第二章 基本定理 第二讲 解的延拓
常微分方程第二章

第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。
解的延拓和对初值的连续性和可微性

• 存在唯一性定理 如向量函数g(t,y)在域R上
连续且关于y满足利普希茨条件,
• 则方程组存在唯一解y=(t,t0,y0) ,
它在区间|t-t0|≤h上连续且 (t0,t0,y0)= y0
• 这里
h
min
a,
b M
,
M max g(t, y) .
(x, y)R
目录 上页 下页 返回 结束
解的延拓与连续性定理
d y g(t, y), dt
y(t0 ) y0.
• 解的延拓与连续性定理 如向量函数g(t,y)在某 域G上连续且关于y满足局部利普希茨条件,
• 则 方程组满足初值条件的解y=(t,t0,y0)可以延拓,
或延拓到±∞,或延拓到边界。
• 且解y= (t,t0,y0) 作为 t,t0,y0 的函数
围内是连续可微的。
目录 上页 下页 返回 结束
它滿足 y0=(x0,x0,y0) 。
目录 上页 下页 返回 结束
解对初值的连续性定理
d y f (x, y) dx
• 解对初值的连续性定理 如 f(x,y) 在域 G内连续且满足局部利普希茨条件,
则方程的解y=(x,x0,y0) 作为x,x0,y0 的
函数在它的存在范围内是连续的。
目录 上页 下页 返回 结束
ds
y0
exp
x f (s,)
x0
y
Hale Waihona Puke ds 目录 上页 下页 返回 结束
附注
一阶非线性方程组
dy dt
g (t ,
y),
y
n
• 关于存在唯一连续可微性定理可推广到一阶 非线性方程组。证明方法类似。
解的延拓-PPT精品

y(x),在定义区间向 一右 段 . 延长了
即方 (3.1)满 程 (2足 )的y 解 *(x)为y 解 (x)在定
区x 间 x0h0的向右 , 方延拓 即将解延拓到 x0较 h0大 x区 x0h间 0h1上,
注 如果函数 f ( x, y )在整个 xy 平面上有定义 , 连续和有界 , 同时存在关于 y的一阶连续 偏导数 , 则方程 (3.1)的解可 以延拓到区间 ( , ).
作业
1
研究方程
dy1y2满足y条 (0)件 1, dx
的解存在区间 .
对定义2也可如下定义
对定义在G上 平函 面 f(x,数 区 y)若 , 域 对 (x1,y1)G, 矩R 形 1{x(,y)| xx1a1,yy1b1}G及常 L1(与 x1,y1,a1,b1有)关 使 , 对 (x,y')(,x,y'')R1有
f(x,y')f(x,y")L 1y'y" 恒,则 成 f(x 称 ,立 y )在 G 内y 关 满于 足 Li局 p条 s.c 部
§3.2 解的延拓
问题提出
对于初值问题
dy dx
f (x, y),
R:xx0a,yy0b,
y ( x0 ) y0
上节解存在唯一 告性 诉定 我,在 理 们一定条, 件下
它的解在 x这 区 x0 h 间 h 里 上 m存 a i,b n 在 )M (,,唯 M 一fa (x,y x )
此时把不可 义延 区 (1,拓 间 1)称 解为 的一 定个 .
2 局部李普希茨(Lipschitz)条件
《解的延拓定理》课件

解的局部唯一性定理
1
什么是解的局部唯一性定理?
解的局部唯一性定理是指在某个特定区域内,解的存在且唯一。
2
它的证明过程是怎样的?
证明过程涉及数学推导和逻辑思维,通过严谨的推理来证明解的局部唯一性。
部唯一性定理解决了很多实际问题,例如流体力学中的流动问题和电磁学 中的分布问题。
《解的延拓定理》PPT课 件
解的延拓定理PPT课件,介绍解的延拓定理的应用、解的局部唯一性定理、 解的延拓定理的证明过程,以及与解的局部唯一性定理的联系。
简介
解的延拓定理是什么?
