行政院国家科学委员会专题研究计画成果报告
行政院国家科学委员会补助专题研究计画作业要点

(三)實施校務基金制度之學校,依國立大學校務基金進用教學人員研究人員及工作人員實施原則聘任之專任教學、研究人員,按月支給待遇,經學校各級教評會審議通過遴聘,符合第一款第一目計畫主持人資格者。
支領研究主持費者,於研究計畫執行期間,因赴國外短期研究、離職轉任非本會補助機構或退休等因素,致無法執行研究計畫時,申請機構應即停止核發研究主持費,並將該款項繳回本會。
計畫主持人如依規定借調至政府機關擔任政務人員,於借調前已執行本會研究計畫並已核給研究主持費者,於擔任政務人員期間不得支領研究主持費;於擔任政務人員期間依規定申請本會研究計畫且經審查通過者,不核給於擔任政務人員期間之研究主持費。
有關自國外延聘歸國服務者得於起聘日起一年內以隨到隨審方式提出1件計畫申請案乙節,增訂「返國服務後未申請研究計畫」條件,以玆明確。
管理費係由本會酌予核給,其支用用途為計畫執行期間所衍生費用,爰刪除本項規定。
十、申請期限:
申請機構及計畫主持人應依本會規定之期限提出申請,逾期不予受理。但申請機構新聘任人員或現職人員,其資格符合規定,且從未申請本會研究計畫者,得於起聘之日或獲博士學位之日起三年內以隨到隨審方式提出,並以申請一件為限;曾申請本會研究計畫之計畫主持人,於外國任教或從事研究服務滿一年以上,受延聘歸國服務且返國服務後未申請本會研究計畫者,亦得於起聘日起一年內,以隨到隨審方式提出計畫申請,並以申請一件為限。本會主動規劃推動之任務或目標導向研究計畫,另依規定之申請期限辦理。
(三)實施校務基金制度之學校,依國立大學校務基金進用教學人員研究人員及工作人員實施原則聘任之專任教學、研究人員,按月支給待遇,經學校各級教評會審議通過遴聘,符合第一款第一目計畫主持人資格者。
行政院国家科学委员会专题研究计划成果报告

¦æ¬F°|°ê®a¬ì¾Ç©e-û·|±MÃD¬ã¨s-p¹º¦¨ªG³ø§i¥xÆW¨ÅÀù¯f²z¦¨¦]¤§¬ã¨s-§íÀù°ò¦]¦b¨ÅÀù§Î¦¨¤¤¤§-«-n©Ê (²Ä¤T¦~)-p¹º½s¸¹: NSC 88-2314-B-002-365°õ¦æ¦~--: 87¦~08¤ë1¤é¦Ü88¦~7¤ë31¤é¥D«ù¤H : ³\ª÷¥É¥x¤jÂå¾Ç°|¥Í¤Æ©Ò¤¤¤åºK-nÃöÁäµü¡G¨ÅÀù/§íÀù°ò¦]p53,TSG101³\¦hªº¬ã¨s³ø§iÅã¥Ü¦b¨ÅÀù²Ó-M¤¤¦³«Ü°ª¤ñ¨Òªº¬V¦âÅé11p15¤§LOH(Loss of Heterozygosity )Åܲ§¡A Åã¥Ü¦¹°Ï°ì¤§°ò¦]Åܲ§»P¨ÅÀù¤§§Î¦¨¦³Ãö¡F¦ÓTSG101¬O 1997¦~¤~µo ²{¤§§íÀù°ò¦]¡A ¦¹°ò¦]´N ¦ì©ó11p15¡A¦Ó¥B³Ìªñªº³ø¾É«ü¥X ¡A¨ÅÀù²Ó-M¤¤½T¹ê·|§t¦³¦¹°ò¦]¤£¥¿±`ªºmRNA ªí²{¡A ¦]¦¹¦b³o-Ó-pµeùØ¡A §Ú-̥ΨӦۥx¤jÂå°|ªº¤@§å¨ÅÀùÀËÅé°µTSG101ªº¤ÀªR (Table 1)¡A¤S¥Ñ©ó³o§åÀËÅé¡A§Ú-̤w¸g¤ÀªR¹L¨äER¡A erbB2(HER2/neu)¤Îp53ªºªí²{±¡§Î(Table2, 3)¡A±N¨Ó§Ú-Ì¥i¥H¦P®É©Î¤À¶}¨Ó¤ÀªR TSG101¤Î³o¨Ç°ò¦]»PÁ{§É¯fª¬ªº¬ÛÃö©Ê¡A³o±N´£¨Ñ¤@-Ó§ó-ѯS²§©Êªºgenetic markers ¨ÓÀ°§U¤F¸Ñ¦¹Àù¯g¥i¯àªº-P¯f¾÷Âà¡A ¦Ó¥B¥i¥H´£¨Ñ±N¨Ó¬ã¨s T SG101ªº¥Í²z ¥\¯àªº¤è¦V ¡A ¥H¤Î³o ¨Ç°ò¦]¬Û¤¬¶¡ªº§@¥Î¡C -^¤åºK-nKeywords¡G Tumor Suppressor Gene p53 and TSG101/Breast CancerLoss of heterozygosity (LOH) on chromosome 11p15 occurs frequently in breast cancer indicating that this region may have a role in the pathogenesis of breast cancer. TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3fibroblasts.The human homologue of this gene was then isolated and mapped to 11p15.Moreover, abnormalities of TSG101transcripts in human breast cancer and prostate cancer from western country have been reported recently. To determine whether abnormal TSG101 expression has correlation with unique characteristics of breast cancer from Taiwan, TSG101 gene status of breast cancer specimens from National Taiwan University Hospital (NTUH) and several breast cancer cell lines have been studied by reverse transcription-polymerase chain reaction (RT-PCR ) and directly sequencing the cDNA of this gene (Table 1). We haveaccomplished the study about variants ofestrogen receptor (ER), over expression of erbB2(HER2/neu) and the mutation of p53 in same pool of breast cancer specimens mentioned above for the past two years.Those genetic alterations do provide someclues about breast carcinogenesis (Table 2, 3).More genetic analysis will help to developeffective genetic markers for this cancer’sprogression. Therefore, our specific aims ofthis proposed study are the following.Screening a large pool of breast cancer samples with known clinical stages for mutation in the TSG101 gene. The status of ER, erbB2(HER2/neu), p53 and TSG101 in the tumor samples will be correlated with their clinical stages. Moreover, any positivecorrelation between phenotype and mutation would provide