有理数的加减法计算
有理数的加减运算

有理数的加减运算有理数是指能够表示成两个整数的比值的数,包括正整数、负整数、零和分数。
有理数的运算分为加法和减法两种。
一、有理数的加法运算有理数的加法运算是指将两个有理数相加,得到一个新的有理数。
1. 同号的有理数相加:两个正数相加时,直接将它们的绝对值相加,符号不变。
例如:3 + 5 = 8两个负数相加时,直接将它们的绝对值相加,结果再加负号。
例如:-2 + (-4) = -62. 异号的有理数相加:两个有理数的符号不同,先将它们的绝对值相减,然后取绝对值较大的数的符号。
例如:5 + (-9) = -4二、有理数的减法运算有理数的减法运算是指将一个有理数减去另一个有理数,得到一个新的有理数。
1. 同号的有理数相减:两个正数相减时,直接将它们的绝对值相减,结果为正数。
例如:7 - 3 = 4两个负数相减时,直接将它们的绝对值相减,结果为负数。
例如:-4 - (-2) = -22. 异号的有理数相减:一个正数减去一个负数,可以转化为加法运算,去掉减号,将被减数的相反数加上减数。
例如:6 - (-5) = 6 + 5 = 11注意事项:1. 在有理数的加减运算中,可以根据需要进行括号化简,先计算括号内的运算,再进行整体的加减运算。
2. 加法和减法的结果仍然是有理数。
3. 有理数的运算满足交换律和结合律。
即,两个有理数相加/减的结果与次序无关,多个有理数相加/减的结果与加/减的次序无关。
总结:有理数的加减运算包括同号的有理数相加、异号的有理数相加、同号的有理数相减和异号的有理数相减。
在运算过程中,需要注意符号的变化和运算规则。
加法和减法的运算结果仍然是有理数。
有理数的运算满足交换律和结合律,次序可以任意调整,不影响最终结果。
通过掌握有理数的加减运算规则,可以更好地解决与有理数相关的问题。
30道有理数加减法计算题

30道有理数加减法计算题练习一(一)计算题:(1)23+(-73)(2)(-84)+(-49)(3)7+(-2.04)(4)4.23+(-7.57)(5)(-7/3)+(-7/6)(6)9/4+(-3/2)(7)3.75+(2.25)+5/4(8)-3.75+(+5/4)+(-1.5)(二)用简便方法计算:(1)(-17/4)+(-10/3)+(+13/3)+(11/3)(2)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)(三)已知:X=+17(3/4),Y=-9(5/11),Z=-2.25,求:(-X)+(-Y)+Z的值(四)用">","0,则a-ba (C)若ba (D)若a<0,ba(二)填空题:(1)零减去a的相反数,其结果是_____________;(2)若a-b>a,则b是_____________数;(3)从-3.14中减去-π,其差应为____________;(4)被减数是-12(4/5),差是4.2,则减数应是_____________;(5)若b-a<-,则a,b的关系是___________,若a-b<0,则a,b的关系是______________;(6)(+22/3)-( )=-7(三)判断题:(1)一个数减去一个负数,差比被减数小. (2)一个数减去一个正数,差比被减数小.(3)0减去任何数,所得的差总等于这个数的相反数.(4)若X+(-Y)=Z,则X=Y+Z(5)若a<0,b|b|,则a-b>0练习二(一)计算:(1)(+1.3)-(+17/7) (2)(-2)-(+2/3)(3)|(-7.2)-(-6.3)+(1.1)|(4)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)(二)如果|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.(三)若a,b为有理数,且|a|<|b|试比较|a-b|和|a|-|b| 的大小(四)如果|X-1|=4,求X,并在数轴上观察表示数X的点与表示1的点的距离.练习三(一)选择题:(1)式子-40-28+19-24+32的正确读法是( )(A)负40,负28,加19,减24与32的和(B)负40减负28加19减负24加32(C)负40减28加19减24加32(D)负40负28加19减24减负32(2)若有理数a+b+C<0,则( )(A)三个数中最少有两个是负数(B)三个数中有且只有一个负数(C)三个数中最少有一个是负数(D)三个数中有两个是正数或者有两个是负数(3)若m<0,则m和它的相反数的差的绝对值是( )(A)0 (B)m (C)2m (D)-2m(4)下列各式中与X-y-Z诉值不相等的是( )(A)X-(Y-Z) (B)X-(Y+Z) (C)(X-y)+(-z) (D)(-y)+(X-Z)(二)填空题:(1)有理数的加减混合运算的一般步骤是:(1)________;(2)_________;(3)_______________;( 4)__________________.