解的延拓定理是数学中的一个重要定理,它描述了解在某些特定条件下的延伸和唯一性。
它有什么应用?
解的延拓定理在物理、工程和经济学等领域中有广泛的应用,可以帮助解决实际问题。
解的延拓定理
1 什么是解的延拓定理?
解的延拓定理是指在某些情况下,解可以延伸到更广泛范围的区域。
2 它是如何证明的?
证明过程基于数学分析和函数的性质,通过严密的推导来证明解的延拓定理。
3 它与解的局部唯一性定理有什么联系?
解的局部唯一性定理是解的延拓定理的特例,可以看作是解的延拓定理在特定区域的应 用。
进一步研究的方向
未来可以进一步研究解的延拓定理在更复杂情况下 的应用和推广,以解决更多的实际问题。
参考文献
• 相关学术文献参考1 • 相关学术文献参考2
应用举例
工程实际中的应用举例
解的延拓定理在工程领域中有广泛的应用,例如结 构分析、材料研究和流体力学等。
它解决了哪些实际问题?
解的延拓定理解决了很多实际问题,例如天气预测、 电路设计和金融风险评估等。
总结
解的延拓定理的重要性
第二章基本定理第二讲解的延拓

第⼆章基本定理第⼆讲解的延拓第⼆讲解的延拓(3学时)教学⽬的:讨论解的延拓定理。
教学要求:理解解的延拓定理,并⽤解的延拓定理研究⽅程的解教学重点:解的延拓定理条件及其证明教学难点:应⽤解的延拓定理讨论解的存在区间。
教学⽅法:讲练结合教学法、启发式相结合教学法。
教学⼿段:传统板书与多媒体课件辅助教学相结合。
教学过程:解的存在唯⼀性定理的优点是:在相当⼴泛的条件下,给定⽅程:),(y x f dxdy =有满⾜初值条件00)(y x y =的唯⼀解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的⼀个区间),min(,||0mb a h h x x =≤-上存在,有时所得的区间很⼩,因⽽相应的微分曲线也只是很短的⼀段,如初值问题 22(3.1)(0)0dy x y dx y ?=+ =?当定义域为R:11≤≤-x 时,解存在的唯⼀区间.21}21,1min{||==≤h x 当定义域为R:21≤≤-x 时,解的顾在唯⼀区间.41}41,1min{||==≤h x 这样随着),(y x f 的定义域的增⼤,解存在的唯⼀区间反⽽缩⼩,这显然是我们不想看到的,⽽且实际要求解存在下载向尽量⼤,这就促使我们引进解的延拓概念.扩⼤解存在不在此区间.1.局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每⼀点P,有以P 为中⼼完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满⾜Lipschitz 条件,(对不同的点,域Rp 的⼤⼩和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满⾜局部Lipschitz 条件.2. 解的延拓定理. 如果⽅程(3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满⾜局部Lipschitz 条件,那么⽅程(3.1)的通解过G 内任何⼀点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ?任意接近G 的边界.以向X 增⼤的⼀⽅延拓来说,如果)(x y ?=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ?趋于区间G 的边界.上节我们给出了初值问题(2.2)解的存在唯⼀性定理.应该注意到,这个定理的结果是局部的,也就是说解的存在区间是“很⼩”的.通常⽅程(2.1)的右端函数f (x ,y )存在区域D 可能是很⼤的,这样,我们⾃然要讨论,此时初值问题(2.2)的解的存在区间是否可以扩⼤.2.3.1 延展解、不可延展解的定义定义2.1 设1()y x ?=是初值问题(2,2)在区间 1I R ?上的⼀个解,如果(2.2)有⼀个在区间 2I R ?上的解 2()y x ?=,且满⾜(1) 12,I I ?(2)当 1x I ∈时, 12()(),x x ??≡则称解 1()y x ?=,1x I ∈是可延展的,并称 2()x ?是 1()x ?在2I 上的⼀个延展解. 否则,如果不存在满⾜上述条件的解 2()x ?,则称 1x I ∈,1()x ?是初值问题(2.2)的⼀个不可延展解(亦称饱和解)。
常微分方程的几何解释

(2.2)
a x b, y ,
假设函数 f x, y在给定区域上连续且有界.于是
它在这个区域上确定了一个线素场.下面利用线素场
求出经过 x0, y0 的近似积分曲线.把
x0 ,b n 等分,其分点为:
xk x0 kh, k 0,1, , n
h b x0 , n
xn b
常微分方程
绵阳师范学院
先求出 f x0, y0
用经过 x0, y0 斜率为
y
x1
,
y1
x2
,
y2
f x0, y0 的直线段来近
y0
似积分曲线,其方程为
y y0 f x0, y0 x x0
x0 x1 x2
bx
求出直线上横坐标 x1 处的点的纵坐标
y1 y0 f x0, y0 x1 x0 y0 f x0, y0 h
如果 h 很小 x1, y1 就很接近积分曲线上的点 x1, y x1
因 f x, y 连续.于是由点 x1, y1 出发的斜率为
f x1, y1 的直线段又近似于原积分曲线.它的方程为
了线素场.
