在一维无限深势阱中运动的粒子例题
东南大学固体物理基础课后习题解答

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。
所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。
(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。
(3)当n→∞时,1()4P x =。
此时,概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。
解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。
量子物理之一维无限深势阱中的粒子的波函数

如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。
[解析]由于势能曲线与时间无关,所以属于定态问题。 ∞
由于波函数是连续的,在x = 0处有ψ(0) = 0,所以B = 0。
{范例14.6} 一维无限深势阱中的粒子的波函数
如图所示,有一质量为m的粒子 在一维势阱中运动,势函数为
V(x)
0 (0 x a) (x 0或x a)
由于曲线像“井”且深度无限,因而形象地称为一维
无限深势阱。求粒子的能量、波函数和概率密度。ψ(x) = Asinkx
在x = a处也有ψ(a) = 0,所以Asinka = 0, ∞
∞
由于A不恒为零,所以ka = nπ。
k只能取不连续的值,用kn表示,则 kn = nπ/a (n = 1,2,3,…) n称为量子数。
可 得
En
kn2h 2 2m
π2h 2 2ma2
n2
(n = 1,2,3,…)O
要使问题有解,粒子的能量只能取分立的值,
或者说能量是量子化的,En称为能量的本征值。
n能=量1最状低态的称状为态基,态最,低也能就量是为粒子E1
2h 2 2ma2
h2 8ma2
x a 其他态称
为激发态, E2称为第 一激发态。
{范例14.6} 一维无限深势阱中的粒子的波函数
ψ(x) = Asinkx,
En
kn2h 2 2m
π2h 2 2ma2
∞
由于势阱无限高,粒子不能运动到势阱之外,
第1~4章 部分习题解

第一章1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大?解:(1)由归一化条件,知⎰∞λ-=02221e A dx x x得到 归一化常数λλ=2A 所以 归一化波函数为⎩⎨⎧<>λ≥λλ=ψλ-)0(0)0,0(2)(x x xe x x(2)粒子坐标的概率分布函数{32224(0,0)0(0)()()xx e x x w x x λλλψ-≥><==(3)令 ()0dw x dx = 得到 10,x x λ==,根据题意x =0处,()0w x =,所以1x λ=处粒子的概率最大。
1-2若在一维无限深势阱中运动的粒子的量子数为n 。
①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)距势阱的左壁1/4宽度,即x 的取值范围是-a ~-a /2,发现粒子概率为:2sin 2141|sin |2]cos 1[2sin 12/2/2/2/2ππππππn n )a x (a n n a 2a 1ax dx )a x (an 2a 1dx )a x (a n a )x P(a aa a a aa a -=+-=+-=+=--------⎰⎰ (2)n=3时,在此范围内找到粒子的概率最大π6141max+=)x (P 。
(3)当n→∞时,41=)x P(。
这时概率分布均匀,接近于宏观情况。
1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态,2212()()x m x Aeαωψα-=求①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=解:(1)利用泊松积分π=⎰-∞∞--dx e x 2由归一化条件:4/1222111111222παπααααα===∴===⎰⎰∞-∞--∞-∞--A A dt e A dt dx t x dx e A tx,即,则令(2) 振子的概率密度 222|)(|)(x e x x w απαψ-==令0)(=dxx dw ,即;0,02*)(222==-*-x x e xαπαα振子出现的概率最大位置是x =0。
北京大学-量子力学习题集5

a A 6.设 V (r ) = − + 2 , (a, A > 0) ,求粒子能 r r
量本征值。
解:取守恒量完全集为 ( H , L , Lz ) ,其共 同本征函数为 χ (r ) Ylm (θ , ϕ ) ψ (r , θ , ϕ ) = R(r )Ylm (θ , ϕ ) = r χ (r ) 满足的径向方程
ψ ( x) =
1 2π
∫ ϕ ( P ')e
i − ( p '+ p ) x
dp ' = e
i − xp
ψ 0 ( x)
⎛α ⎞ 其中 ψ 0 ( x) = ⎜ π ⎟ ⎝ ⎠
2
1/ 4
e
−α 2 x 2 2
⎛ mω ⎞ α =⎜ ⎟ ,故有 , ⎝ ⎠
2 p2 − 2 mω
1/ 2
P = ∫ψ ( x)ψ ( x)dx = e
任何位置,单位体积内测到一个粒子的概 率为1. 若沿用上面的方法来求归一化系 数,则会出现
∫
∞
−∞
Ae
2 − ikx ikx
e dx = ∫ A dx = ∞ ⋅ A
2 −∞
∞
2
要使积分为1,必须A=0,因此波函数不能 归一,只能归一为δ函数。
1 ∫−∞ 2π exp {−ik ′x} exp {ikx} dx = δ (k − k ′)
⎛a⎞ 2 2 设归一化的本征态为 ⎜ ⎟ , a + b = 1则 b⎠ ⎝ 由本征方程
⎛ B −iA ⎞ ⎛ a ⎞ ⎛a⎞ ⎜ ⎟⎜ ⎟ = λ ⎜ ⎟ ⎝ iA − B ⎠ ⎝ b ⎠ ⎝b⎠
可以解出本征态为
Ψ± ⎡ ⎤ 1 =⎢ ⎥ 2 2 2 2 ⎢ ⎣ A + (B ∓ A + B ) ⎥ ⎦
第2章 习题课21(一维势阱系列I)

