p14_6一维无限深势阱中的粒子的波函数

合集下载

一维对称无限深方势阱的波函数表达式

一维对称无限深方势阱的波函数表达式

一维对称无限深方势阱的波函数表达式在量子力学中,一维对称无限深方势阱是一种经典的势阱模型,它在研究粒子在受限空间内的运动和能级结构等方面有很好的应用。

对于一维对称无限深方势阱来说,波函数的表达式是非常重要的,它可以帮助我们理解粒子在势阱内的行为以及计算其能级。

1. 势阱模型的基本假设一维对称无限深方势阱模型假设了以下几点:势阱的宽度为a,势阱内部的势能为0,而在势阱外部势能为无穷大,这意味着粒子在势阱内运动自由,在势阱外不能存在。

这是一个理想化的模型,但对于研究粒子在受限空间内的行为却是非常有用的。

2. 薛定谔方程的求解根据薛定谔方程,我们可以求解一维对称无限深方势阱中的波函数。

薛定谔方程的一般形式为:-ħ²/2m * d²Ψ/dx² + V(x)Ψ = EΨ其中,ħ是普朗克常数,m是粒子的质量,V(x)是势能函数,Ψ是波函数,E是能量。

对于无限深方势阱来说,势能函数V(x)在势阱内为0,在势阱外为无穷大,因此薛定谔方程可以简化为:-ħ²/2m * d²Ψ/dx² = EΨ4. 波函数的边界条件在一维对称无限深方势阱中,波函数的边界条件非常明确,因为势能在势阱外为无穷大,粒子无法透过势垒逃逸出去,故波函数在势阱外为0。

而在势阱内部,波函数要满足Ψ(0) = Ψ(a) = 0,这是因为势阱的边界为0。

5. 波函数的表达式根据边界条件,我们可以求解出一维对称无限深方势阱中的波函数表达式。

在势阱内部,波函数的一般形式为:Ψ(x) = Asin(kx) + Bcos(kx)其中,A和B是待定系数,k是波数,根据波函数的边界条件,我们可以求解出波函数的具体形式。

在势阱内部,波函数的波数k为:k = sqrt(2mE) / ħ对于一维对称无限深方势阱,能级是分立的,即E = n²π²ħ² / (2ma²),其中n为正整数。

量子物理之一维无限深势阱中的粒子的波函数

量子物理之一维无限深势阱中的粒子的波函数
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。
[解析]由于势能曲线与时间无关,所以属于定态问题。 ∞
由于波函数是连续的,在x = 0处有ψ(0) = 0,所以B = 0。
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。ψ(x) = Asinkx
在x = a处也有ψ(a) = 0,所以Asinka = 0, ∞

由于A不恒为零,所以ka = nπ。
k只能取不连续的值,用kn表示,则 kn = nπ/a (n = 1,2,3,…) n称为量子数。
可 得
En
kn2h 2 2m
π2h 2 2ma2
n2
(n = 1,2,3,…)O
要使问题有解,粒子的能量只能取分立的值,
或者说能量是量子化的,En称为能量的本征值。
n能=量1最状低态的称状为态基,态最,低也能就量是为粒子E1
2h 2 2ma2
h2 8ma2
x a 其他态称
为激发态, E2称为第 一激发态。
{范例14.6} 一维无限深势阱中的粒子的波函数
ψ(x) = Asinkx,
En
kn2h 2 2m
π2h 2 2ma2

由于势阱无限高,粒子不能运动到势阱之外,

大学物理 第16章量子力学基本原理-例题及练习题

大学物理 第16章量子力学基本原理-例题及练习题
2( 2k + 1) ( k = 0,1,2......)
∴ n = 2,6,10...... 时概率密度最大
nhπ 6 × 10 = =1时 (3) n=1时: E = =1 2mL L
2 2 2 2 2 −38
A 例题3 例题3 设粒子沿 x 方向运动,其波函数为 ψ ( x ) = 方向运动, 1 + ix
( n = 1,2,3,...)
E n=4
p2 E = 2m p= nπh nh 2 mE = = a 2a
n=3 n=2 n=1
h 2a λ= = p n
二者是一致的。 二者是一致的。
( n = 1, 2, 3,...)
o a
x
例题2 粒子质量为m, 在宽度为L的一维无限 的一维无限深势 例题2 P516例1:粒子质量为m, 在宽度为 的一维无限深势 中运动,试求( 粒子在0 阱中运动,试求(1)粒子在0≤x≤L/4区间出现的概率。并 ≤ / 区间出现的概率。 求粒子处于n=1 状态的概率。 在哪些量子态上, 求粒子处于 1和n=∞状态的概率。(2)在哪些量子态上, 状态的概率 (2)在哪些量子态上 L/4处的概率密度最大?(3)求n=1时粒子的能量 补充 。 /4处的概率密度最大 (3)求 =1时粒子的能量(补充 处的概率密度最大? =1时粒子的能量 补充)。 2 nπ x 由题得: 解:(1) 由题得: 概率密度 |ψ | = sin
2 2 2 2 0
2
2
2
2
0
0
k
0
2
2
2 k
0
k
k
k
0
h ∴λ = = p
hc 2E m c + E
2 k 0

