一维无限深势阱
第八节一维无限深势阱

《大学物理》2教师:胡炳全d ( x ) 2m 2 ( E V ( x)) ( x) 0 2 dx
由于势能是分段函数,波函数和薛定谔方程也应 该分段写出。
在x 0的区域, d 21 ( x) 2m 2 ( E )1 ( x) 0 2 dx 在x a的区域, d 23 ( x) 2m 1 ( x) 3 ( x) 0 2 ( E )3 ( x) 0 2 dx
三、讨论: 1、粒子在一维无限深势阱中运动的能级: V 2 ∞ ∞
E
2m a
2
n 2 , n 1,2,3
n=3
n=2
2、粒子在一维无限深势阱中运 动的波函数:
o
a
n=1
x
《大学物理》
教师:
胡炳全
2 n sin x, 0 x a ( x) a a 0 x 0, x a
《大学物理》
教师:
胡炳全
在0 x a的区域, d 2 ( x ) 2m 2 ( E 0) 2 ( x) 0 2 dx
2
2 ( x)的通解为:
2m E 2m E 2 ( x) A sin x B cos x 2 2
根据波函数的连续性,在x=0和x=a处φ2应该为零。所 以有:
《大学物理》
教师:
胡炳全
四、势垒与隧道效应
由薛定谔方程求解可知:即使入射粒子的能量比势垒 高度还小,穿过势垒的波函数也不为零,这表明在势垒后 面发现粒子的几率不为零。即入射粒子也有一定的几率穿 过势垒。这种现象叫做隧道效应。
2 ( x) x0 0 B 0
2m E 2 ( x) A sin x 2
《大学物理》
163一维势阱和势垒问题

0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。
一维无限势阱

一维无限深势阱定义编辑粒子在一种简单外力场中做一维运动,其势能函数为U(X)=0 (-a<x<a);U(x)=∞ (x≥a或x≤-a)。
由于其函数图形像阱,且势能在一定区域为0,而在此区域外势能为无穷大,所以这种势能分布叫做一维无限深势阱。
实际模型编辑自由电子在一块金属中的运动相当于在势阱中的运动。
在阱内,由于势能为零,粒子受到的总的力为零,其运动是自由的。
在边界上x=0或x=a处,由于势能突然增加到无限大,粒子受到无限大指向阱内的力。
因此,粒子的位置不可能到达0<x<a的范围以外。
一维无限深势阱中粒子运动的波函数编辑一维无限深势阱中粒子运动的波函数为Ψ(x)=√(2/a)·sin(nπx/a) (0<x<a)。
三、一维势阱3.1 一维无限深势阱要使电子脱离金属,需要对它做功,这相当于电子在金属表面处势能突然增大,自由电子在金属内部的运动,可近似比作在无限深势阱的运动。
由于金属是各向同性的,便可简化为电子在一维无限深势阱中的运动。
势能曲线如右图,势能表达式为电子在一维无限深势阱中运动,用经典力学描述和量子力学描述得到了完全不同的结果。
按照经典概念,当外界向它提供能量时,电子可获得此能量而自身能量发生连续变化。
电子在阱内任何位置出现的概率也是相等的。
然而,按照量子力学观点,它的行为却不是这样的。
(1) 定态薛定谔方程的解电子所受的保守力,在边界处电子所受的力无限大,指向阱内,意味着电子不可能越出阱外,由波函数物理意义可知势阱外波函数。
电子在势阱内势能为零,受力为零。
势阱内定态薛定谔方程为令方程变为其解为根据波函数应满足的标准化条件,波函数应在边界x=0和x=a上连续得应用归一化条件求得于是定态波函数为(2) 能量量子化因,合并(23.3.3)式,即得到一维无限深势阱中的电子能量上式表明:电子的能量不能连续地取任意值,只能取分立值,即能量是量子化的,可形象地称为处于相应的能级(如右图所示)。
量子力学一维势阱