scientifically importantdirection to explore inter-relationshipbetween these genes.Background TSG101 was identified as a tumor susceptibility gene by homozygous functional inactivation of allelic loci in mouse 3T3 fibroblasts. The human homologous of this gene was then isolated and mapped to 11P15(6,8). Some previous reports indicate that the major function of TSG101 is the following. TSG101 proteins of putative DNA-binding and transcriptional activation domains, it has suggested that the 43kD TSG101 protein may act to control gene expression and regulate the cell cycle.On the other hand, the coiled-coil domain of TSG101 can interact with stathmin. This finding suggests that this gene may control cell growth and differentiation (4,9,12,14,15,16). Other reports indicate thatTSG101 transcripts are frequently abnormal in human cancer cell, including breast cancer (1,2,3,13,17), prostate cancer (11), and leukemia (5). The major type of abnormality of TSG101 is aberrant splicing but not mutations (7,10). The relaxation of RNA splicing fidelity of TSG101 may be an oncodevelopment marker in cancer. We,therefore, plan to screen the status of TSG101 in a large pool of breast cancer samples that has been analyzed for ER,erbB2(HER2/neu) and p53 alterations in my laboratory. Clinical data including the pathologic stage, histologic type and follow-up will be collected. Then, the statistical analysis will be use to clarity the association between genetic alterations of ER,erbB2(HER2/neu), p53 as well as TSG101and clinical outcome.ResultTo detect the aberrant transcripts of TSG101 gene in breast cancer as well as the normal counterpart.According to the structure of TSG101 gene,two pairs of primer (p1/p2 and p3/p4) have been used to analyze any of the TSG101truncated transcripts by RT-PCR. Further restriction enzyme mapping or sequencing of RT-PCR products have been performed to dissect those truncated transcripts as well.The results were listed in table 3.DiscussionIn this preliminary study the abnormal TSG101 transcripts have been detected in tissues of breast cancers but not normal counterparts. These abnormalities of TSG101may play some role in carcinogenesis of breast. Therefore , clinical data including the pathologic stage, histologic type and fellow-up will be collected. Then, the statistical analysis will be used to clearify the associations between genetic alterations of ER, neu, p53 as well as TSG101 and clinical outcome.Table 1:HER-2/neu Row-P=0.018P53+Column Total56.3%43.7%100% HER-2/neuRow -P=0.031PR+Column Total 56.4%43.6%100%p53Row-P=0.004ER+Column Total74.2%25.8%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G¡Ï¡÷ point mutation¡Ð¡÷ wild-typeTable 2:p53 Row-P=0.00193Systemic recurrence+Column Total74.1%25.9%100%HER-2/neuRow -P=0.5617Systemic recurrence +Column Total 56.1%43.9%100%Note:HER-2/neu¡G¡Ï¡÷overexpression¡Ð¡÷low level of expression/no expressionp53¡G + ¡÷ point mutatation¡Ð¡÷ wild-typeSystemic recurrence¡G¡Ï¡÷three year’s follow-up¡Ð¡÷no recurrence on follow-up dateREFERENCES1. Benard J. Ahomadegbe JC. TSG101 and breast ca Ali, I.U., Lidereau, R., Theillet, C. & Callahan, R. Reduction to homozygosity of genes on ncer: a correctly named tumor-suppressor gene? Bulletin du Cancer. 