(2)当b0,(a+b)(a-1)>0,则必有( )(A)b与a同号 (B)a+b与a-1同号 (C)a>1 (D)b1(6)一个有理数和它的相反数的积( )(A)符号必为正 (B)符号必为负 (C)一不小于零 (D)一定不大于零(7)若|a-1|*|b+1|=0,则a,b的值( )(A)a=1,b不可能为-1 (B)b=-1,a不可能为1 (C)a=1或b=1 (D)a与b的值相等(8)若a*B*C=0,则这三个有理数中( )(A)至少有一个为零 (B)三个都是零 (C)只有一个为零(D)不可能有两个以上为零(二)填空题:(1)有理数乘法法则是:两数相乘,同号__________,异号_______________,并把绝对值_____, 任何数同零相乘都得__________________.(2)若四个有理数a,b,c,d之积是正数,则a,b,c,d中负数的个数可能是______________;(3)计算(-2/199)*(-7/6-3/2+8/3)=________________;(4)计算:(4a)*(-3b)*(5c)*1/6=__________________;(5)计算:(-8)*(1/2-1/4+2)=-4-2+16=10的错误是___________________;(6)计算:(-1/6)*(-6)*(10/7)*(-7/10)=[(-1/6)*(-6)][(+10 /7)*(-7/10)]=-1的根据是_______(三)判断题:(1)两数之积为正,那么这两数一定都是正数;(2)两数之积为负,那么这两个数异号;(3)几个有理数相乘,当因数有偶数个时,积为正;(4)几个有理数相乘,当积为负数时,负因数有奇数个;(5)积比每个因数都大.练习(四)(B级)(一)计算题:(1)(-4)(+6)(-7)(2)(-27)(-25)(-3)(-4)(3)0.001*(-0.1)*(1.1)(4)24*(-5/4)*(-12/15)*(-0.12)(5)(-3/2)(-4/3)(-5/4)(-6/5)(-7/6)(-8/7)(6)(-24/7)(11/8+7/3-3.75)*24(二)用简便方法计算:(1)(-71/8)*(-23)-23*(-73/8)(2)(-7/15)*(-18)*(-45/14) (3)(-2.2)*(+1.5)*(-7/11)*(-2/7)(三)当a=-4,b=-3,c=-2,d=-1时,求代数式(ab+cd)(ab-cd)的值.(四)已知1+2+3+......+31+32+33=17*33,计算下式1-3+2-6+3-9-12+...+31-93+32-96+33-99的值练习五(A级)(一)选择题:(1)已知a,b是两个有理数,如果它们的商a/b=0,那么( )(A)a=0且b≠0 (B)a=0 (C)a=0或b=0 (D)a=0或b≠0 (2)下列给定四组数1和1;-1和-1;0和0;-2/3和-3/2,其中互为倒数的是( ) (A)只有 (B)只有 (C)只有 (D)都是(3)如果a/|b|(b≠0)是正整数,则( ) (A)|b|是a的约数(B)|b|是a的倍数 (C)a与b同号 (D)a与b异号 (4)如果a>b,那么一定有( ) (A)a+b>a (B)a-b>a (C)2a>ab(D)a/b>1(二)填空题:(1)当|a|/a=1时,a______________0;当|a|/a=-1时,a______________0;(填>,0,则a___________0; (11) 若ab/c0,则b___________0; (12)若a/b>0,b/c(-0.3)4>-106 (B)(-0.3)4>-106>(-0.2)3(C)-106>(-0.2)3>(-0.3)4 (D)(-0.3)4>(-0.2)3>-106(4)若a为有理数,且a2>a,则a的取值范围是( ) (A)a<0(B)0<1 (C)a1 (D)a>1或a<0 (5)下面用科学记数法表示106000,其中正确的是( ) (A)1.06*105 (B)10.6*105 (C)1.06*106 (D)0.106*107 (6)已知1.2363=1.888,则123.63等于( ) (A)1888 (B)18880 (C)188800(D)1888000 (7)若a是有理数,下列各式总能成立的是( ) (A)(-a)4=a4 (B)(-a)3=A4 (C)-a4=(-a)4 (D)-a3=a3 (8) 计算:(-1)1-(-2)2-(-3)3-(-4)4所得结果是( ) (A)288(B)-288 (C)-234 (D)280(二)填空题:(1)在23中,3是________,2是_______,幂是________; 若把3看作幂,则它的底数是________,指数是________; (2)根据幂的意义:(-2)3表示________相乘; (-3)2v表示________相乘;-23表示________. (3)平方等于36/49的有理数是________;立方等于-27/64的数是________ (4)把一个大于10的正数记成a*10n(n为正整数)的形成,a的范围是________,这里n比原来的整数位数少_________,这种记数法称为科学记数法; (5)用科学记数法记出下面各数:4000=___________;950000=________________;地球的质量约为49800...0克(28位),可记为________; (6) 下面用科学记数法记出的数,原来各为多少105=_____________;2*105=______________;9.7*107=______________9.756*103=_____________ (7) 下列各数分别是几位自然数 7*106是______位数1.1*109是________位数; 3.78*107是______位数 1010 是________位数; (8)若有理数m 0,b0 (B)a-|b|>0 (C)a2+b3>0 (D)a<0 (6)代数式(a+2)2+5取得最小值时的a值为( ) (A)a=0 (B)a=2 (C)a=-2 (D)a0 (B)b-a>0(C)a,b互为相反数; (D)-ab (C)a(5)用四舍五入法得到的近似数1.20所表示的准确数a 的范围是( )(A)1.195≤a<1.205 (B)1.15≤a<1.18 (C)1.10≤a<1.30 (D)1.200≤a<1.205 (6)下列说法正确的是( ) (A)近似数3.80的精确度与近似数38的精确度相同; (B)近似数38.0与近似数38的有效数字个数一样 (C)3.1416精确到百分位后,有三个有效数字3,1,4; (D)把123*102记成1.23*104,其有效数字有四个.(二)填空题:(1)写出下列由四舍五入得到的近似值数的精确度与有效数字: (1)近似数85精确到________位,有效数字是________; (2)近似数3万精确到______位,有效数字是________; (3)近似数5200千精确到________,有效数字是_________; (4)近似数0.20精确到_________位,有效数字是_____________. (2)设e=2.71828......,取近似数2.7是精确到__________位,有_______个有效数字; 取近似数2.7183是精确到_________位,有_______个有效数字. (3)由四舍五入得到π=3.1416,精确到0.001的近似值是π=__________; (4)3.1416保留三个有效数字的近似值是_____________;(三)判断题:(1)近似数25.0精确以个痊,有效数字是2,5; (2)近似数4千和近似数4000的精确程度一样; (3)近似数4千和近似数4*10^3的精确程度一样; (4)9.949精确到0.01的近似数是9.95.练习八(B级)(一)用四舍五入法对下列各数取近似值(要求保留三个有效数字): (1)37.27 (2)810.9 (3)0.0045078 (4)3.079 (二)用四舍五入法对下列各数取近似值(要求精确到千位): (1)37890.6 (2)213612.4 (3)1906.57(三)计算(结果保留两个有效数字): (1)3.14*3.42(2)972*3.14*1/4练习九(一)查表求值:(1)7.042 (2)2.482 (3)9.52 (4)2.0012 (5)123.42 (6)0.12342 (7)1.283 (8)3.4683 (9)(-0.5398)3(10)53.733(二)已知2.4682=6.901,不查表求24.682与0.024682的值(三)已知5.2633=145.7,不查表求(1)0.52633 (2)0.05263 (3)52.632 (4)52633(四)已知21.762^2=473.5,那么0.0021762是多少保留三个有效数字的近似值是多少(五)查表计算:半径为77cm的球的表面积.(球的面积=4π*r2)有理数练习题一填空题1.-(-2 )的倒数是_________,相反数是__________,绝对值是__________。
《有理数加减法的混合运算》文档有理数运算

有理数的运算一、有理数的加法1、有理数的加法运算法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③一个数同0相加,仍得这个数2、有理数的加法运算律①有理数的加法交换律是:两个数相加,交换加数的位置,和不变.即加法交换律.②有理数的加法结合律是:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即加法结合律.③交换律和结合律可以推出:三个以上有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,无论各数相加的先后次序如何,其和不变。