III
(x)
2
2
(U
E )
III
(x)
0
xa
方程可 简化为:
d2
dx
2
I
2 I
0
d2
dx
2
II
2 II
0
d2
dx
2
III
2 III
0
U(x)
I
II
-a 0
III a
U(x)
I
II
-a 0
III
a
1 单值,成立; 2 有限:
当x - ∞ , ψ 有限条件要求
C2=0。
d2
(x)
2
2
[U ( x)
E ]
(x)
0
β2
势V(x)分为三个区域, 用 I 、II 和 III 表达, 其上旳波函数分别为 ψI(x),ψII(x) 和 ψIII (x)。则方程为:
d2
dx 2
I
(x)
2
2
(U
E )
I
(x)
0
x a
d2 dx 2
II
(x)
2
2
E
II
(x)
0
a xa
d2
dx 2
(r , t) (r , t)
称波函数具有偶宇称;
(r , t) (r , t)
称波函数具有奇宇称;
(3)假如在空间反射下,
(r , t) (r , t)
则波函数没有拟定旳宇称
(四)讨论
一维无限深 势阱中粒子 旳状态
(1)n = 1, 基态,
0
n
1
n
sin
一维无限深势阱

A e ikx B e ikx , ( x ) F e k3 x G e k3 x , C e ikx ,
2 2
x0 0 xa xa
(k k3 ) sh k3a B 2 , 2 A (k k3 ) shk3a 2ikk3chk3a
1 x x 1 x x shx (e e ), chx (e e ). 2 2
ik1 x
2
x0 0 xa xa
2 Beik x B e ik x
ik1 x 3 Ce C e (C 0) ik1 x
这里 k1 因子
ikx e 波数为K的平面波, 则是向左运动的平面波。在I、II两
x 0,
2mE ,k 2 2m( E V0 ) 。考虑到时间 ikx iEt / i t ,因此 代表向右运动的 e e
2
1 2
所以几率密度与 (1
2
/a )
2
1 2
成比例。
一、方势垒
1.方势垒是:
§3.3势垒贯穿 U(x)
U0
x 0 or 0, U ( x) U 0 0 0 x a
xa
0 a x
其特点是: (1)对于势阱,波函数在无穷远处趋于零,能谱是分立的。但 对于势垒,波函数在无穷远处不为零。下面将看到,粒子能量 可取任意值。 (2)按照经典力学观点,若E<U0 ,则粒子不能进入势垒,在x=0处 全被弹回;若 E> U0, 则粒子将穿过势垒运动。 但从量子力学的观点,由于粒子的波动性,此问题将与波 透过一层介质相似,总有一部分波穿过势垒,而有一部分波被 反射回去。因此,讨论的重点是反射和透射系数。
一维无限深势阱粒子能量的可能测量值和相应的几率

一维无限深势阱粒子能量的可能测量值和相应的几率一维无限深势阱粒子能量的可能测量值和相应的几率在量子力学中,一维无限深势阱是一个经典的模型系统,用于研究粒子在受限空间内的性质和行为。
其中,粒子的能量是一个非常重要的物理量,其可能的测量值和相应的几率分布是量子力学中的基本课题之一。
在本文中,我们将深入探讨一维无限深势阱粒子能量的可能测量值和相应的几率,并从简到繁地进行全面评估,帮助读者更深入地理解这一主题。
1. 一维无限深势阱的基本概念在一维无限深势阱中,粒子被限制在一个无限深的势阱内运动,即在势阱内能量为负无穷,在势阱外能量为正无穷。
这样的势阱能够构建一个简单而理想化的量子力学模型,便于对粒子的性质进行研究。
2. 粒子在一维无限深势阱中的波函数和能量本征态根据量子力学的基本原理,粒子在一维无限深势阱中的波函数可以用薛定谔方程进行描述。
解出薛定谔方程后,可以得到粒子的能量本征态和对应的波函数表达式,这些能量本征态对应着粒子可能的能量。
3. 能量的可能测量值和相应的几率分布在量子力学中,能量的测量值是一个物理量的可能取值,其对应的几率分布描述了在测量中可能得到某个值的概率。
对于粒子在一维无限深势阱中的能量,我们可以通过对波函数进行归一化处理,得到能量的可能测量值和相应的几率分布。
这些可能的测量值和几率分布将帮助我们理解粒子在势阱内的能量分布规律。
4. 总结与回顾通过对一维无限深势阱粒子能量的可能测量值和相应的几率进行全面评估,我们可以更深入地理解量子力学中的基本概念和原理。
这也有助于我们在实际研究或应用中更灵活地处理粒子能量的测量和分布问题。
个人观点和理解:量子力学中的一维无限深势阱模型是一个简单而重要的系统,通过对其粒子能量的可能测量值和相应的几率进行深入研究,我们可以更好地理解量子世界中的奇妙规律。
对于我而言,通过撰写本文并深入思考这一主题,我对量子力学中的能量测量和分布问题有了更全面的认识,并且能够更好地应用于我的研究和工作中。
量子力学 一维无限深势阱

