概率论与数理统计答案(东华大学出版)第二章 (1)

合集下载

《概率论与数理统计》第二章习题解答

《概率论与数理统计》第二章习题解答

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为0.0002 投保一年内因其他原因死亡:5万,概率为0.0010投保一年内没有死亡:0,概率为1-0.0002-0.0010=0.9988 所以X 的分布律为:2、一袋中有5只乒乓球,编号为X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1)(1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45 k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计第二章课后习题及参考答案

概率论与数理统计第二章课后习题及参考答案
{ X k} A1 A2 Ak 1 Ak ,
于是
P ( X k ) p (1 p ) k 1 ,
所以 X 的分布律为 P ( X k ) p (1 p ) k 1 , k 1,2, . (2) Y 的所有可能取值为 0,1,2,…, k ,…,于是
Y 的分布律为 P (Y k ) p (1 p ) k 1 , k 0,1,2, .
2
P ( X 0) P ( A1 A2 ) P ( A1 ) P ( A2 ) 0.36 , X 的分布律为 X P
1000000 0.16
60000 0.24
40000 0.24
0 0.36
5.对某目标进行独立射击,每次射中的概率为 p ,直到射中为止,求: (1) 射击次数 X 的分布律;(2) 脱靶次数 Y 的分布律. 解:(1) 由题设, X 所有可能的取值为 1,2,…, k ,…, 设 Ak {射击时在第 k 次命中目标},则
由题知, { X k} A B , AB ,则
P ( A) p k 1 (1 p ) , P ( B ) (1 p ) k 1 p , P ( X k ) P ( A B ) P ( A) P ( B ) p k 1 (1 p ) (1 p ) k 1 p ,

x 0, 0, 2 2x x F ( x ) 2 ,0 x a , . a a x a. 1, a a 1 1 (3) P ( X a ) F (a ) F ( ) 1 (1 ) . 2 2 4 4
12.设随机变量 X 在 [2,6] 上服从均匀分布,现对 X 进行三次独立观察,试求至 少有两次观测值大于 3 的概率. 解:由题意知

东华理工大学概率论与数理统计练习册答案_61153 - 副本

东华理工大学概率论与数理统计练习册答案_61153 - 副本

第一章 概率论的基本概念一、选择题 1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C )4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容.5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D ) 注:由C 得出A+B=Ω.7. 答案:(C )8. 答案:(D ) 注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏C9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ⋅==,故365()1365r rP P A =-. 11.答案:(C )12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ⊂,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ⋃=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()P B P AB P A P B -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P AB =,因此P(A|B)=()00()()P AB P B P B ==. 15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B ) 解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-⋃⋃=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ⊂⇒≤≤=⇒=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC U U U 或AB BC AC U U 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-=U .6.0.6解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+=U U U U . 8.1/4解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+U U 由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======,2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得 P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解.10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ⋃===求。

概率论与数理统计2.第二章练习题(答案)

概率论与数理统计2.第二章练习题(答案)

第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。

概率论与数理统计第二章答案

概率论与数理统计第二章答案

第二章 随机变量及其分布1、解:设公司赔付金额为X ,则X 的可能值为; 投保一年内因意外死亡:20万,概率为投保一年内因其他原因死亡:5万,概率为投保一年内没有死亡:0X0 P2、一袋中有55,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为 也可列为下表 X : 3, 4,5P :106,103,101 3、设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表 X : 0, 1, 2P : 351,3512,3522 4、进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

) x1 2 O P(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = k - k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 5、 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计答案 第二章1-2节

