接单元单元 维数 形状及特点 自由度LINK31二维或三维二节点线单元温度(每个节点)表3-4传导杆单元单元 维数 形状及特点 自由度LINK32 二维 二节点线单元 温度(每个节点) LINK33三维二节点线单元温度(每个节点)表3-5对流连接单元单元 维数 形状及特点 自由度LINK34三维二节点线单元温度(每个节点)表3-6壳单元单元 维数形状及特点自由度SHELL57三维 四节点四边形单元温度(每个节点)表3-7耦合场单元单元 维数 形状及特点自由度PLANE13二维四节点热-应力耦合单元温度、结构位移、电位、磁矢量位CONTACT48 二维 三节点热-应力接触单元 温度、结构位移CONTACT49 三维 热-应力接触单元温度、结构位移 FLUID116 三维 二或四节点热-流单元温度、压力SOLID5三维 八节点热-应力和热-电单元温度、结构位移、电位、磁标量位SOLID98 三维十节点热-应力和热-电单元温度、结构位移、电位、磁矢量位PLANE67 二维四节点热-电单元温度、电位LINK68 三维两节点热-电单元温度、电位SOLID69 三维八节点热-电单元温度、电位SHELL157 三维四节点热-电单元温度、电位表3-8特殊单元单元维数形状及特点自由度MASS71 一维到三维一个节点的质量单元温度COMBINE37 一维四节点控制单元温度、结构位移、转动、压力SURF151 二维二到四节点面效应单元温度SURF152 三维四到九节点面效应单元温度MATRIX50 由包括在超单元中的单元类型决定没有固定形状的矩阵或辐射矩阵超单元由包括在超单元中的单元类型决定INFIN9 二维二节点无限边界单元温度、磁矢量位INFIN47 三维四节点无限边界单元温度、磁矢量位COMBINE14 一维到三维两节点弹簧-阻尼单元温度、结构位移、转动、压力COMBINE39 一维两节点非线性弹簧单元温度、结构位移、转动、压力COMBINE40 一维两节点组合单元温度、结构位移、转动、压力.3热分析的基本过程ANSYS热分析包含如下三个主要步骤:前处理:建模求解:施加荷载并求解后处理:查看结果以下的内容将讲述如何执行上面的步骤。

首先,对每一步的任务进行总体的介绍,然后通过一个管接处的稳态热分析的实例来引导读者如何按照GUI路径逐步完成一个稳态热分析。

最后,本章提供了该实例等效的命令流文件。

3.4建模建立一个模型的内容包括:首先为分析指定jobname和title;然后在前处理器(PREP7)中定义单元类型,单元实常数,材料属性以及建立几何实体。

《ANSYS Modeling and Meshing Guide》中对本部分有详细说明。

对于热分析有:定义单元类型命令:ETGUI:Main Menu>Preprocessor>Element Type>Add/Edit/Delete定义固定材料属性命令:MPGUI:Main Menu>Preprocessor>Material Props>Material Models>Thermal定义温度相关的材料属性,首先要定义温度表,然后定义对应的材料属性值。

通过下面的方法定义温度表命令:MPTEMP或MPTEGN,然后定义对应的材料属性,使用MPDATAGUI:Main Menu>Preprocessor>Material Props> Material Models>Thermal对于温度相关的对流换热系数也是通过上述的GUI路径和命令来定义的。

注意--如果以多项式的形式定义了与温度相关的膜系数,则在定义其它具有固定属性的材料之前,必须定义一个温度表。

创建几何模型及划分划分网格的过程,请参阅《ANSYS Modeling and Meshing Guide》3.5施加荷载和求解在这一步骤中,必须指定所要进行的分析类型及其选项,对模型施加荷载,定义荷载选项,最后执行求解。

3.5.1指定分析类型在这一步中,可以如下指定分析类型:GUI: Main Menu>Solution>New Analysis>Steady-state(static)命令:ANTYPE,STATIC,NEW如果是重新启动以前的分析,比如,附加一个荷载。

命令:ANTYPE,STATIC,rest。

(条件是先前分析的jobname.ESAV、jobname.DB等文件是可以利用的)3.5.2施加荷载可以直接在实体模型(点、线、面、体)或有限元模型(节点和单元)上施加载荷和边界条件,这些载荷和边界条件可以是单值的,也可以是用表格或函数的方式来定义复杂的边界条件,详见《ANSYS基本分析过程指南》。