55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。
一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。
波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。
一维无限深势阱

一维无限深势阱无限深阱假设粒子不能离开势阱,也就是有一个势为无穷大的壁。
势可以写成()⎪⎪⎩⎪⎪⎨⎧>≤≤-∞=2022a x a x a x V(注:也可以选用坐标形如第二个图,这样的解简单,且容易推广到三维,但是对称性不如第一个图明显。
)注意,这个势是有奇异性的,我们分别有势阱内和势阱外的方程:⎪⎪⎩⎪⎪⎨⎧>=≤=+外)(阱外,粒子不能到阱(阱内)2020222a x a x E m dx d ψψψ 考虑势阱内,定义: 22mE k ≡ 定态方程为:0222=+ψψk dxd 此方程的通解为:kx B kx A cos sin +=ψ或:()δψ+=kx A sin连续性条件:02=±=ax ψ(单值、有限自动满足) 于是:⎪⎪⎩⎪⎪⎨⎧-+-+)2(cos )2(sin )2(cos )2(sin a k B a k A a k B a k A (注意:由于势在边界上有奇异性(无限深 ), ψ不连续,有跃变。
)这是关于 A 、B 的齐次方程,有非零解的条件是系数行列式为零,即:02cos 2sin 2cos 2sin =-a k a k a kak因此, 02cos 2sin 2=a k a k 即:0sin =ka故:() 3,2,1==n n ka π(注意:n 不能取 0 ,否则就出现了不振动的“波”。
)an k k n π== 22222ma n E n π= n maE 222π ≈∆ 可见势阱中能级是分立的,(与用德布罗意驻波直接计算一样)。
需要注意的是,n ma E 222π ≈∆,即能级越高越稀疏,但大量子数情况下02~→∆nE E n n ,即n n E E <<∆,所以在经典情况下(大量子数)感受不到能级的间隔,便认为能量是连续的,与对应原理相符。
下面求波函数,我们有:n 为奇数(偶宇称):002sin =⇒=A a k A n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202cos a x a x x k B n n ψ n 为偶数(奇宇称):002cos =⇒=B a k B n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202sin a x a x x k A n n ψ其实上述结果可以直接看出来,因为态应该取确定的宇称,因此只能是sin 或者cos ,不可能是它们的组合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n*dx
=
a −a
A sin ⎢⎣⎡
nπ 2a
(x
+
a)⎥⎦⎤dx
= aA2 = 1
A= 1 a
ψn =
1 a
sin
⎡ ⎢⎣
nπ 2a
(
x
+
a)⎥⎦⎤
ψ
n
( x, t )
=
ψ
− i Et
ne h
=
1 a
sin
⎡ ⎢⎣
nπ 2a
(x
+
a)⎥⎦⎤
⋅
−i
eh
Et
En
=
n2π 2h 2 8μA2
ΔEn
=
En +1
§2.6 一维无限深势阱 (1) 序
一维运动 相互作用用势函数 U 表示
势场
⎧散射场 ⎩⎨束缚态
势垒
方形势阱
⎧方形势阱 ⎪⎪谐振子势阱 ⎪⎨δ 阱 ⎪⎩周期阱
一维无限深势阱,图 2.1 所示
Fig 2.1 一维无限深势阱