84(12):1141-2, 1997Dec.2. Driouch K. Briffod M. Bieche I. Champeme MH. Lidereau R. Location of several putative genes possibly involved in human breast cancer progression. Cancer Research. 58(10):2081-6, 1998 May 15.3. Hofferbert S. Brohm M. Weber BH. Search for TSG101 germ-line mutations in BRCA1/BRCA2-negative breast/ovarian cancer families Cancer Genetics & Cytogenetics. 102(1):86-7, 1998 Apr 1.4. Koonin EV. Abagyan RA. TSG101 may be the prototype of a class of dominant negative ubiquitin regulators Nature Genetics. 16(4):330-1, 1997 Aug.5. Lin PM. Liu TC. Chang JG. Chen TP. Lin SF. Aberrant TSG101 transcripts in acute myeloid leukaemia. British Journal of Haematology. 102(3):753-8, 1998Aug.6. Lee MP. Feinberg AP. Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Research. 57(15):3131-4, 1997 Aug 1.7. Li L. Li X. Francke U. Cohen SN. The TSG101 tumor susceptibility gene is located in chromosome 11 band p15 and is mutated in human breast cancer. Cell.88(1):143-54, 1997.8. Li L. Cohen SN. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell.85(3):319-29, 1996 May 3.9. Ponting CP. Cai YD. Bork P. The breast cancer gene product TSG101: a regulator of ubiquitination?. Journal of Molecular Medicine. 75(7):467-9, 1997 Jul.10. Steiner P. Barnes DM. Harris WH. Weinberg RA. Absence of rearrangements in the tumour susceptibility gene TSG101 in human breast cancer Nature Genetics. 16(4):332-3, 1997 Aug.11. Sun Z. Pan J. Bubley G. Balk SP.Frequent abnormalities of TSG101 transcripts in human prostate cancer. Oncogene. 15(25):3121-5, 1997 Dec 18.12. Thomson TM. Khalid H. Lozano JJ. Sancho E. Arino J. Role of UEV-1A, a homologue of the tumor suppressor protein TSG101, in protection from DNA damage. FEBS Letters. 423(1):49-52, 1998 Feb 13. 13. Wang Q. Driouch K. Courtois S. Champeme MH. Bieche I. Treilleux I. Briffod M.Rimokh R. Magaud JP. Curmi P. Lidereau R. Puisieux A. Low frequency of TSG101/CC2 gene alterations in invasive human breast cancers. Oncogene. 16(5):677-9, 1998Feb 5.14. Watanabe M. Yanagi Y. Masuhiro Y. Yano T. Yoshikawa H. Yanagisawa J. Kato S. A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochemical & Biophysical Research Communications.245(3):900-5, 1998 Apr 28.15. Xie W. Li L. Cohen SN. Cell cycle-dependent subcellular localization of the TSG101protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proceedings of the National Academy of Sciences of the United States of America.95(4):1595-600, 1998 Feb 17.16. Zhong Q. Chen Y. Jones D. Lee WH. Perturbation of TSG101 protein affects cell cycle progression. [Journal Article] Cancer Research. 58(13):2699-702, 1998 Jul 1.17. Zhong Q. Chen CF. Chen Y. Chen PL. Lee WH. Identification of cellular TSG101 protein in multiple human breast cancer cell lines. Cancer Research.57(19):4225-8, 1997 Oct 1.Table 3 Truncated transcripts of TSG101 in pair specimens4。
行政院国家科学委员会专题研究计画成果报告[001]
![行政院国家科学委员会专题研究计画成果报告[001]](https://img.taocdn.com/s3/m/ce64961179563c1ec5da71ff.png)