3、步骤:先判断加数的符号,互为相反数的两个数相加和为04、三个以上有理数运算的简便方法:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加;(2)同号集中:按加数的正负分成两类分别结合相加,再求和;(3)同分母结合:把分母相同或容易通分的结合起来;(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加。
注意带分数拆开后的两部分要保持原来分数的符号。
【新知巩固】:(1)(+31)+(-28)+(+69)+(+28)(2))5.6+(-0.9)+4.4+(-8.1)+(-1)点睛:灵活运用加法的运算律可以使运算简化二、有理数减法法则1、有理数的减法法则减去一个数,等于加上这个数的相反数.即a-b=a+(-b)任何数减去0都是它本身2、步骤:先把减号变成加号,在运用有理数的加法法则【新知巩固】:三、有理数的加减混合运算1、有理数加减法混合运算的题目的步骤为:①减法转化成加法;②省略加号括号;③运用加法交换律(这里既交换又结合,交换时应连同数字前的符号一起交换);④按有理数加法法则计算2、运算律:①互为相反数放在一起②同分母的放在一起③能凑整的放在一起④小数与小数放在一起,整数与整数放在一起。
有理数的加减混合运算_图文

8- 15 =-7;
(-8)- (-12) =4
例2.计算( )
例3下列变形中,正确的是
(1) 1-4+5-4=1-4+4-5; (2) 1-2+3-4=2-1+4-3; (3) 2-3-4+5=2-3+5-4; (4) 2-3-4+5=2-(3-4)+5; (5) 2-3-4+5=2-3-(4+5)
(-8)+ =-5; (-8)+ =-3;
8+ =-7;
(-8)+ =4
(-8)- =-5; (-8)- =-3;
8- =-7;
(-8)- =4
解:(-8)+ 3 =-5; (-8)+ 5 =-3;
8+ (-15 ) =-7;
(-8)+ 12 =4
(-8)- (-3) =-5; (-8)- (-5) =-3;
= -40+6 = -34
解题小技巧:运用运算律将正负数分别相加。
例2:0-1/2- 2/3 -(-3/4)+(-5/6)
❖ 解: 原式=0-1/2-2/3+3/4-5/6
❖
=(-1/2+3/4)+(-2/3-5/6)
❖
=(-2/4+3/4)+(-4/6-5/6)
❖
= 1/4 +(-3/2)
❖
=1/4-6/4
随堂练习
1、把(-6)+(-3)-(-2.5)-(+5)写成 加法的形式_(-_6)_+(_-3_)+_(+_2._5)_+(_- _ 写成省略的形
式__-6_-3_+2_.55)_-5___
2、把下列各式写成省略加号的和的形式,并说出它 们的两种读法. (1) (-12)-( + 8) +(-6) - (- 5)
有理数加减法法则(含乘除法法则)

有理数加减法法则
有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
一个数同零相加,仍得这个数。
有理数减法法则:减去一个数,等于加上这个数的相反数。
其中:两变:减法运算变加法运算,减数变成它的相反数。
一不变:被减数不变。
可以表示成:a-b=a+(-b)。
乘法:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得零。
几个不为零的有理数相乘,负因数有偶数个时积为正,负因数有奇数个时积为负,如果有一个因数为零,积就为零。
除法:除以一个不为零的数,等于乘以这个数的倒数;两数相除,同号得正,异号为负;零除以任意非零的数都得零。
七年级数学有理数的加减法

(1)5 – (– 15)
( 2) 0– 7 – 5
1 1 (3)( – 1.3 )–( – 2.1) (4) 1 2 3 2
口算:
( 1) 3 – 5 ; (2)3 – ( – 5); (3)( – 3) – 5;
(4)( – 3) – ( –5);
(5)–6 –( –6); (6) – 7 – 0; (7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11)
(2)比2°C低8°C的温度是 ; 比-3°C低6°C的温度 ; (3)比0小4的数是 ; 比0 小-4的数是 ; (4)7.4比8.3小 ; 7.4比8.3大 。 4、若m>0,n<0,则m-n 0; 若m<0,n>0, 则m-n 0。
二、选择题 1、下面等式正确的是( ) A、a-b=(-a)+ b B、a-(-b)=(-a)+(-b) C、(-a)-(-b)=(-a)+(-b) D、a-(-b)=a+b 2、下列说法中下正确的是( ) A.两个数的差一定小于被减数 B、若两个数的差为0,则这两数必相等 C、零减去一个数一定得负数 D、一个负数减去一个负数结果仍是负数
2、据襄樊市气象台预报:2001年2 月7日我县的最高气温是4 °C,最 低气温是–3 °C, 请问这天温差是 多少?你是怎样算的?