习题课021 第2章 一维势场中的粒子1.例题(一维势阱系列题I )①质量为μ的粒子在一维无限深势阱 ⎪⎩⎪⎨⎧>∞≤≤<∞=ax a x x x V 00)( 中运动,求出粒子的能级和对应的波函数。
解:本征值方程: ⎪⎩⎪⎨⎧><=≤≤=-a x x a x E dx d ,0,00,2222ψψψμ⎪⎩⎪⎨⎧><≤≤=a x 0, x ,0a x 0,sin 2x an a nπψ),3,2,1n (a2n E 2222n =μπ=,(有三种一般解的形式可令。
)其含时波函数为:⎪⎩⎪⎨⎧><≤≤=ax 0, x ,0ax 0,e)sin(2),(i -tE n n x an a t x πψ②粒子处于基态,则找到粒子的概率密度为最大的位置是哪里? 解:在区间ax 0≤≤内求x aaπψω2211sin2||==的极大值,结果为x=a/2③设粒子处于一维无限深势方阱中(如图),证明处于能量本征态)(x n ψ的粒子, 2a x =)()(22226112πn ax x -=-。
讨论∞→n 的情况,并与经典力学计算结果比较。
[解]写出归一化波函数:()⎪⎩⎪⎨⎧<<<>=ψ)0(,sin 2),0(,0a x a xn a a x x x n π 先计算坐标平均值:xdx axn axdx ax n axdx x aaan )(⎰⎰⎰-==ψ=222cos11sin2ππ 利用公式: 2cos sin cos ppx ppxx pxdx x +-=⎰22cos 22sin 221022a a x n n a a x n x n a xa x a=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=ππππ计算均方根值用()x x x x x ,)(222-=-已知,可计算2xdx axn x adx ax n x adx x x aan )(⎰⎰⎰-==ψ=2222222cos11sin2ππ 利用公式pxppx x ppx x ppxdx x sin 1cos 2sin 1cos 3222-+=⎰ (5)有 aa x n x n a a x n n a x n a x a x 0222222cos 222sin 22311πππππ⋅⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=222223πn aa-=()22222222223⎪⎭⎫⎝⎛--=-=-a n aaxx x x π)( 2222212πn aa-=在经典力学的一维无限深势阱问题中,因粒子局限在(0,a )范围中运动,各点的概率密度看作相同,由于总概率是1,概率密度a1=ω。
量子力学试卷

05级2学分A一、回答下列问题(每题5分,共30分)1 十九世纪末期人们发现了哪些不能被经典物理学所解释的新的物理现象?2 什么是束缚态?什么是定态?3 试述电子具有自旋的实验证据。
4 写出量子力学五个基本假设中的任意三个。
5 表示力学量的厄米算符有哪些特性?6一维空间两粒子体系的归一化波函数为),(21x x ψ,写出下列概率: 发现粒子1的位置介于x 和dx x +之间(不对粒子2进行观测) 二、本题满分10分设单粒子定态波函数为 )(1)(ikr ikrkbe e rr +=-ψ,试利用薛定谔方程确定其势场。
三、本题满分12分利用厄米多项式的递推关系和求导公式:()()()02211=+--+x nH x xH x H n n n ,()()x nH x H n n12-=' 证明:一维谐振子波函数满足下列关系:)](21)(2[1)(11x n x n x x n n n +-++=ψψαψ /)],(21)(2[)(11ωαψψαψm x n x n dx x d n n n =+-=+-已知一维谐振子的波函数为:()()21212!2,⎪⎪⎭⎫ ⎝⎛==-n N x H eN x n n n xn n πααψα四、本题满分12分一粒子在一维无限深势阱⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,0,0,0,)( 中运动,求粒子的能级和相应的归一化波函数。
五、本题满分12分已知氢原子的电子波函数为)(),()(41),,,(2/11131z z nlmm s Y r R s r s χϕθϕθψ=)(),()(432/12032z s Y r R -+χϕθ。
求在ψ态中测量氢原子能量E 、2L 、z L 、2s 、z s 的可能值和这些力学量的平均值。
六、本题满分14分一维运动的粒子处于状态⎪⎩⎪⎨⎧<≥=-0,00)(,x x Axe x x λψ 之中, 其中0>λ, A 为待求的归一化常数, 求:(1) 归一化常数;(2) 粒子坐标的平均值和粒子坐标平方的平均值; (3) 粒子动量的平均值和粒子动量平方的平均值。
量子力学典型例题分析解答