y k x
易见在点 x, y 的线素与
过原点与该点的射线重合.
常微分方程
绵阳师范学院
定理2.1 L为(2.1)的积分曲线的充要条件是: 在L 上任一点,L 的切线方向与(2.1)所确定的线 素场在该点的线素方向重合;即L在每间点均与 线素场的线素相切.
证明 必要性 设L为(2.1)的积分曲线,其方程为
20
若初值问题
dy dx
f ( x, y),的解是存在,是否唯一?
解的延拓,饱和解

P’2
R1
定理3.3(解的延拓定理)如果f(x,y)是定义域 D上的连续函数,并 满足局部李氏条件,则过D内任意点的饱和解存在,令饱和解为 (x) x a 0或x b 0 时,点 ( x, ( x)) 无限接近于D的边界。 注. 饱和区间可以是有界区域,也可以是无界区域。 如果D是无界区域,在延拓定理的条件下 (x) 向x 增大的方向 的延拓有两种可能: (1)可以延拓到区间 [ x0, ) (2)只能延拓到区间 [ x0, d ] ,其中d 是有限数,
(1)经过(0, 0) 的饱和解和饱和区间。 (2)经过 (ln2, -3)的饱和解和饱和区间。
解: (1)定义域为全平面,关于y的偏导数连续,因此经过(0,0) 的 x 解 1 e 存在且唯一。 y x
1 e 解的存在区间为(-∞,+∞)
饱和区间为(-∞,+∞)
(2)经过 (ln2, -3)的解为
1 ( x) 2 ( x)Βιβλιοθήκη 2 ( x)是解
1 ( x) 一个延拓。
P2 P1(x0,y0)
R2
今后设f(x,y)是定义域 D上的连续函数,并满足局部李氏条件。
R’2 如果f(x,y)是定义域 D上的连续函数,并满足局部李氏条件,则过 D内任意点的唯一解必可延拓至 D 的边界,这种延拓到了“尽头 ”的解称为饱和解,饱和解对应的区间称为饱和区间。饱和区间 是开集
向左可以无限延拓,因此饱和区间为 当 x0 时向左只能延拓到 x 向右可以无限延拓,因此饱和区间为
当y0=0时:唯一解为y=0,它是饱和解,饱和区间为 (,)
(, )
x
( ,)
机动 目录 上页 下页 返回 结束
第2节 解的延拓定理(解的整体存在唯一性定理)

1 . (1) 过点 (1,1)的解 : y = 2− x 1 ⎧ ⎪y = 由 ⎨ 2 − x, ⎪y = 2 ⎩ 3 解得 x = . 2 Q lim ρ [( x , y( x )), ∂G ] = 0,
3 x→ −0 2
y 2
• (1,1)
o
3 2
2
x
3 1 而当 x ∈ ( −∞ , )时, 解 y( x ) = 有界 2 2− x
∴ 该方程过 G内任一点的解存在且唯 一 (1) 过点 ( 0,0 )的解 : y = 0 其最大存在区间为: (− 4,4 )
1 − = x+c y 1 所给方程的通解: y = − . x+c 1 . y ( 2 ) 过点 (1,1)的解 : y = 2− x 2 1 ⎧ ⎪y = 由⎨ • (1,1) 2 − x , 解得 3 ⎪y = 2 o 3 2 4 x –4 ⎩ x= . 2 2 –2 3 (− ∴ 该解的最大存在区间为 : 4, ) 2
解Q
∴
f ( x, y) = x 2 + y2 , f y ( x, y) = 2 y 在 D1 , D2上连续 ,
f ( x , y )在 D1 , D2上满足皮卡的解的存在 唯一性定理的条件
在 D1上, M 1 = max
= max ( x 2 + y 2 ) = 2
( x , y )∈ D1
三、解的延拓定理
引理 设 f ( x , y )在开区域 G内满足: 1) 连续 ; 2) 关于y 满足局部 Lip 条件,
对于每一点 ( x0 , y0 ) ∈ G , 若