(2) 一维无限深势阱 在一维空间中运动的粒子,粒子在一定区域内(x=-a 到 x=a)为零,而在此区域外,势能为无
a −a
⎢⎣⎡cos
n
+ n′ 2a
(
x
+
a)
−
cos
n
− n′ 2a
(
x
+
a)⎥⎦⎤
dx
=0
——此即为波函数的正交条件。
8.波函数可视为两波波函数的迭加
ψ = c e + c e i h
(
nπh 2a
−
Ent
)
−
i h
(
nπh 2a
−
Ent
)
n
1
2
[n = 2μE
h2
所以这方程的解
ψ = Asin(αx + β )
又由边界条件
ψ ψ
x=a = Asin(αa + β ) = 0 x=−a = Asin(−αa + β ) =
0
⇒
⎧sin(αa ⎩⎨sin(αa
+ −
β β
) )
= =
0 0
令 β =0 β =π 2
所以
联合上两式
αa = nπ
−
En
=
(2n + 1)π 2h2 8μa2
U (x) = U (−x) ψ n (x) = ±ψ n (−x) ψ n (x) = −ψ n (−x) ψ n (x) = +ψ n (−x)
n 取奇数 奇宇称 n 取偶数 偶宇称
2.6-7 2.6-8
Fig 2.4(上)一维无限深势阱的能量本征函数 Fig2.5(下)一维无限深势阱中粒子位置几率密度分布
=
A
sin
⎡ ⎢⎣
nπ 2a
(x
+
a)⎥⎦⎤
n = 1, 2,
3. 由 2.6-6 可得
α = nπ 2a
而
α
2
=
⎜⎛ ⎝
2μE h
⎟⎞ 2 ⎠
故
En
=
n2π 2h 2 8μa 2
(3) 结果的讨论 1. 束缚态——粒子被约束在空间某一确定范围。
ψ 在无穷远 → 0
lim ψ = 0
x→±a
能级有分立态,即分立谱 2.基态
7.对于不同的 En 的波函数的正交性
ψn =
1 sin nπ (x + a) a 2a
ψ n′ =
1 sin n′π (x + a) a 2a
∫ ∫ ψ ψ ∞ * −∞ n′ n
=ψ n
=1 a
a sin nπ (x + a) ⋅ sin n′π (x + a)dx
−a 2a
2a
∫ = − 1
2a
n = 1, 2,L
αa + β = αa + π = mπ 2
m = 1,
2,
3L
αa = (m − 1)π 2
ψ = Asin( nπ x) a
n = 1, 2,L
ψ
=
B sin⎢⎣⎡(m −
1)π 2a
x+
π⎤ 2 ⎥⎦
=
B′cos⎢⎣⎡(m −
1)π 2a
x⎥⎦⎤
m = 1, 2, 3,L
ψ
=
Eψ
2. 由波函数的标准条件
a. ψ ≡ 0
b. 由 2.6-2 得
d 2ψ dx 2
+
2μE ψ h2
=0
2.6-3
x ≥a
2.6-4* 该方程的特征方程是
r2 +α 2 = 0 ,所以它有一对特征根 r = ±iα ,故方程的通解是 ψ = c1 cosαx + c2 sin αx = c′sin(αx + β )
体系能量最低的状态,由 2.6-6 可知
ψ = A′cos π x —— 2a
偶函数
2.6-5*
3,L
2.6-6
3.归一化系数
所以 亦 4. 能级 即 5.宇称
6.节点
E1
=
π 2h2 8μa 2
ψn
=
A sin
⎡ ⎢⎣
nπ 2a
(x + a)⎥⎦⎤
∫ ∫ ∫ ∞
2
ψ −∞ n dx =
aψ
−a
nψ
限大。
U (x) = 0, x < a
这是定态问题
2.6-1
U (x) = ∞ x ≥ a
粒子能量束缚在 − ∞, ∞ 。
1. 在阱内( x < a ),体系所满足的薛定谔方程
− h2 2μ
d 2ψ dx 2
= Eψ
2.6-2
在阱外( x ≥ a ),定态薛定谔方程
−
h2 2μ
d 2ψ dx 2
+ Uψ