量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。
2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。
[证]。
是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。
本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。
求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。
一维无限深方势阱中粒子动量概率分布引出的问题

一维无限深方势阱中粒子动量概率分布引出的问题在量子力学中,无限深方势阱问题是一个简化理想化的问题。
无限正方形势阱是有限大小的正方形势阱。
井内电势为0,井外电势无穷大。
在阱中,粒子可以不受任何力地自由移动。
但是阱壁无限高,粒子完全被约束在阱里。
通过 schr\ddot{o}dinger 方程的解答,明确地呈现出某些量子行为,这些量子行为与实验的结果相符合,然而,与经典力学的理论预测有很大的冲突。
特别令人注目的是,这些量子行为是自然地从边界条件产生的,而非人为勉强添加产生的。
这解答干净利落地展示出,任何类似波的物理系统,自然地会产生量子行为;无限深方势阱问题的粒子的量子行为包括:1.能量的量子化:粒子量子态的本征函数,伴随的能量不是任意的,而只是离散能级谱中的一个能级。
2.基态能量:一个粒子允许的最小能级,称为基态能量,不为零。
3.节点:与经典力学相反,薛定谔方程预言了节点的存在。
这意味着在陷阱的某个地方,发现粒子的概率为零。
这个问题再简单,也能因为能完整分析其薛定谔方程,而导致对量子力学更深入的理解。
其实这个问题也很重要。
无限深正方形势阱问题可以用来模拟许多真实的物理系统,例如直的极细纳米线中导电电子的量子行为。
为了简化问题,本文从一维问题出发,讨论了粒子只在一维空间中运动的问题。
一个粒子束缚于一维无限深方势阱内,阱宽为 l 。
势阱内位势为0,势阱外位势为无限大。
粒子只能移动于束缚的方向( x 方向)。
一维无限深方势阱的本征函数 \psi_{n} 于本征值 e_{n} 分别为\psi_{n}=\sqrt{\frac{2}{l}}sin(\frac{n\pi x}{l})e_{n}=\frac{n^2 h^2}{8ml^2}其中, n 是正值的整数, h 是普朗克常数, m 是粒子质量。
一维不含时薛定谔方程可以表达为-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2}+v(x)\psi(x)= e\psi(x)其中, \psi(x) 是复值的、不含时的波函数, v(x) 是跟位置有关的位势, e 是正值的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一维无限深势阱中运动的粒子,势阱宽度为a,如果粒子的状态由波函数Ψ(x) =Ax(a-x)描写,A为归一化常数,求粒子能量的概率分布和能量的平均值。
分享到:
2011-04-16 20:59提问者采纳
首先得先知道坐标怎么定的,从波函数的对称性考虑,势阱应该是x=0到a处先求归一化常数A
积分(0到a)|Ψ(x)|^2 dx=积分(0到a)A^2 x^2(a-x)^2 dx=A^2*a^5/30==1 A^2=30/a^5
算出|Ψ(x)|^2 就是概率密度,阱外都是0
<E>=积分(0到a)Ψ*(x) H Ψ(x) dx
H是哈密顿算符,这里就是-h^2/(2*pi)^2/2m d^2/dx^2
<E>=积分(0到a)Ax(a-x) 2A h^2/(2*pi)^2/2m dx=A^2*h^2/(2*pi)^2/m *[积分(0到a)x(a-x)dx ]
=5h^2/(2 pi)^2/m/a^2
Ψ*(x) 指共轭函数,在这里就是本身。
基本概念要知道,对归一化波函数|Ψ(x)| ^2 就是概率密度。
力学量的平均值<F>=积分(Ψ*(x) F Ψ(x) dx),F是力学算符。