波函数薛定谔方程一维无限深势阱

波函数薛定谔方程一维无限深势阱

En
En1
En
(2n 1)
h2 8ma 2
En En
2n 1 n2
n
En 0 En
能量可认为是连续的。经典物理可以看成是量子物
理在量子数n时的极限。
*五、一维方势垒 隧道效应
设想一维方势垒如图。一粒子处于 x < 0 的区域内,其
能量小于势垒高度Ep0。
经典物理:粒子不可能越过势垒进入 x>0 的区域。
15-8波函数 薛定锷方程一维无限深势阱
仙女座
背景 二十世纪20~30年代,经过德布罗意、薛定
谔、海森堡、玻恩、狄拉克等科学家的努力,建立 了描述微观粒子运动规律的量子力学。
德布罗意
海森伯
狄拉克
波恩
一、物质波波函数
微观领域常用实物粒子在空间出现的概率分布来描述 其运动状态,该概率分布函数称为物质波的波函数。 波函数记作Ψ ( x, y, z, t ),常用复数形式来表示!
Im
b A
) o
a Re
Ψ(x,y, z, t) Acos iAsin
Ψ(x,y, z, t) Aei A: 称为该复数的模 θ : 称为该复数的幅角
例如,沿+x方向传播的平面简谐波的波动方程:
y(
x,
t
)
Acos(2t x2xt
00
)
也可用复数形式来表示:
Im
b A
) o
a Re
Ψ(x,y, z, t) Acos iAsin
现的概率为:dG = wdx = |Ψ ( x, t ) |2dx ③ 粒子在全空间出现的概率为1,即:
Ψ(x,y, z, t)2dv 1 (归一化条件) 对于一维: Ψ(x,y, z, t) 2 dx 1

大学物理教程12.4 一维无限深势阱中的粒子ppt课件

大学物理教程12.4 一维无限深势阱中的粒子ppt课件

ih
n (x,t) t
En
n
( x, t )
中,可得粒子的能级
En
n2
π2h2 2mL2
(1)当n=1时,对应基态的能量为
E1
h2 2mL2
当n=5时为第4激发态,对应的能量为
E5
52 E1
25h2 2mL2
第12章 量子力学基础
12.4 一维无限深势阱中的粒子
(2)波函数的模平方即粒子的几率密度为
(x) 2 dx 1
定态波函数为
(
x)
2 sin nπ x, LL
0,
第12章 量子力学基础
C 2 L
0 x L 0 x, x L
12.4 一维无限深势阱中的粒子
粒子在阱内的波函数为
V(x)
i Et
i (x,t) (x)e h
2
sin
i
kxe h
Et
L


1 2i
2
(eikx
eikx
0a
R
B
2
(k 2 k'2 )2 sinh 2 k'a
A (k 2 k'2 )2 sinh 2 k'a4k 2k'2
透射系数
T
C2 A
4k 2k'2
(k 2 k'2 )2 sinh 2 k'a4k 2k'2
RT 1
表明:粒子入射到势垒上时,有被反射的几率, 亦有穿过势垒透射几率——隧道效应(势垒贯穿)
U
(
x)
U0 0,
,
0 xa x 0, x a
U=U0
E<U0 U= 0