瓶頸。 (二) 國內對於工業製品的需求必然有限。解決國內市場不足的方法可能只有組 成多國或區域性貿易協會,有如拉丁美洲自由貿易協會、中美洲共同市場。拉丁 美洲國家曾在這方面有所努力,但仍未能解決問題。 (三)拉丁美洲工業運用高度的科技,因此只創造了有限的就業機會。這導致了 兩個無法避免的不利結果:使國內消費品市場的大小受到限制;未能改善日益嚴 重的失業問題。 在這樣的情況下,拉丁美洲國家進入第二階段的進口替代工業化的第一個 時期,將由本地製造商生產原先仰賴進口的各種資本及技術密集的製造品包括: 耐久性消費財(如,汽車) 、中間性財貨(如,石化及鋼鐵) 、資本財(如,重機 械) 。這意味建立更技術性勞力的、資本的、技術密集的工業,能夠生產資本財 和耐久性消費財,並能加工處理原料;這也意味持續對內導向的發展,包括維持 前一階段保護性、控制取向的政策結構。此外,拉丁美洲繼續出口相對豐富的天 然資源。6基於以上的特徵,我們又稱之為垂直性的進口替代工業化。 拉丁美洲在一九六○年代末期都面臨赤字與通貨膨脹的問題,垂直性的進口 替代工業化並不能解決與外在世界之經濟關係處於不平衡的狀況。7因之,拉丁 美洲國家修正了第二階段進口替代的策略,包括了促進出口。換言之,以行政部 門的措施,選擇性鼓勵特定工業或廠商,推動出口,但並未改變保護性的結構, 也沒有走向市場自由化。促進出口需要給予補貼,這項補貼有來自公共部門,也 有來自民間部門。這是在既有進口替代工業化的大架構外,給予額外的管制與獎 勵。8 而出口促進策略使該地區主要國家工業製品出口都增加了一倍以上。伴隨 此政策而來的是主要拉美國家與全球跨國企業策略的進一步聯繫,於此同時,垂 直性進口替代仍繼續在資本財部分努力。巴西在此階段中由於先前創造了良好的 投資環境而具有優勢,而墨國則繼續其「墨西哥化」政策,吸引外資的結果當然 也有差異。9 在這個階段,經濟整合運動的發展,和擴大市場有密切的關係。從一九五○ 年代開始,拉丁美洲區域整合的運動即已出現,但遲至一九六○年代才有正式的 組織。最早兩個主要組織分別是中美洲共同市場( Central American Common
行政院国家科学委员会专题研究计画成果报告

行政长官办公室2018年年度开放数据计划A.在2019年发放的部门数据集数据种类/数据集名称目标发放日期更新频率备注1. 其他/行政长官离港职务访问一览表01/2019 每月行政长官自2017年7月的离港职务访问列表已上载行政长官办公室网站,供公众阅览。
由指明日期起,有关资料亦会以机器可读格式(CSV/DSV/JSON)在「资料一线通」网站提供。
2. 其他/行政长官办公室发出的新闻稿02/2019 有新资料加入时行政长官办公室自2017年7月发出的新闻稿已上载行政长官办公室网站,供公众阅览。
由指明日期起,有关资料亦会以机器可读格式(CSV/DSV/JSON/XML)在「资料一线通」网站提供。
3. 其他/行政长官的演辞和文章02/2019 有新资料加入时行政长官自2017年7月发表的演辞和文章已上载行政长官办公室网站,供公众阅览。
由指明日期起,有关资料亦会以机器可读格式(CSV/DSV/JSON/XML)在「资料一线通」网站提供。
4. 康乐及文化/香港礼宾府开放日的举行日期03/2019 公布开放日的举行日期当天香港礼宾府开放日的举行日期现时经新闻稿公布。
由2019年春季举行的开放日起,有关资料亦会在「消闲一站通」应用程式及该应用程式在「资料数据种类/数据集名称目标发放日期更新频率备注一线通」网站的开放数据集提供。
5. 其他/行政长官施政报告重点03/2019 每年发表施政报告当天2017年和2018年的行政长官施政报告全文和重点已上载行政长官办公室网站,供公众阅览。
由指明日期起,第五届香港特区政府的行政长官施政报告重点亦会以机器可读格式(CSV/DSV/JSON)在「资料一线通」网站提供。
6. 其他/前任行政长官及政治委任官员离职后工作咨询委员会就政治委任官员的离职后工作所给予的意见06/2019 有新资料加入时前任行政长官及政治委任官员离职后工作咨询委员会就政治委任官员的离职后工作所给予的意见已上载行政长官办公室网站,供公众阅览。
行政院国家科学委员会专题研究计划成果报告

行政院國家科學委員會專題研究計劃成果報告網際網路關係行銷之研究The Study of the Relationship Marketing on Internet 計劃編號: NSC 90-2416-H-415-002-SSS執行期限:90年8月1日至91年7月31日主持人: 陶蓓麗副教授 國立嘉義大學管理研究所一、中文摘要隨著網際網路無遠弗屆的影響,顧客與企業關係建立與維繫的方式也受到衝擊,企業瞭解線上顧客關係的建立與維繫已是迫切的議題。
少有研究調查網際網路在關係行銷的角色。
本研究目的是瞭解網際網路上的顧客關係,探討影響線上顧客關係的因素。
本研究提出網際網路關係維繫的模型,影響線上顧客關係的因素包括社會、顧客、網站、及互動四個方向,共十一個構面,信任及關係承諾是衡量關係建立與維繫意願的指標。
研究結果驗証了網際網路顧客關係的存在,也証實社會、顧客、網站及互動四方面的因素會影響線上顧客關係,研究建議網站應建立自己的社群、導入顧客關係管理、注重專業領域的投入及網路的互動環境。
研究也發現年紀輕、收入低者較易對網站產生信任感,其間接社會束縛的力量也較大;而教育程度低者,雖然顧客專業技能較差,但較願投入精力以建立彼此關係,也較受間接社會束縛力量的影響。
此外,在各種不同類型的網站中,入口網站與購物網站最不易取得顧客的信任與關係承諾。
研究結果可作為企業界未來訂定網際網路關係行銷政策時的參考,企業界若能瞭解維繫顧客關係的要素,將使企業能更有效的運用網際網路於行銷策略上。
關鍵字:關係行銷、網路行銷、顧客關係AbstractInternet is transforming the customers and sellers relationships. Understanding why customers are receptive to a company on Internet is an emerging issue in relationship marketing. Little research has been done to investigate the enabler role of Internet in relationship marketing theory and practice. The purpose of this study is to explore the customer relationship on the Internet. The study also examines the factors influencing online customer relationship.A model for online customer relationship is proposed. This study suggests that four broad drivers—society, customer, web site, and interaction—affect online customers’receptivity to relationship maintenance. Trust and relationship commitment are used to measure the desire of relationship establishment and maintenance. Results indicate that the customer relationship on the Internet exists. All four broad drivers, which included society, customer, web site and interaction, are significant predictors in terms of improving customer relationship on Internet. The study suggests that companies should establish their own online community, introduce customer relationship management, focus on their area of expertise and aware of the unique interactive feature on Internet. Results also find that young and low-income