概率论与数理统计答案  第二章1-2节
P { X = 0} = P( A1 A 2 A3 ) = (1 − p )3
1 P { X = 1} = P( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C3 p1 (1 − p)3−1
P { X = 2} = P ( A1 A 2 A3 ∪ A1 A 2 A3 ∪ A1 A 2 A3 ) = C32 p 2 (1 − p)3− 2
同时可知: lim P { X ≥ 1} = 1
n →∞
上式的意义为:若p较小,p≠0,只要n充分大,至少有 一次命中的概率很大。即“小概率事件”在大量试验 中“至少有一次发生”几乎是必然的。
17
例4:有80台同类型设备,各台工作是相互独立的,发生故障 的概率都是0.01,且一台设备的故障能由一个人处理。 考虑两种配备维修工人的方法: 其一是由4个人维护,每人负责20台; 其二是由3个人共同维护80台。 试比较这两种方法在设备发生故障时不能及时维修的概率 的大小。
P{X=k}<0.001, 当k≥11时
16
例3:某人独立射击n次,设每次命中率为p,0<p<1, 设命中X次,(1) 求X的概率分布律; (2) 求至少有一次命中的概率。
解:这是n重伯努利试验 ⇒ X ~ b ( n , p ) ∼
(1) P { X = k} = Cnk p k (1 − p)n−k ,k = 0,1, ⋅⋅⋅, n 2 ) P { X ≥ 1} = 1 − P { X = 0} = 1 − (1 − p) n (
随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布随机变量离散型随机变量分布律连续型随机变量概率密度概率分布函数重伯努利实验二项分布泊松分布均匀分布正态分布指数分布随机变量的函数的分布23定义1随机变量例1