大学基础物理学答案(习岗)第10章

大学基础物理学答案(习岗)第10章

129第十章 量子物理基础本章提要1. 光的量子性· 物体由于自身具有一定温度而以电磁波的形式向周围发射能量的现象称热辐射。

· 在任何温度下都能全部吸收照射到其表面上的各种波长的光(电磁波),的物体称为绝对黑体,简称黑体。

· 单位时间内从物体单位表面积发出的、波长在λ附近单位波长间隔内电磁波的能量称单色辐射本领(又称单色辐出度),用)(T M λ表示· 单位时间内物体单位表面积发出的包括所有波长在内的电磁波的辐射功率称为辐射出射度,用则M 表示,M 与)(T M λ的关系为0()d M M T λλ∞=⎰2. 维恩位移定律在不同的热力学温度T 下,单色辐射本领的实验曲线存在一个峰值波长λm , T 和λm 满足如下关系:λm T b =其中,b 是维恩常量。

该式称维恩位移定律。

3. 斯忒藩—玻尔兹曼定律· 黑体的辐射出射度M 与温度T 的关系为4T M σ=其中,σ为斯忒藩—玻尔兹曼常量。

该结果称斯忒藩—玻尔兹曼定律。

· 对于一般的物体4T M εσ=ε称发射率。

4. 黑体辐射· 能量子假说:黑体辐射不是连续地辐射能量,而是一份份地辐射能量,并且每一份能量与电磁波的频率ν成正比,满足条件E nhv =,其中n =1,2,3,…,等正整数,h 为普朗克常数。

这种能量分立的概念被称为能量量子化,130每一份最小的能量E hv =称为一个能量子。

· 普朗克黑体辐射公式(简称普朗克公式)为112)(/52-=kT hc e hc T M λλλπ其中,h 是普朗克常量。

由普朗克公式可以很好地解释黑体辐射现象。

· 光子假说:光是以光速运动的粒子流,这些粒子称为光量子,简称光子。

一个光子具有的能量为νh E =动量为 λh p =5. 粒子的波动性· 实物粒子也具有波粒二象性,它的能量E 、动量p 与和它相联系的波的频率ν、波长λ满足关系2E mc h ν==λh p m u ==这两个公式称为德布罗意公式或德布罗意假设。

量子物理之一维无限深势阱中的粒子的波函数

量子物理之一维无限深势阱中的粒子的波函数
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。
[解析]由于势能曲线与时间无关,所以属于定态问题。 ∞
或者说能量是量子化的,En称为能量的本征值。
n能=量1最状低态的称状为态基,态最,低也能就量是为粒子E1
2h 2 2ma2
h2 8ma2
பைடு நூலகம்
x a 其他态称
为激发态, E2称为第 一激发态。
{范例14.6} 一维无限深势阱中的粒子的波函数
ψ(x) = Asinkx,
En
kn2h 2 2m
π2h 2 2ma2
当量子数n = 1时,中间出现粒子的概 率密度最大;当量子数n = 2时,有两 个地方出现粒子的概率密度最大。
由于波函数是连续的,在x = 0处有ψ(0) = 0,所以B = 0。
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。ψ(x) = Asinkx
在x = a处也有ψ(a) = 0,所以Asinka = 0, ∞

由于A不恒为零,所以ka = nπ。
k只能取不连续的值,用kn表示,则 kn = nπ/a (n = 1,2,3,…) n称为量子数。
可 得
En
kn2h 2 2m