4 – ( – 3) = 7 ( ° C )
比一比,议一议:
先请同学们计算以下两个式子: (1)11 +( –15); (2)4 + 3 比较上面的式子,你能发现其中的 规律吗?分小组讨论。
新知应用
例2 计算
10 4 1 ( ) ( 5.8) ( ) ( ) 11 5 11
有理数加减法法则

七年级上册数学之巴公井开创作有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(-8)+(-3)=-(8+3)=-11(2)异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.(-8)+3=-(8-3);8+(-3)=5(3)互为相反数相加得0. 8+(-8)=0;(-5)+5=0有理数减法法则:减去一个数,等于加这个数的相反数。
(把减法转化为加法)a-b=a+(-b);例:-9-(-5)=-9+5=-4有理数加法口诀速记法:同号相加一边“倒”;异号相加“大”减“小”,符号跟着“大”的跑;绝对值相等“零”正好;数零相加变不了。
备注:“大”“小”是指加数的绝对值的大小。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得零。
有理数除法法则:(一)、除以一个不等于0的数,等于乘这个数的倒数。
(二)、两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0.(0不克不及做除数)有理数除法技巧方法:(1)直接应用有理数除法的法则进行计算。
(2)有分数除法,先确定结果的符号,再把除法转化为乘法,使用简便运算更合理。
有理数运算时要依照步调:一观察、二确定、三求和。
(第一步观察两数的符号,是同号还是异号;第二步确定用哪条法则;第三步求出结果)有理数加减混合运算几种方法:(1)减法统一转化成加法;(2)省略加号和括号;(3)运用加法运算律进行计算;(一)在计算过程中的技巧:(1)同号结合法(运用运算律将正负数分别相加)(2)同分母结合法(分母相同或哟倍数关系的数结合在一起)(3)凑整法(把某些能相加得整数的结合在一起)(4)相反数结合法(互为相反数的两数可现加)(5)统一法(算式中既有分数又有小数,要把分数统一成小数或把小数统一成分数)(6)拆项法(算式中有带分数时,可先把带分数拆成整数和真分数,拆开后相加,运算就简便)拆项后注意:(1)分开的整数部分与分数部分必须保存原带分数的符号。
有理数的加减运算

有理数的加减运算
在数学中,有理数是指可以表示为两个整数的比值的数,包括正整数、负整数以及零。
有理数的加减运算是数学中的基本运算之一,它是我们在日常生活中经常会用到的。
有理数的加减运算遵循一定的规则,下面我们来详细讨论一下有理数的加减运算。
一、有理数的加法运算
1. 同号数相加
若两个有理数同号,则它们的绝对值相加,符号不变。
例如,-3 + (-5) = -8。
2. 异号数相加
若两个有理数异号,则它们的绝对值相减,符号取绝对值较大数的符号。
例如,5 + (-3) = 2。
二、有理数的减法运算
有理数的减法可以看作是加法的逆运算。
对于减法来说,只需将减数变为相应数的相反数,然后按照加法规则进行运算。
例如,5 - 3 可以看作 5 + (-3),即同号数相加的情况。
三、有理数的加减混合运算
在实际运算中,有时候我们需要进行有理数的加减混合运算。
这时,只需要按照加法和减法的规则进行运算,先乘除后加减,这样可以避
免出错。
例如,4 - 2 + (-3) + 5 可以按照顺序进行计算,先减后加,得到4 - 2 - 3 + 5 = 4。
综上所述,有理数的加减运算是数学中的基本运算,掌握了这一知
识点可以帮助我们更好地理解数学,并且在日常生活中也能够更加灵
活地运用。
希望通过本文的介绍,读者们对有理数的加减运算有更深
入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南坪中心校七年级数学有理数测试卷(2)命题人:郜树英一、填空题:(每题1分)
1、(-3)+(+2)的结果的符号为。
2、-3 与-1 的和等于。
3、(-1) - (-2)=(-1)+( )
4、(-6)-(-3)+(-4) 写成省略加号的和的形式为。
5、-3-2+5读作或读作
6、运用加法交换律,式子 11-6 可以写成。
7、(-3)-(+2)-(-3)=。
8、-2 与 3 的相反数的差为。
9、比-6小-3的数是_______.