customers respond to indirect social bonding and tend to trust companies. Though low-educated customers are low in customer expertise, they are more likely to devote their energy for relationship establishment and tie to indirect social bonding. Also, portal and shopping web sites are less trustful and less likely to be committed. The results enable a firm to understand the roles of Internet on relationship marketing and to develop Internet strategy effectively. It serves as a basis for the future growth of Internetmarketing and can guide those wishing to champion Internet marketing in their organization.Keywords: Relationship Marketing, InternetMarketing, CustomerRelationship二、研究背景與目的自八○年代以來,關係行銷觀念的提出對行銷領域產生了深遠的影響。
行政单位年度科研成果汇报

行政单位年度科研成果汇报尊敬的各位领导、同事们:大家好!我是XX行政单位的科研部门负责人,今天我非常荣幸地向大家汇报我们单位在过去一年内所取得的科研成果。
在全体科研人员的共同努力下,我们单位在各个科研领域取得了一系列令人瞩目的成就,为促进我国科技创新和社会发展贡献了力量。
一、科研项目在过去的一年里,我单位承担了多项国家和地方级科研项目,其中包括基础研究、应用研究和技术开发等不同类型的项目。
我们的科研团队有效运用现代科研方法和技术,深入研究了各个领域的前沿问题,取得了一系列重要研究成果。
这些成果在理论上填补了部分空白,为相关产业的发展提供了技术支撑,具有明显的经济和社会效益。
二、获奖情况在过去一年内,我单位的科研人员积极参与各类科技竞赛和评选活动,并取得了多项重要奖项。
其中,我们荣获了X等奖、X等奖等各个级别的奖项。
这些奖项的获得,不仅是对我单位科研人员辛勤努力的肯定,也是对我们单位科研实力的充分证明。
三、学术论文在过去一年内,我单位的科研人员共发表了XX篇学术论文,其中SCI/EI收录的论文X篇,核心期刊收录的论文X篇。
这些论文涵盖了多个学科领域,内容丰富、观点独到,并引起了业界的广泛关注。
这些论文的发表,不仅提升了我单位的学术影响力,也为相关研究领域的发展作出了重要贡献。
四、专利和技术转化在过去一年内,我单位的科研人员共申请了X项发明专利,其中获得授权的专利X项。
这些专利涉及到了多个领域,涵盖了从实用新型到发明专利的不同类型。
此外,我们还与企业进行了X项技术转化合作,成功将科研成果转化为了实际生产力,促进了科技创新与社会经济的融合发展。
五、学术交流与合作在过去的一年里,我们积极参与了各类学术交流活动,并与国内外的科研机构和学者建立起了广泛的合作关系。
通过与其他单位的合作,我们共同开展了多项科研合作项目,加强了资源共享与优势互补。
这样的合作与交流不仅拓宽了我们的研究思路,也推动了我单位科研能力的提升。
行政院国家科学委员会补助专题研究计划作业要点

行政院国家科学委员会补助专题研究计划作业要点状态:有效发布日期:2005-05-18生效日期:2005-05-18发布部门:台湾发布文号:台会综二字第0940036292号一、行政院国家科学委员会(以下简称本会)为补助大专院校及学术研究机构执行科学技术研究工作,以提升我国科技研发水准,特订定本要点。
二、申请机构(即执行机构):(一)公私立大专院校及公立研究机构。
(二)经本会认可之财团法人学术研究机构。
三、计划主持人(申请人)及共同主持人之资格:(一)申请机构编制内按月支给待遇之专任教学、研究人员,具有专门学识与研究经验,且有具体研究成绩,并具备下列资格之一者:1.助理教授级以上人员。
2.具博士学位之专任教学或研究人员。
3.担任讲师职务四年以上,并有著作发表于国内外著名学术期刊或专利技术报告专书者。
4.研究机构副研究员、技正或相当副研究员资格以上人员。
5.于教学医院担任主治医师二年以上或获硕士学位从事研究工作四年以上,并有著作发表于国内外著名学术期刊之医药相关人员。
具有前项计划主持人资格,且依相关规定被借调之人员,得由原任职机构提出申请。
(二)已退休之教学、研究人员,如为中央研究院院士、曾获得教育部国家讲座或学术奖、本会特约研究人员或杰出研究奖三次以上、财团法人杰出人才发展基金会杰出人才讲座、或其它相当奖项经本会认可者,且其原任职机构于申请研究计划函内叙明愿意提供相关设备供其进行研究并负责一切行政作业者,得申请一般型研究计划补助。
(三)实施校务基金制度之学校,于校务基金自筹经费范围内,依国立大学校院进用项目计划教学人员、研究人员暨工作人员实施原则聘任之专任教学、研究人员,按月支给待遇,经学校各级教评会审议通过遴聘,符合第(一)项计划主持人资格者,得申请专题研究计划补助。
(四)公立大专校院依公立大专校院稀少性科技人员遴用资格办法遴用具博士学位之核能、信息及航天等三类稀少性科技人员,得申请专题研究计划补助。
行政院国家科学委员会专题研究计画期中进度报告

Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2,I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond (UNCD) films were grown on bias-enhaned nucleation substrate to improve the of growth behavior.Keywords: UNCD, high speed growth, BEN, MPECVDSubmission of this paper has been approved by the co-authors.Corresponding author: Prof. I-Nan Line-mail: inanlin@.twTel. 886-2-26268907; Fax. 886-2-26207717Department of physics, Tamkang University;151 Yin-Chuan Rd. Tamsui, Taipei, Taiwan 251, R. O. C.Estimated word count: 3571words1Improvement on the growth of ultrananocrystalline diamond by using pre-nucleation techniqueYen-Chih Lee1, Su-Jien Lin1, Debabrata Pradham2, I-Nan Lin2*1. Department of Material Science and Engineering, National Tsing-Hua University, Hsin-Chu 300, Taiwan, R. O. C.;2. Department of Physics, Tamkang University, Tamsui251, Taiwan, R. O. C.AbstractUltrananocrystalline