一维无限深势阱

合集下载

第八节一维无限深势阱

第八节一维无限深势阱

《大学物理》2教师:胡炳全d ( x ) 2m 2 ( E V ( x)) ( x) 0 2 dx
由于势能是分段函数,波函数和薛定谔方程也应 该分段写出。
在x 0的区域, d 21 ( x) 2m 2 ( E )1 ( x) 0 2 dx 在x a的区域, d 23 ( x) 2m 1 ( x) 3 ( x) 0 2 ( E )3 ( x) 0 2 dx
三、讨论: 1、粒子在一维无限深势阱中运动的能级: V 2 ∞ ∞
E
2m a
2
n 2 , n 1,2,3
n=3
n=2
2、粒子在一维无限深势阱中运 动的波函数:
o
a
n=1
x
《大学物理》
教师:
胡炳全
2 n sin x, 0 x a ( x) a a 0 x 0, x a
《大学物理》
教师:
胡炳全
在0 x a的区域, d 2 ( x ) 2m 2 ( E 0) 2 ( x) 0 2 dx
2
2 ( x)的通解为:
2m E 2m E 2 ( x) A sin x B cos x 2 2
根据波函数的连续性,在x=0和x=a处φ2应该为零。所 以有:
《大学物理》
教师:
胡炳全
四、势垒与隧道效应
由薛定谔方程求解可知:即使入射粒子的能量比势垒 高度还小,穿过势垒的波函数也不为零,这表明在势垒后 面发现粒子的几率不为零。即入射粒子也有一定的几率穿 过势垒。这种现象叫做隧道效应。
2 ( x) x0 0 B 0
2m E 2 ( x) A sin x 2
《大学物理》

量子力学2.6一维无限深势阱

量子力学2.6一维无限深势阱

2008.5
Quantum Mechanics
a、偶宇称态 由于这里内外解
(
2 (x)
x)和 '(
~ cos kx
x)在 | x | a
| x | a 2
处是连续的,
2
更方便的方法是取 ' 连续或 (ln )' 连续。
因此在x
a 处,有 2
ln(cos
kx)
' x a
2
ln(
ex
)
' x
a
,得
2
k tan ka
2
(5)
在x a 处,结果同上。 2
2008.5
Quantum Mechanics
令 则(5)式化为
ka, a
2
2
tan
(6)
(7)

2m(V0
E)
,
k
2mE

2mV0 2k 2
再利用(6)式,有
2
2
mV0 a 2 2 2
2008.5
(8)
2008.5
Quantum Mechanics
写出分区定态方程 在阱外(经典禁介区)
d2 dx 2
1
2m 2
(V0
E ) 1
0
(1)

方程(1)变为
其解为
2m(V0 E)
(2)
1'' 21 0
1 ~ ex
都是方程的解?
2008.5
Quantum Mechanics
考虑到束缚态边界条件:| x | 时 0,有
2008.5
Quantum Mechanics

163一维势阱和势垒问题

163一维势阱和势垒问题
mn
0,
mn mn
克罗内克符号
二、势垒穿透和隧道效应
有限高的方形势垒
数学形式:
U
(
x)
0,
U 0 ,
图形形式:
x 0(P区),x a(S区) 0 x a(Q区)
U
考虑粒子的动能 E小于势垒高
U0
度 U0的情况。( E < U0 )
E
PQ S
o ax
U (x) 0, x 0和x a
1
(0 x a)
(x 0及x a)
2
势阱内 0 < x < a
d 2 1
dx2
2E
2
1
0
势阱外 x ≤ 0 ;x ≥a
2 0
理由:因为势壁无限高,所以粒子不能穿透势壁,故势 阱外的 波函数为零
定态薛定谔方程为
d 2
d x2
2E
2
0
E是粒子的总能量,E > 0,令 k
定态薛定谔方程变为
d 2
一维无限深方势阱的图形表达形式 :
∞∞
U(x)
粒子只能在宽为 a 的两个无限 高势壁间运动,这种势称为一 维无限深方势阱。
0
ax
因为系统的势能与时间无关,因此这是一个定 态问题,可以用定态薛定谔方程进行求解。
2
2
2
U
(r)
(r )
E
(r )
————定态薛定谔方程
①列出各区域的定态薛定谔方程
若在样品与针尖之间
加一微小电压Ub电子 就会穿过电极间的势
垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。 若控制隧道电流不变,则探针在垂直于样品 方向上的高度变化就能反映样品表面的起伏。