一粒子在一维无限深势阱中运动,求粒子的能级和波函数

一粒子在一维无限深势阱中运动,求粒子的能级和波函数

一粒子在一维无限深势阱中运动,求粒子的能级和波函数一维无限深势阱是量子力学中常用的模型之一,它能够帮助我们理解粒子在一维空间中的运动以及对应的能级和波函数。

首先,我们来看一下什么是一维无限深势阱。

这是一个理想化的模型,由两堵非常高的无限高势垒所夹,其中粒子的运动只能在这一段距离内进行,并且在势垒外是无法找到粒子的。

这种模型可以用来描述电子在原子中的运动,或者光子在光导纤维中的传播。

在量子力学中,波函数是描述粒子性质的数学函数。

对于一维无限深势阱模型,波函数可以通过解薛定谔方程获得。

薛定谔方程可以用来描述波函数随时间的演化,它是量子力学的基本方程之一。

对于一维无限深势阱,薛定谔方程可以简化为亥姆霍兹方程的形式。

亥姆霍兹方程是一个常微分方程,它的解由定态波函数给出。

定态波函数允许我们计算粒子在一维无限深势阱中的能量和波函数。

解一维无限深势阱的亥姆霍兹方程,我们可以得到一系列能量的解,这些能量称为能级,用n来表示。

每个能级都对应着一个定态波函数,这些波函数描述了粒子在势阱内的运动方式。

对于一维无限深势阱,能级的表达式为En = (n^2 *h^2)/(8*m*L^2),其中n为能级的序数,h为普朗克常数,m为粒子的质量,L为势阱的宽度。

对应于每个能级,还有一个对应的波函数。

波函数用Ψ(x)来表示,描述了在不同位置概率密度的分布。

在一维无限深势阱中,波函数能够取到零点以外的任意位置。

波函数的形式为Ψn(x) = sqrt(2/L) * sin(n * π * x / L),其中x为位置,L为势阱的宽度,n为能级的序数。

通过求解亥姆霍兹方程,我们可以得到多个能级和对应的波函数,它们描述了粒子在一维无限深势阱中的运动和性质。

这些能级和波函数不仅在理论计算中起到了重要作用,而且在实验中也得到了验证。

总之,一维无限深势阱模型是量子力学中研究粒子运动和性质的重要工具。

通过解亥姆霍兹方程,我们可以得到一系列能级和对应的波函数,这些能级和波函数描述了粒子在势阱中的行为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2n nπ 2 1 2 a x)dx A 1 A sin xdx A (1 cos 2 a 2 a 0 0
2 2
a
a
因此
波函 ( x) 2 sin nπ x 概率密 n a a 数为 度为 可见:粒子在势阱中出现 的概率因地而异,在阱壁 处的概率为零;概率密度 分布还随量子数改变。
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 V ( x) 0 (0 x a) 在一维势阱中运动,势函数为 ( x 0或x a) 由于曲线像“井”且深度无限,因而形象地称为一维 无限深势阱。求粒子的能量、波函数和概率密度。
[解析]由于势能曲线与时间无关,所以属于定态问题。 ∞ 由于势阱无限高,粒子不能运动到势阱之外, 所以定态波函数ψ(x) = 0 (x > a,x < 0)。 粒子在阱内定戊波函 数的薛定谔方程为
h 2 d 2 E 0 (0 ≤ x ≤ a) 2 2m dx
2

x 方程可 d k 2 0 O a 设 k 2mE / h 简化为 dx 2 其通解为ψ(x) = Asinkx + Bcoskx, 波函数为ψ(x) = Asinkx。 由于波函数是连续的,在x = 0处有ψ(0) = 0,所以B = 0。
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 V ( x) 0 (0 x a) 在一维势阱中运动,势函数为 ( x 0或x a) 由于曲线像“井”且深度无限,因而形象地称为一维 无限深势阱。求粒子的能量、波函数和概率密度。ψ(x) = Asinkx ∞ ∞ 在x = a处也有ψ(a) = 0,所以Asinka = 0, 由于A不恒为零,所以ka = nπ。 k只能取不连续的值,用kn表示,则 kn = nπ/a (n = 1,2,3,…) n称为量子数。 可 E kn h π h n 2 (n = 1,2,3,…) O n 2m 2ma 2 得 要使问题有解,粒子的能量只能取分立的值, 或者说能量是量子化的,En称为能量的本征值。 2 2 2 h h n = 1状态称为基态,也就是粒子E 1 2 2ma 8ma 2 能量最低的状态,最低能量为
2 2 2 2
a 其他态称 为激发态, E2称为第 一激发态。
x
{范例14.6} 一维无限深势阱中的粒子的波函数
2 2 kn h π 2h 2 2 n (n = 1,2,3,…) ψ(x) = Asinkx, En 2 2m 2ma
nπ 能量En对应 ( x) A sin k x A sin x (0 ≤ x ≤ a) n n 的波函数为 a 可得 根据归一化条件
粒子的波函数的模方就是概 率密度,其高度表示能级。 在两壁处,概率密度恒为零, 表示此处不会出现粒子。
当量子数n = 1时,中间出现粒子的概 率密度最大;当量子数n = 2时,有两 个地方出现粒子的概率密度最大。
A 2/ a
可见:波函数的归一化常数与能级的级 次无关,与势阱宽度的平方根成比反比。
| n ( x) |2 2 2 nπ sin x a a
这些结果与经典力学根本 不同,按照经典力学的观 点,粒子在势阱内各处出 现的概率应该相等。
能级个 数不妨 取4。
一维无限深势阱中粒子的波函数是正弦函数。 在两壁处,波函数恒为零。 量子数n也是波腹的个数, 波腹之间有n - 1个波节。
相关文档
最新文档