diamond (UNCD) films, which possess very smooth surface, were synthesized using CH4/Ar plasma. The Si-substrate was pre-nucleated using bias enhanced nucleation (BEN) technique under CH4/H2 plasma, so that the growth of UNCD films can be markedly enhanced. The growth rate of these UNCD films were observed to be correlated intimately with the deposition conditions, such as substrate temperature, microwave power, total pressure, CH4 ratio. When the nucleation process was carried out under methane and hydrogen (CH4/H2) plasma with negative DC bias voltage, no pretreatment on substrate was required prior to the formation of diamond nuclei. The growth kinetics of BEN induced nuclei was monitored by the evolution of the bias current to ensure the full coverage of diamond nuclei on the Si-substrate. The average grain size of BEN induced diamond nuclei is about 30 nm, with the nucleation site density more than 1011 sites/cm2. The growth rate of UNCD is markedly enhanced due to the application of BEN induced nuclei. Moreover, the growth rate of UNCD films was more significantly affected by the substrate temperature, but was less influenced by the microwave power. All of these UNCD films showed similar morphology, i.e., with grain size less than 10 nm and surface roughness around 20 nm. They also possess the same Raman spectra, i.e., the same crystallinity. However, the deposition rate can be increased from about 0.2 µm/hr to 1.0 µm/hr when substrate temperature increased from 4000C to 600o C.Novelty:The ultrananocrystalline diamond films were grown on bias-enhaned nucleation substrate to improve the growth.Keywords: UNCD, high speed growth, BEN, MPECVD2I. IntroductionThe unique combination of the physical and chemical properties of diamond film save drawn more attention among researcher to use diamond in many applications. However, the high roughness of microcrystalline diamond films made them inapplicable in specific applications. In the recent past, very smooth ultra nano-crystalline diamond (UNCD) films deposited by CH4/Ar mixture has been established. The detail mechanism for the formation of UNCD from CH4/Ar plasma has been reported[1, 2]. Recent application of nano-diamond films in bio-sensors[3], filed emission[4, 5] and bio-medical application[6] have shown the promising future of this nano-material. Even so, no detailed study has been performed on the growth rate and formation of nucleation sites by biased enhanced nucleation (BEN) method to grow uniform UNCD film on the silicon surface. Therefore, it is significant to understand more precisely on the deposition rate and deposition conditions influencing growth process of UNCD film.The substrate pretreatment strongly affects the nucleation and growth process of diamond films determining the initial deposition rate, crystal quality and surface roughness. High deposition rate is primarily important to grow thick diamond films normally required for application like SAW devices[7]. Moreover, a smooth surface of diamond film is another important requirement. Thus, suitable conditions need to be established to grow ultrananocrystalline diamond grains to directly obtain a smoother film. One of the most effective methods of diamond nucleation is bias enhanced nucleation (BEN) method[8, 9]. The