可以定义以下五种热载荷:3.5.2.1恒定的温度(TEMP)通常作为自由度约束施加于温度已知的边界上。

3.5.2.2 热流率(HEAT)--------------可以的话,就避免了吧,它是用于提高精度的补充。

热流率作为节点集中载荷,主要用于线单元(如传导杆、辐射连接单元等)模型中,而这些线单元模型通常不能直接施加对流和热流密度载荷。

如果输入的值为正,表示热流流入节点,即单元获取热量。

如果温度与热流率同时施加在一节点上,则温度约束条件优先。

注意--如果在实体单元的某一节点上施加热流率,则此节点周围的单元应该密一些;特别是与该节点相连的单元的导热系数差别很大时,尤其要注意,不然可能会得到异常的温度值。

因此,只要有可能,都应该使用热生成或热流密度边界条件,这些热荷载即使是在网格较为粗糙的时候都能得到较好的结果。

3.5.2.3 对流(CONV)对流边界条件作为面载施加于分析模型的外表面上,用于计算与模型周围流体介质的热交换,它仅可施加于实体和壳模型上。

对于线单元模型,可以通过对流杆单元LINK34来定义对流。

3.5.2.4 热流密度(HEAT)热流密度也是一种面载荷。

当通过单位面积的热流率已知或通过FLOTRAN CFD的计算可得到时,可以在模型相应的外表面或表面效应单元上施加热流密度。

如果输入的值为正,表示热流流入单元。

热流密度也仅适用于实体和壳单元。

单元的表面可以施加热流密度也可以施加对流,但ANSYS仅读取最后施加的面载进行计算。

3.5.2.5 热生成率(HGEN)热生成率作为体载施加于单元上,可以模拟单元内的热生成,比如化学反应生热或电流生热。

它的单位是单位体积的热流率。

下表总结了在热分析中的载荷类型:表3-9 热荷载类型载荷类型类别命令族GUI 路径温度 (TEMP) 约束DMain Menu>Solution>-Loads-Apply>-Thermal-Temperature热流率 (HEAT) 力F Main Menu>Solution>-Loads-Apply> -Thermal-Heat Flow对流 (CONV), 热流密度 (HFLUX) 面载荷SFMain Menu>Solution>-Loads-Apply>-Thermal-ConvectionMain Menu>Solution>-Loads-Apply>-Thermal-Heat Flux热生成率 (HGEN) 体载荷BFMain Menu>Solution>-Loads-Apply>-Thermal-Heat Generat下表详细列出了热分析中用于施加载荷,删除载荷,对载荷进行操作、列表的所以命令:表3-10 热荷载相关的命令载荷类型实体或有限元模型实体施加删除列表显示运算设置温度实体模型关键点DK DKDELE DKLIST DTRAN--" 有限元模型节点D DDELE DLIST DSCALE DCUMTUNIF热流率实体模型关键点FK FKDELE FKLIST FTRAN--" 有限元模型节点F FDELE FLIST FSCALE FCUM对流,热流密度实体模型线SFL SFLDELE SFLLIST SFTRAN SFGRAD" 实体模型面SFA SFADELE SFALIST SFTRAN SFGRAD" 有限元模型节点SF SFDELE SFLIST SFSCALE SFGRADSFCUM" 有限元模型单元SFE SFEDELE SFELIST SFSCALE SFBEAMSFCUMSFFUNSFGRAD生热率实体模型关键点BFK BFKDELE BFKLIST BFTRAN--" 实体模型线BFL BFLDELE BFLLIST BFTRAN--" 实体模型面BFA BFADELE BFALIST BFTRAN--" 实体模型体BFV BFVDELE BFVLIST BFTRAN--" 有限元模型节点BF BFDELE BFLIST BFSCALE BFCUM" " 单元BFE BFEDELE BFELIST BFSCALE BFCUM3.5.3 采用表格和函数边界条件除了一般的使用表格来定义边界条件的方法,本节讨论热分析中特有的一些问题。

相关文档
最新文档