y = ϕ ( x ), x ∈ I = [ x0 − h, x0 + h]是初值问题 (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 解的延拓(3学时)教学目的:讨论解的延拓定理。
教学要求:理解解的延拓定理,并用解的延拓定理研究方程的解教学重点:解的延拓定理条件及其证明教学难点:应用解的延拓定理讨论解的存在区间。
教学方法:讲练结合教学法、启发式相结合教学法。
教学手段:传统板书与多媒体课件辅助教学相结合。
教学过程:解的存在唯一性定理的优点是:在相当广泛的条件下,给定方程:),(y x f dxdy =有满足初值条件00)(y x y =的唯一解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的一个区间),min(,||0mb a h h x x =≤-上存在,有时所得的区间很小,因而相应的微分曲线也只是很短的一段,如初值问题 22(3.1)(0)0dy x y dx y ⎧=+⎪⎨⎪=⎩当定义域为R:11≤≤-x 时,解存在的唯一区间.21}21,1min{||==≤h x 当定义域为R:21≤≤-x 时,解的顾在唯一区间.41}41,1min{||==≤h x 这样随着),(y x f 的定义域的增大,解存在的唯一区间反而缩小,这显然是我们不想看到的,而且实际要求解存在下载向尽量大,这就促使我们引进解的延拓概念.扩大解存在不在此区间.1. 局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每一点P,有以P 为中心完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满足Lipschitz 条件,(对不同的点,域Rp 的大小和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满足局部Lipschitz 条件.2. 解的延拓定理. 如果方程(3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满足局部Lipschitz 条件,那么方程(3.1)的通解过G 内任何一点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ϕ任意接近G 的边界.以向X 增大的一方延拓来说,如果)(x y ϕ=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ϕ趋于区间G 的边界.上节我们给出了初值问题(2.2)解的存在唯一性定理.应该注意到,这个定理的结果是局部的,也就是说解的存在区间是“很小”的.通常方程(2.1)的右端函数f (x ,y )存在区域D 可能是很大的,这样,我们自然要讨论,此时初值问题(2.2)的解的存在区间是否可以扩大.2.3.1 延展解、不可延展解的定义定义2.1 设1()y x ϕ=是初值问题(2,2)在区间 1I R ⊂上的一个解,如果(2.2)有一个在区间 2I R ⊂上的解 2()y x ϕ=,且满足(1) 12,I I ⊂(2)当 1x I ∈时, 12()(),x x ϕϕ≡则称解 1()y x ϕ=,1x I ∈ 是可延展的,并称 2()x ϕ是 1()x ϕ在2I 上的一个延展解. 否则,如果不存在满足上述条件的解 2()x ϕ,则称 1x I ∈,1()x ϕ是初值问题(2.2)的一个不可延展解(亦称饱和解)。