2.6一维无限深势阱

2.6一维无限深势阱
2 2
O
a
x
第二章 波函数和薛定谔方程
2/33
Quantum mechanics
2
§2.6 一维无限深势阱
d 2 E 0, (a x a) U 0 , (| x | a) 2 2 dx U ( x) 2 2 d 0, (| x | a) ( E U ) 0, ( x a , x a ) 0 2 dx 2 2 (U 0 E ) 1/ 2 2 E 1/ 2 令: ( 2 ) , [ ] 2
第二章 波函数和薛定谔方程
4/33
Quantum mechanics
§2.6 一维无限深势阱
A sin( x ),(| x | a) 1 x x Be ,( x a), Ce ,( x a) 当x=±a处波函数连续可得: ctg( a ) ,( x a) ctg( a ) ,( x a)
Quantum mechanics
§2.9 例题
例1,设一维无限深方势阱宽度为a,求处于基态的 粒子的动量分布(P39). U(x) 0,(0 x a) 解:U ( x) ,( x 0),( x a)
2 d 2 ( x) E ( x) 0, (0 x a) 2 2 dx ( x) 0, (0 x, x a)
d ctg( x ),(| x | a) dx ,( x a), ,( x a) 0, ctg a , / 2, tg a ,
a A sin a Be ,( x a) A sin x,(| x | a) 0, 0, x a x A sin a Ce ,( x a) Be ,( x a), Ce ,( x a)

一维无限深势阱

一维无限深势阱

n*dx
=
a −a
A sin ⎢⎣⎡
nπ 2a
(x
+
a)⎥⎦⎤dx
= aA2 = 1
A= 1 a
ψn =
1 a
sin
⎡ ⎢⎣
nπ 2a
(
x
+
a)⎥⎦⎤
ψ
n
( x, t )
=
ψ
− i Et
ne h
=
1 a
sin
⎡ ⎢⎣
nπ 2a
(x
+
a)⎥⎦⎤

−i
eh
Et
En
=
n2π 2h 2 8μA2
ΔEn
=
En +1
§2.6 一维无限深势阱 (1) 序
一维运动 相互作用用势函数 U 表示
势场
⎧散射场 ⎩⎨束缚态
势垒
方形势阱
⎧方形势阱 ⎪⎪谐振子势阱 ⎪⎨δ 阱 ⎪⎩周期阱
一维无限深势阱,图 2.1 所示
Fig 2.1 一维无限深势阱
(2) 一维无限深势阱 在一维空间中运动的粒子,粒子在一定区域内(x=-a 到 x=a)为零,而在此区域外,势能为无
a −a
⎢⎣⎡cos
n
+ n′ 2a
(
x
+
a)

cos
n
− n′ 2a
(
x
+
a)⎥⎦⎤
dx
=0
——此即为波函数的正交条件。
8.波函数可视为两波波函数的迭加
ψ = c e + c e i h
(
nπh 2a

Ent
)

一维无限深势阱

一维无限深势阱

A e ikx B e ikx , ( x ) F e k3 x G e k3 x , C e ikx ,
2 2
x0 0 xa xa
(k k3 ) sh k3a B 2 , 2 A (k k3 ) shk3a 2ikk3chk3a
1 x x 1 x x shx (e e ), chx (e e ). 2 2
ik1 x
2
x0 0 xa xa
2 Beik x B e ik x
ik1 x 3 Ce C e (C 0) ik1 x
这里 k1 因子
ikx e 波数为K的平面波, 则是向左运动的平面波。在I、II两
x 0,
2mE ,k 2 2m( E V0 ) 。考虑到时间 ikx iEt / i t ,因此 代表向右运动的 e e
2
1 2
所以几率密度与 (1
2
/a )
2

1 2
成比例。
一、方势垒
1.方势垒是:
§3.3势垒贯穿 U(x)
U0
x 0 or 0, U ( x) U 0 0 0 x a
xa
0 a x
其特点是: (1)对于势阱,波函数在无穷远处趋于零,能谱是分立的。但 对于势垒,波函数在无穷远处不为零。下面将看到,粒子能量 可取任意值。 (2)按照经典力学观点,若E<U0 ,则粒子不能进入势垒,在x=0处 全被弹回;若 E> U0, 则粒子将穿过势垒运动。 但从量子力学的观点,由于粒子的波动性,此问题将与波 透过一层介质相似,总有一部分波穿过势垒,而有一部分波被 反射回去。因此,讨论的重点是反射和透射系数。