10、数轴上到-2的距离为三个单位长度的点表示的数是
二、判断题(每题1分)
1.若a>0,b<0,则a+b>0.()
2.若a+b<0,则a,b两数可能有一个正数()
3.若x+y=0,则|x|=|y|.()
4.有理数中所有的奇数之和大于0.()
5.两个数的和一定大于其中一个加数.()
三、选择题:(每题2分共30分)
1、下列计算结果正确的是()
A、3-8=5
B、-4+7=-11
C、-6-9=-15
D、0-2=2 2、较小的数减去较大的数,所得的差一定是()
A、零
B、正数
C、负数
D、零或负数
3、若│a│ =1,b=3,则 a+b 的值为()A、4 或 2 B、2 C、4 D、-2
4、-6 的相反数与比5的相反数小1的数的和为()A、11 B、2 C、1 D、0
5、若 a+b<0,且-(-a)>0,则()
A、a>0,b<0
B、a<0,b>0
C、a<0,b>0
D、a<0,b<0
6.下列说法正确的是() A.两个有理数的差一定小于被减数.
B.两个有理数的和一定比这两个有理数的差大.
C.减去一个负数,差一定大于被减数.
D.减去一个正数,差一定大于被减数. 7.两个有理数相加,如果和小于每一个加数,那么()
A.这两个加数同为负数; B.这两个加数同为正数
C.这两个加数中有一个负数,一个正数; D.这两个加数中有一个为零
8.下列说法正确的是()
A.两数之和必大于任何一个加数 C.两负数相加和为负数,并把绝对值相减B.同号两数相加,符号不变,并把绝对值相加
D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加
9.如果│a+b│=│a│+│b│成立,那么()
A.a,b同号 B.a,b为一切有理数
C.a,b异号 D.a,b同号或a,b中至少有一个为零
10.若│a│=7,│b│=10,则│a+b│的值为()
A.3 B.17 C.3或17 D.-17或-3
11.若x>y>z,x+y+z=0,则一定不能成立的是()
A.x>0,y=0,z<0; B.x>0,y>0,z<0;
C.x>0,y<0,z>0; D.x>0,y<0,z<0
12、如果两个数的和为正数,那么()
A.这两个加数都是正数 B.一个数为正,另一个为0
C.两个数一正一负,且正数绝对值大 D.必属于上面三种之一
13、x<0, y>0时,则x, x+y, x-y,y中最小的数是()
A、 x
B、x-y
C、 x+y D 、 y
14、|x-1|+|y+3|=0, 则x-y-8 的值是()
A、-4 B 、-2 C、-1 D、1
15. 在1,—1,—2这三个数中,任意两数之和的最大值是()
A、1
B、0
C、-1
D、-3
四、计算题(每题3分共30分)
1.(-1)+(-5)+(-8)+12 2.(-0.75)+3 +2.75+(-6)
3、(-7 )+(-2 )+(+4 )-(-4 )
4、12
()
23
+-
5.
11 ()() 43 -+-
6、(-2 )-(-4.7)+(-0.5)-(+3.2)
7、8-3+5-9-6
8、(—5.3)+(—3.2)—(—2.5)—(+4.8)
9、(-5.4)-(+2)+(-1.4)-(-0.5)
10、(-1)+(+2)+(-3)+(+4)+ …… +(-2013)+(+2 014)
五、解答题(共20分)
1、飞机的飞行高度是1200m,上升400m,又下降300m,这时飞机高度是多少?(3分)
2、电力公司的一个检修小组从 A 地出发,在公路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-4,-3;
①求收工时距 A 地多远?(2分)
②若每千米耗油 0.3 升,问从出发到收工共耗油多少升?(2分)
3、为整顿和规范市场经济秩序,扶优治劣引导消费,2013年“3.15”前夕,天津市质量技术监督总局对本市市场上食品进行了监督检查,检查一商店某水果10个罐头的质量,超出记为“+”,不足记为“-”,情况记录如下:-3克、+2克、-1克、-5克、-2克、+3克、-2克、+3克、+1克、-1克(1)总的情况是超出还是不足?(2分)
(2)求平均误差(计算方法为总质量除以数量)(2分)
(3)根据减法意义求最多的与最少的罐头重量的差值。
(2分)
4、将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.(3分)
5.钟面上有1,2,3,…,11,12共12个数字.
(1)试在这些数前标上正,负号,使它们的和为0. (2分)
(2)在解题的过程中,你能总结什么规律?用文字叙述出来。
(2分)感谢您的阅读,祝您生活愉快。