这里区间1I 和2I 可以是开的也可以是闭的.2.3.2 不可延展解的存在性定义2.2 设 ),(y x f 定义在开区域2D R ⊂上,如果对于D 上任一点 00(,)x y ,都存在以 00(,)x y 为中心的,完全属于D 的闭矩形域R ,使得在R 上 ),(y x f 的关于y 满足李普希兹条件,对于不同的点,闭矩形域R 的大小以及常数N 可以不同,则称 在D 上关于y 满足局部李普希兹条件.定理2.3 如果方程(2.1)的右端函数 ),(y x f 在区域 2D R ⊂上连续,且对y 满足局部李普希兹条件,则对任何 00(,)x y D ∈,初值问题(2.2)存在唯一的不可延展解.证明思路 仅证 0x x >方向,( 0x x <方向同理).任取点000(,) 2.2P x y DTheorem∈ 存在唯一解0()y x ϕ=在 (1)000000[,][,]I x x x x h ==+上有定义.又点 11100(,) 2.2P x y DTheorem∈ 存在唯一解 0()y x ϕ=在 (2)1000001[,][,]I x x x x h h ==++上有定义.图2—8 由解的唯一性,在I 0和I 1的公共部分上, 011()()()x x x ϕϕϕ=⇒是 0()x ϕ的一个延展解.继续这种延展过程,直到一个解(),(,)y x x ϕαβ=∈,它再也不能向左右两方延展了,这个解就是不可延展解, (,)αβ就是初值问题(2.2)不可延展解的存在区间,这样,就完成了定理的证明.显然,不可延展解的存在区间必定是一个开区间。
因为如果区间右端点 α是闭的,那么解 ()y x ϕ=的曲线可以达到 β.于是点(,())D βϕβ∈,由定理2.2,可将 ()y x ϕ=延展到 β的右方,这与 (),(,)y x x ϕαβ=∈是不可延展解矛盾. 同理,这个区间的左端点也必定是开的.2.3.3 不可延展解在端点的性状下面讨论初值问题(2.2)的不可延展解 (),(,)y x x ϕαβ=∈,当x 趋于区间的端点时的性状引理 设20D R ⊂是有界开区域, (,)f x y 在0D 上有界 (,)f x y M ≤,且对y 满足局部李普希兹条件。
如果 (),(,)y x x ϕαβ=∈是初值问题(2.2)在0D 上的不可延展解, 则当0x α→+或 0x β→-时,相应积分曲线上的点(,())x x ϕ都趋于0D 的边界.证明 首先证明极限 00(0)lim (),(0)lim ()x x x x αβϕαϕϕβϕ→+→-+=-= 的存在性。
事实上,由于初值问题(2.2)的解 ()y x ϕ=满足下面的积分方程00()(,()),xx x y f s s ds x ϕϕαβ=+<<⎰ 因此对任意 12,(,)x x αβ∈,有211212()()(,())x x x x f s s ds M x x ϕϕϕ-≤≤-⎰可知(0)ϕα+和 (0)ϕβ-都存在。
记0D 的边界为0D ∂,现证明0(,(0)).D βϕβ-∈∂利用反证法,假如是 (,(0))βϕβ-是0D 的内点,则由定理2.2可知,存在 0h >,使得解 ()y x ϕ=可以延到区间 [,]h ββ+上,这与β是不可延展解 ()x ϕ的存在区间的右端点的假设矛盾.因此点 (,(0))βϕβ-属于0D 的边界点。
同理,点 (0)ϕα+也属于0D 的边界点.证毕.现在我们可以给出不可延展解的重要性质:定理2.4 如果方程(2.1)的右端函数(,)f x y 在(有界或无界)区域D 上连续,且关于y 满足局部李普希兹条件,那么对于D 上任意一点 00(,)x y ,方程(2.1)的以 00(,)x y 为初值的不可延展解 (),(,)y x x ϕαβ=∈,当0x α→+和0x β→-时,相应积分曲线上的点(,())x x ϕ都趋于D 的边界.证明 作有界区域 ,1,2,,n D n = 使得0012(,)n x y D D D D ∈⊂⊂⊂⊂⊂ 且1,1,2,,n n D D n +⊂= 当n →∞时,n D D →。
显然,当D 为平面上有界区域时,只要取D n 为D 的边界D ∂的内侧邻域即可。