量子力学 一维无限深势阱

量子力学 一维无限深势阱

55§2.6一维无限深势阱(Potential Well )(理想模型)重点:一维无限深势阱中粒子运动的求解难点:对结果的理解实际模型:金属中电子的运动,不计电子间的相互碰撞,也不考虑周期排列的金属离子对它们的作用。

一、写出本征问题 势场为:⎩⎨⎧≥∞<=a x ,a x ,0)x (U 区域I(阱内,a x <)方程为: )x (E )x (dx d 2I I 222ψ=ψμ−h (1) 区域II、III(阱外,a x ≥)方程为: )x (E )x ()U dxd 2()III (II )III (II 0222ψ=ψ+μ−h (2) 其中∞=0U 。

波函数的边界条件是:)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ (3)二、求解本征方程 我们令2E 2h μ=α, 20)E U (2'h−μ=α (4) 则:)x (E )x (dx d 2I I 222ψ=ψμ−h 的解为: x i x i I Be Ae )x (αα−+=ψ a x <(5)56 )x (E )x ()U dx d 2()III (II )III (II 0222ψ=ψ+μ−h 的解为:x 'x'II e 'B e 'A )x (αα−+=ψ a x ≥ (6)x 'x 'III e ''B e ''A )x (αα−+=ψ a x −≤ (7) 由(6)-(7)式和波函数的有限性知: 0'B ,0''A ==,即:x 'II e 'A )x (α−=ψ a x ≥x 'III e ''B )x (α=ψ a x −≤又由于∞=0U ,则:∞=−μ=α20)E U (2'h于是:0)x ()x (III II =ψ=ψ (8) 而)a ()a (II I ψ=ψ,)a ()a (III I −ψ=−ψ;x i xi I Be Ae )x (αα−+=ψ则:⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i ai a i (9)于是A、B 不能全为零的充分必要条件为: 0e e e e a i a i ai ai =α−ααα−, 即:0)a 2sin(=α 解之得:a 2n π=α,,....2,1,0n ±±= (10)将其代入到⎩⎨⎧=+=+α−ααα−0Be Ae 0Be Ae a i a i a i ai ,得:0Be Ae 2/in 2/in =+ππ−即:B )1(A 1n +−=代入x i x i I Be Ae )x (αα−+=ψ中,得:57 ⎪⎪⎩⎪⎪⎨⎧=π=π=ψ,..5,3,1n ,x a 2n cos D ,...6,4,2n ,x a 2n sin C )x (I a x < (11)其中0n =,()0x =Ψ为平凡解,无意义;,...2,1n −−=不给出新的解。

一维无限深势阱

一维无限深势阱

一维无限深势阱无限深阱假设粒子不能离开势阱,也就是有一个势为无穷大的壁。

势可以写成()⎪⎪⎩⎪⎪⎨⎧>≤≤-∞=2022a x a x a x V(注:也可以选用坐标形如第二个图,这样的解简单,且容易推广到三维,但是对称性不如第一个图明显。

)注意,这个势是有奇异性的,我们分别有势阱内和势阱外的方程:⎪⎪⎩⎪⎪⎨⎧>=≤=+外)(阱外,粒子不能到阱(阱内)2020222a x a x E m dx d ψψψ 考虑势阱内,定义: 22mE k ≡ 定态方程为:0222=+ψψk dxd 此方程的通解为:kx B kx A cos sin +=ψ或:()δψ+=kx A sin连续性条件:02=±=ax ψ(单值、有限自动满足) 于是:⎪⎪⎩⎪⎪⎨⎧-+-+)2(cos )2(sin )2(cos )2(sin a k B a k A a k B a k A (注意:由于势在边界上有奇异性(无限深 ), ψ不连续,有跃变。

)这是关于 A 、B 的齐次方程,有非零解的条件是系数行列式为零,即:02cos 2sin 2cos 2sin =-a k a k a kak因此, 02cos 2sin 2=a k a k 即:0sin =ka故:() 3,2,1==n n ka π(注意:n 不能取 0 ,否则就出现了不振动的“波”。

)an k k n π== 22222ma n E n π= n maE 222π ≈∆ 可见势阱中能级是分立的,(与用德布罗意驻波直接计算一样)。

需要注意的是,n ma E 222π ≈∆,即能级越高越稀疏,但大量子数情况下02~→∆nE E n n ,即n n E E <<∆,所以在经典情况下(大量子数)感受不到能级的间隔,便认为能量是连续的,与对应原理相符。