formation of nano-diamond phase on silicon acts as nucleation center for the growth of either nano-crystalline or microcrystalline diamond depending on the deposition parameters used.One of the main objectives of the present work was to systematically investigate the nucleation behavior of UNCD on silicon surface using a BEN technique. As BEN method does not involve any scratching by diamond abrasives, it avoids the confusion of presence of any residual diamond particle on the substrate. Another objective of current study is to find a suitable deposition condition for the high and uniform growth of UNCD. The effect of microwave power, substrate temperature, CH4 to Ar ratio and total pressure on the growth rate is reported in this article.3II. ExperimentalThe bias enhanced nucleation (BEN) diamond films were grown in a 2.45 GHz ASTeX microwave plasma enhanced chemical vapor deposition (PECVD) system on N-type mirror polished Si (100) substrates. A microwave power of 1.5 kW (ASTeX 5400), total pressure of 55 torr and 300 sccm H2 flow rate were used during biased treatment. Different substrates were biased treated for different time intervals (0 to 15 minutes) at constant biased voltage (-125 V) and the resulted bias current – time relationship was measured. Silicon substrates after BEN process were used for the deposition of UNCD in an IPLAS MPCVD system. Table I presents the detail experimental deposition conditions used for UNCD growth. In Series - P, C, T and MW, chamber pressure, CH4/Ar ratio, temperature and microwave power was varied respectively, keeping rest of the parameters constant.Surface morphology of samples was examined with a field emission scanning electron microscope (JEOL 6010). Crystal quality of UNCD films was investigated by Raman Spectroscopy using 514 nm argon laser beam (Renishaw). Surface topography and roughness was measured with atomic force microscopy (PARK).III. Results and discussion(a) Nucleation processThe formation of nanodiamond phase for the nucleation of diamond growth during BEN is known for last few years. Therefore BEN time is crucial to create uniform nucleation center on the silicon. Figure 1 shows the nucleation of nano-diamond films deposited after different BEN time intervals. The SEM images show uniform island growth at the beginning after 5 minutes of BEN (Fig 1a) and subsequent increase of coverage in nano-diamond grains clusters on the surface after 7 minutes (Fig 1b). After 8 minutes of BEN, the whole silicon surface is covered by cluster of nano-diamond crystals. The average size of nano-diamond cluster is around 150 nm and size of each diamond grain in the clusters is ~ 20 nm (Fig 1c). A saturation of nano-diamond growth occurs after 8 minutes of BEN, covering whole area of silicon substrate. At 10 min of BEN, cluster size of nano-diamond is decreased but diamond grain of size 50 nm started to appear (Fig 1d). The surface morphology is almost same after 10 minutes BEN. This4establishes the minimum time (8 minutes) required for the creation of high nucleation centers and uniform nano-diamond layer on silicon. The grain size is also found to be smallest (~20 nm) after 8 minutes of BEN. The thickness was about 250 nm.The measurement of bias current during BEN in our study indicates direct correlation in the formation of