当D 为无界时,可取D 与闭圆域222:,1,2,n S x y n n +≤=的交集,1,2,.n n D D S n == 如此取的D n 满足上面的条件.对于区域1D ,由于 1D D ⊂,由引理可知积分曲线 ()y x ϕ=可以到达D 1的边界点A 1和B 1.对于区域D 2,再次利用引理,积分曲线 ()y x ϕ=又可以到达2D 的边界点A 2和B 2.如此继续下去,积分曲线可以到达D n 的边界点A n 和B n ,于是我们在积分曲线上得到两个点列{}n A 和{}n B ,,,1,2,n n A B D n ∈∂= .因为当n →∞时,n D D →,所以n A 和n B 分别趋于D 的边界,证毕.注1 “积分曲线趋于D 的边界”是指积分曲线上的点 (,())x x ϕ当 0x α→+ 和 0x β→-可以与 D ∂无限接近,但是极限不一定存在。
通常把向 0x 右侧延展的解称为右行解,反之则称为左行解.由上面的证明,不难得到.推论 在定理2.4中的右行不可延展解的存在区间必为下列情形之一:(1)[ 0x ,+∞),(见图2-9-1),或(2)[ 0x ,b ),b 为有限数在后一种情形下,有且仅有下面二种可能① 当x →b -0时, ()y x ϕ=无界;(见图2-9-2),② ()y x ϕ=在[x 0, b ]上有界,且0lim ((,()),)x b d x x D ϕ→-∂ 注2 ()y x ϕ=在[x 0, b )上有界时,若 0lim ()x b x ϕ→-存在有限值d ,那么(,)b d D ∈∂,(见图2-9-3).若 0lim ()x b x ϕ→-不存在,x →b -0时, ()x ϕ的值振荡,那么lim ((,()),)0x b d x x D ϕ→-∂=.(见图2-9-4). 左行不可延展解的存在区间有相同结论.图 2-9-1 图 2-9-2图 2-9-3 图 2-9-4例1 试讨论方程2dy y dx=通过点(1,1)的解和通过点(3,-1)的解的存在区间。
解 此时区域D 是整个平面.方程右端函数满足延展定理的条件.容易算出,方程的通解是1y C x =-故通过(1,1)的积分曲线为12y x=-它向左可无限延展,而当x →2-0时,y →+∞, 所以,其存在区间为(-∞,2),参看图2-10.图 2-10通过(3,-1)的积分曲线为 12y x=- 它向左不能无限延展,因为当x →2+0时,y →-∞,所以其存在区间为(2,+∞). 顺便指出:这个方程只有解y = 0可以向左右两上方向无限延展.这个例子说明,尽管 (,)f x y 在整个平面满足延展定理条件,解上的点能任意接近区域D 的边界,但方程的解的定义区间却不能延展到整个数轴上去.例2 讨论方程211cos dy dx x x=- 解的存在区间.解 方程右端函数在无界区域 1{(,)0,}D x y x y =>-∞<<+∞ 内连续,且对y 满足李普希兹条件,其通解为1s i n ,0y C x x=+<<+∞ 过1D 内任一点 00(,)x y 的初值解.图 2-110011sin sin y y x x =+-在(0,+∞)上有定义,且当x →+0时,该积分曲线上的点无限接近D 1的边界线x = 0,但不趋向其上任一点(图2-11).在区域内的讨论是2{(,)0,}D x y x y =<-∞<<+∞类似的. 延展定理是常微分方程中一个重要定理.它能帮助我们确定解的最大存在区间.从推论和上面的例子可以看出,方程的解的最大存在区间是因解而异的.例3 考虑方程22()(,)dy y a f x y dx=- 假设 (,)f x y 及 (,)f x y '在 xoy 平面上连续,试证明:对于任意0x 及0y a <,方程满足 00()y x y =的解都在(-∞,+∞)上存在.图 2-12 证明 根据题设,可以证明方程右端函数在整个 xoy 平面上满足延展定理及存在与唯一性定理的条件。