下面求波函数,我们有:n 为奇数(偶宇称):002sin =⇒=A a k A n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202cos a x a x x k B n n ψ n 为偶数(奇宇称):002cos =⇒=B a k B n ⎪⎪⎩⎪⎪⎨⎧>≤=∴202sin a x a x x k A n n ψ其实上述结果可以直接看出来,因为态应该取确定的宇称,因此只能是sin 或者cos ,不可能是它们的组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.ξ一维无限深势阱
考虑一维空间中运动的粒子,它的势能在一定区域内:
0,,x x a U x a
⎧<⎪=⎨∞≥⎪⎩ 如右图
这种势叫一维无限深势阱
因x U 不含 t ,属于定态问题。

体系所满足的定态薛定谔方程是:
()2
222d E x a dx ψ
ψμ-=<① ()2
2022d U E x a dx ψ
ψψμ-+=≥② ②中,0U →∞由波函数应满足的连续性和有限性条件,只有当ψ=0时,②式才能成立,所以,有:ψ=0,x a ≥现求解①式,改写为:222122
2222020sin cos ,d E dx
E d x a dx A x B x x a
ψψμψμααψψαα+=⎛⎫=+=< ⎪⎝⎭
=+<令:则:,其解为: (本身上方说的解可表为如下振荡函数形式:sin x α,cos ,i x x e αα±,
但因现在势阱具有空间反射不变性,()()x x U U -=能量本征函数必定有确定的宇称曾书——P49——所以,只能取sin x α,或cos x α的形式。

根据ψ的连续性,因②式得ψ=0,x a ≥,于是:
,sin cos 0
sin cos 0
sin 0
cos 0
x a A a B a x a a B a a B a αααααα=+==-+===时时,A 两式相减,得:A 两式相加,得: 因A,B 不能同时为0,否则,sin cos A x B x ψαα=+处也为0,这在物理上无意义。

(物理问题对ψ的要求)
所以,得到两组解:⑴0,cos 0A a α== ⑵0,sin 0A a α==对第⑴组解,有,1,3,5.......2n a n απ==对第⑵组解有:,2,4,6 (2)
n a n απ== 合并,即有:,1,2,3,4,5 (2)
n a n απ==其中对⑴组,n 取奇数,对第⑵组n 取偶数,注意,n 不能取0,否则ψ=0,将2n a απ=代回12
22E μα⎛⎫= ⎪⎝⎭,得体系的能量本征值为:222
2
,8n n E n a πμ=为整数这说明,并非任何E 值所相应的波函数都能满足本问题所要求的边条件,而只能取上式给出的那些分立值n E ,此时的波函数在物理上才是可接受的。

这样,我们得到:体系的能量是量子化的,即能谱是分立的。

n E 称为体系的能量本征值。

相应的本征波函数为:P36
第一组n ψ为偶函数,即波函数具有偶宇称
第二组n ψ为奇函数,即波函数具有奇宇称
两式合并,得n ψ
的表达式,进行归一化,得'A =
子的定态波函数为:()()(),sin 2n n iE iE t t n n x n x t e x a e a a πψ--ψ==+(n ψ,与n E 对
应关系,粒子处于1ψ态时,E 有确定值2E )
讨论:①粒子最低能级22
1208E a
πμ=≠,这与经典粒子不同,是微观粒子波
动性的表现,因为“静止的波”是没有意义的,从测不准关系也可得出定性的结论,因粒子限制在无限保势阱中,位置不确定度x a ∆,按测不准关系,2p x a ∆∆所以,粒子的能量()22
220228p p E a μμμ∆≠
②应用公式s i n 2i i e e i
θθθ--=将上述定态波函数写成指数形式,有()221212,...(,n n i n i n x E t x E t a a n x t C e C e C C ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ψ=+为两个常数)所以,(),n x t ψ是由两个沿相反方向传播的平面波迭加而成的驻波,各能量本征值对应的本征函数及对应的粒子位置几率密度分布见P37,图8,图9
从图8知,除端点(x a =±)外,基态波函数1ψ无节点,第11激发态(n =2)有一个节点,第k 激发态(n=k+1)有k 个节点。

③由上述讨论知00x ψ≥=,即粒子波束缚在势阱内部,通常把∞处为0的波函数所描述的状态叫束缚态。

一般地,束缚态的能级是分立的(在势阱为[]02a ,的情况?)。

相关文档
最新文档