概率论与数理统计第二章课后习题答案

概率论与数理统计第二章课后习题答案

概率论与数理统计课后习题答案第二章1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】353524353,4,51(3)0.1C 3(4)0.3C C (5)0.6C X P X P X P X ==========2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2)X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为(2)当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==4.(1)设随机变量X 的分布律为P {X =k }=!k a kλ,其中k =0,1,2,…,λ>0为常数,试确定常数a . (2)设随机变量X 的分布律为P {X =k }=a/N ,k =1,2,…,N ,试确定常数a . 【解】(1)由分布律的性质知1()e !kk k P X k a a k λλ∞∞======∑∑故e a λ-=(2) 由分布律的性质知111()NNk k aP X k a N======∑∑即1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1)两人投中次数相等的概率; (2)甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1)(3,3)P X Y ==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有()0.01P X N ><即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似2000.02 4.np λ==⨯=41e 4()0.01!kk N P X N k -∞=+≥<∑查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故所以4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1)进行了5次独立试验,试求指示灯发出信号的概率; (2)进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1)设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率; (2)求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)eP X -== (2) 52(1)1(0)1eP X P X -≥=-==-11.设P {X =k }=kkkp p --22)1(C , k =0,1,2P {Y =m }=mmmp p --44)1(C ,m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}. 【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而2(1)(0)(1)P X P X p <===-故得24(1),9p -= 即1.3p =从而465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得25e 2(5)0.00185!P X -=≈=13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率. 【解】1,2,,,X k =113()()44k P X k -==(2)(4)(2)P X P X P X k =+=++=+321131313()()444444k -=++++ 213141451()4==- 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 【解】(1)由()d 1f x x ∞-∞=⎰得||01e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰ (3) 当x <0时,11()e d e 22x x x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰11e 2x -=-故1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率; (2)在这段时间内有一只电子管损坏的概率; (3)F (x ). 【解】(1)15021001001(150)d .3P X x x ≤==⎰33128[(150)]()327p P X =>==(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d xf t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰故1001,100()0,x F x xx ⎧-≥⎪=⎨⎪<⎩17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数. 【解】由题意知X ~∪[0,a ],密度函数为1,0()0,x af x a⎧≤≤⎪=⎨⎪⎩其他 故当x <0时F (x )=0 当0≤x ≤a 时01()()d ()d d xxxx F x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数0,0(),01,x x F x x a a x a<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+=19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1)若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2)若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-=故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1)求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }. 【解】(1)23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭ 1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=23.一工厂生产的电子管寿命X (小时)服从正态分布N (160,σ2),若要求P {120<X ≤200}≥0.8,允许σ最大不超过多少? 【解】120160160200160(120200)X P X P σσσ---⎛⎫<≤=<≤⎪⎝⎭404040210.8ΦΦΦσσσ-⎛⎫⎛⎫⎛⎫=-=-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故4031.251.29σ≤=24.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩ (1)求常数A ,B ;(2)求P {X ≤2},P {X >3}; (3)求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2)2(2)(2)1eP X F λ-≤==-33(3)1(3)1(1e )e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时00()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰ 当1≤x<2时()()d xF x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1)f (x )=a e - |x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x xx bx试确定常数a ,b ,并求其分布函数F (x ). 【解】(1)由()d 1f x x ∞-∞=⎰知||21ed 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故2a λ=即密度函数为e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰11e 2x λ-=-故其分布函数11e ,02()1e ,02xx x F x x λλ-⎧->⎪⎪=⎨⎪≤⎪⎩(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为2,011(),120,x x f x x x<<⎧⎪⎪=≤<⎨⎪⎪⎩其他当x ≤0时F (x )=0 当0<x <1时00()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰2d 2xx x x ==⎰当1≤x <2时01211()()d 0d d d xxF x f x x x x x x x -∞-∞==++⎰⎰⎰⎰312x=- 当x ≥2时F (x )=1 故其分布函数为20,0,012()31,1221,2x x x F x x x x ≤⎧⎪⎪<<⎪=⎨⎪-≤<⎪⎪≥⎩27.求标准正态分布的上α分位点, (1)α=0.01,求z α; (2)α=0.003,求z α,/2z α. 【解】(1)()0.01P X z α>=即1()0.01z αΦ-= 即()0.09z αΦ= 故 2.33z α=(2)由()0.003P X z α>=得1()0.003z αΦ-=即()0.997z αΦ= 查表得 2.75z α=由/2()0.0015P X z α>=得/21()0.0015z α-Φ=即/2()0.9985z αΦ= 查表得/2 2.96z α=求Y =X 的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====29.设P {X =k }=(2)k, k =1,2,…,令 1,1,.X Y X ⎧=⎨-⎩当取偶数时当取奇数时求随机变量X 的函数Y 的分布律.【解】(1)(2)(4)(2)P Y P X P X P X k ===+=++=+242111()()()222111()/(1)443k =++++=-= 2(1)1(1)3P Y P Y =-=-==30.设X ~N (0,1).(1)求Y =e X 的概率密度; (2)求Y =2X 2+1的概率密度; (3)求Y =|X |的概率密度.【解】(1)当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )xY F y P Y y P y P X y =≤=≤=≤ln ()d yX f x x -∞=⎰故2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤212y P X P X ⎛-⎛⎫=≤=≤≤ ⎪ ⎝⎭⎝()d X f x x =故d ()()d Y Y X X f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(1)/4,1y y --=>(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤()d yX yf x x -=⎰故d()()()()d Y Y X X f y F y f y f y y==+- 2/2,0y y -=> 31.设随机变量X ~U (0,1),试求:(1)Y =e X的分布函数及密度函数; (2)Z =-2ln X 的分布函数及密度函数. 【解】(1)(01)1P X <<=故(1e e)1XP Y <=<= 当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ln 0d ln yx y ==⎰当y ≥e 时()(e )1X Y F y P y =≤= 即分布函数0,1()ln ,1e 1,e Y y F y y y y ≤⎧⎪=<<⎨⎪≥⎩故Y 的密度函数为11e ,()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他(2)由P (0<X <1)=1知(0)1P Z >=当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤/2(ln )(e )2z zP X P X -=≤-=≥/21/2ed 1e z z x --==-⎰即分布函数-/20,0()1-e ,Z z z F z z ≤⎧=⎨>⎩0故Z 的密度函数为/21e ,0()20,z Z z f z z -⎧>⎪=⎨⎪≤⎩032.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数. 【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤(0arcsin )(πarcsin π)P X y P y X =<≤+-≤<arcsin π220πarcsin 22d d ππyy x x x x -=+⎰⎰ 222211arcsin 1πarcsin ππy y =+--()()2arcsin πy =当y ≥1时,()1Y F y = 故Y 的密度函数为201π()0,Y y f y ⎧<<⎪=⎨⎪⎩其他 33.设随机变量X 的分布函数如下:⎪⎩⎪⎨⎧≥<+=.)3(,)2(,)1(,11)(2x x x x F试填上(1),(2),(3)项.【解】由lim ()1x F x →∞=知②填1。

概率论与数理统计第二章习题及答案

概率论与数理统计第二章习题及答案

概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P XP C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=qk -1p k=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 离散型随机变量及其分布律第二节 一维离散型随机变量及其分布律习题1、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示所得球上的数字,求ξ的分布律。

解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:2、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,问ξ的分布律是什么?解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。

当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。

所以:ξ的分布律为:103017010200{},0,1,,10k k C C P k k C ξ-=== 。

3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球才停止。

设此时取到的白球数为ξ,求ξ的分布律。

解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。

设在取到黑球时取到的白球数ξ等于k ,则第1k +次取到是黑球,以i A 表示第i 次取到的是白球;_i A 表示第i 次取到的是黑球。

则ξ的分布律为:__12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k m n n n k n kξ++===--+-=⋅⋅⋅⋅=--+- 。

4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿灯显示时间相等。

以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。

解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。

以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。

因此ξ的分布律为:_11{0}()2P P A ξ===, __12121{1}()()()4P P A A P A P A ξ====, {2}P ξ==____1231231()()()()8P A A A P A P A P A ==, ______123123{3}()()()()1/8P P A A A P A P A P A ξ====。

5、 一实习生用同一台机器制造3个同种零件,第i 个零件是不合格品的概率为1,(1,2,3)1i p i i ==+。

用ξ表示3个零件合格品的个数,求ξ的分布律。

解答:因为利用同一台机器制造3个同种零件,因此可认为这3个零件是否合格是相互独立的,以i A 表示第i 个零件是合格的,则()1/(1)i P A i =+。

因ξ表示零件的合格数,因此ξ的分布律为:______1231231111{0}()()()()(1)(1)(1)2344P P A A A P A P A P A ξ====---=,______12312312311{1}()()()24P P A A A P A A A P A A A ξ==++=,___1231231236{2}()()()24P P A A A P A A A P A A A ξ==++=,1231{3}()24P P A A A ξ===。

6、 设随机变量ξ的分布律为{},0,1,2,!kP k ck k λξ=== ,式中λ为大于0的常数。

试确定常数c 的值。

解答:因{},0,1,2,!kP k ck k λξ=== 如果是随机变量ξ的分布律,则应该满足如下两个条件:1、对任意的k ,{}0P k ξ=≥,因此可得0c ≥;2、01{}k P k ξ∞===∑0!kk c k λ∞==∑ce λ=,所以可得c eλ-=。

7、 设在每一次试验中,事件A 发生的概率为0.3,当A 发生次数不少于3时,指示灯发出信号。

(1)若进行5次独立试验,求指示灯发出信号的概率;(2)若进行7次独立试验,求指示灯发出信号的概率。

解答:因为进行的是独立试验,所以如进行n 次试验,则事件A 在n 次试验中发生的次数ξ服从参数为n 和()0.3p P A ==的二项分布。

因为当A 在n 次试验中发生次数不少于3时,指示灯发出信号。

因此,{}{3}P P ξ=≥发出信号3{}n k P k ξ===∑30.30.7nk k n k nk C-==∑。

第一小题中的n 等于5,第二小题中的n 等于7。

计算即可。

8、 某交换台有50门分机,各分机是否呼叫外线相互独立,在单位时间内呼叫外线的概率都是10%,问在单位时间内至少有3门以上的分机需要外线的概率是多少?解答:同上一题,因为各分机是否呼叫外线相互独立,因此在单位时间里呼叫外线的分机束缚从参数为50和0.1的二项分布。

所以所求的概率等于{3}1{0}P P ξξ≥=-={1}P ξ-={2}P ξ-=504948250*4910.950*0.9*0.10.90.12=---。

9、 把一个试验独立重复地做n 次,设在每次试验中事件A 出现的概率为p ,求在这n 次试验中A 至少出现一次的概率是多少。

解答:同上一题,n 次试验中A 出现的次数服从参数为n 和p 的二项分布。

因此,所要求的概率等于{1}1{0}1(1)n P P p ξξ≥=-==--。

10、 甲乙两选手轮流射击,直到有一个命中为止,若甲命中率为0.6,乙命中率为0.7,如果甲首先射击,求: (1) 两人射击总次数ξ的分布律; (2) 甲射击次数1ξ的分布律; (3) 乙射击次数2ξ的分布律。

解答:因为轮流射击,直到有一个命中为止,且由甲首先射击。

因此可以看到,如果由甲射中,则总的射击次数应为奇数,乙比甲少射一次,而由乙射中的话,则甲、乙两人射击次数相同。

且可以知道,乙可能没有射击。

而由题意可知,每次是否射中是相互独立的。

令i A 表示甲第i 次射击时射中,则()0.6i P A =(1,2,i = );令i B 表示乙第i 次射击时射中,则()0.7(1,2,)i P B i == 。

由此可知:(1)______111111{21}()()()()kkk k k P k P A B A B A P A P B P A ξ+=+== 0.12*0.6k=,0,1,k =_____111111{2}()()()()kk k k P k P A B A B P A P B P B ξ-=== 10.12*0.28k -=,1,2,k =(2) ________1111111111{}()()()()()kk k k k k P k P A B A B P A B B A P A P B PB ξ--==+= +__111111()()()0.88*0.12,1,2,k k k P A P B P A k ---==(3) ________1211111111{}()()()()()kk k k k k P k P A B A B P A B B A P A P B PB ξ-+==+=__1111()()()0.352*0.12,1,2kk k P A P B P A k -+==21{0}()0.6P P A ξ===。

11、 一电话交换机每分钟收到的呼叫数服从4λ=的泊松分布。

求(1)一分钟内恰好有8次呼叫的概率;(2)一分钟内呼叫数大于9次的概率。

解答:因每分钟受到的呼叫数(4)ξπ ,因此844{8}8!P e ξ-==,而{9}1{9}P P ξξ>=-≤=4104!i i e i ∞-=∑=0.008132。

(查表得到) 12、 某路口有大量车辆通过,设每辆车在高峰时间(9点—10点)出事故的概率为0.001,设某天的高峰时间有500辆车通过,问出事故的车数不少于2的概率(利用泊松定理来计算)。

解答:可以认为每辆车是否出事故是相互独立。

则该天高峰时间车事故的车数(500,0.001)B ξ ,因500n =较大,而0.001p =较小,因此可利用泊松定理近似计算,则令500*0.001λ=,即近似认为(0.5)ξπ 。

即{2}1{1}P P ξξ≥=-≤0.520.5!k i e k ∞-==∑,查表可得等于0.090204。

13、 设车间内每月耗用某种零件的数量服从参数为3的泊松分布。

问月初要备该种零件多少个才能以0.999的概率保证当月的需要量? 解答:因每月耗用零件的数量(3)ξπ ,要保证当月的需要量,则要求当月的耗用量ξ小于等于月初所备的零件数x ,也就是1303{}10.999!i x i P x e i ξ--=≤=-=∑,查表可得10x ≥。

14、设ξ服从泊松分布,且{1}{2}P P ξξ===,求{4}P ξ=。

解答:因()ξπλ ,即12{1}{2}1!2!P eP e λλλλξξ--=====,由此可得2λ=,所以442{4}4!P e ξ-==。

15、设ξ服从参数为λ的泊松分布,即{},0,1,2,!kP k ek k λλξ-=== ,求使得{}P k ξ=达到极大值的k ,并证明你的结论。

解答:因1{1}/(){}(1)!!k k P k e e P k k k λλξλλξ+--=+==+1k λ=+,因此如果1k λ<+,则{1}{}P k P k ξξ=+<=,而若1k λ>+,则{1}{}P k P k ξξ=+>=。

所以,若存在正整数l 使得1l l λ<<+,则{}P l ξ=取得最大;而若存在正整数l λ=,则{1}P l ξ=-与{}P l ξ=同时达到最大。

16、设随机变量(2,),(3,)B p B p ξη ,若{1}5/9P ξ≥=,求{1}P η≥。

解答:因(2,),(3,)B p B p ξη ,所以25{1}1{0}1(1)9P P p ξξ=≥=-==--,由此可得13p =。

所以3119{1}1{0}1(1)327P P ηη≥=-==--=。

17、 设有10个同类元件,其中有2只次品。

装配仪器时从中任取1只,如果是次品则扔掉重新任取一只。

如再是次品,继续扔掉再任取一只。

试求在取到正品前已取出的次品数的分布? 解答:因其中只有2只次品,所以取到正品前已取出的次品数ξ只可能取0、1、2,因此ξ的分布律为828218{0},{1},{2}101091098P P P ξξξ====⋅==⋅⋅。

第三节 二维离散型随机变量及其分布律习题Page 621、 设二维随机变量(,)ξη可能取的值为(0,0),(1,1),(1,1/3),(2,0),(2,1/3)--,相应的概率为1/6,1/3,1/12,1/4,1/6。

相关文档
最新文档