nano-diamond phase on silicon, which is shown in fig. 2 for the trend of bias current versus time at a constant negative bias voltage of 125 V. When there is no methane flow, bias current is about -52 mA. This current starts to decrease in the first 3 minutes, which may be due to methane content increases and changes plasma condition. The subsequent increase of bias current which has been attributed to the enhancement in electron emission from the highly emissive diamond formed on silicon substrate surface and the bias current become saturated after 10 minutes indicating no more nano-diamond coverage increase in surface.(b) Growth processFigure 3 shows the effect of various parameters on the deposition rate of UNCD. The deposition rate of diamond film is found to depend significantly on the temperature and the ratio of CH4 to Ar in the reactant gas compared to microwave power and total pressure. The effect of chamber pressure in the deposition rate is linearly increases from 100 torr to 150 torr. There is no much effect of pressure on the deposition rate. However, there is a striking increase in deposition rate when CH4/Ar ratio was increased from 0.5 % to 2.0 %. The substrate temperature is another important parameter for increasing deposition rate. The deposition rate is found to increase around 4 times with increase in temperature from 400o C to 600o C while all other parameters were held constant. The deposition rate of UNCD increases with microwave power from 600 W to 750 W. However, deposition rate comes down and become almost constant in the microwave power range of 900 W to 1200 W. We have grown a UNCD film having highest deposition rate of ~1 µm/hr at 750 W with combination of parameters: 150 torr pressure, 600 o C temperature and 1 % methane.Figure 4 shows typical SEM images of UNCD film. Diamond grains of size less than 10 nm have been grown under above described deposition conditions. Unlike the agglomeration observed after bias enhanced nuclation, UNCD film shows a uniform and5smooth surface having numerical diamond crystallites density of as high as 1012 /cm2. This high nucleation density was due to formation of high nucleation centers during BEN and the growth in CH4/Ar plasma. The inset shows a cross-sectional image of UNCD film. The surface roughness of the diamond films is strongly affected by deposition method. AFM analysis shows that the surface roughness of the BEN film using CH4/H2 source gas under continuous bias (-125 V) in 8 minutes period was about 13.2 nm. This surface roughness reduces to 10 nm after deposition of UNCD using CH4/Ar source gas. The decrease of surface roughness is well matched with decrease of diamond grain size measured by SEM. Size of diamond grains were less than 10 nm after UNCD deposition on a 20 nm diamond crystallites film formed during negative biasing.Raman technique is one of the important non-destructive characterization techniques to study the properties of any type of carbon forms. There are four main peaks normally observed at around 1140 cm-1, 1330 cm-1, 1470 cm-1 and 1560 cm-1 in visible Raman spectrum of UNCD films[10, 11]. Figure 5 shows the Raman spectra of UNCD films deposited on silicon at different experimental conditions. These Raman spectra are found to be very similar to as reported in literature[10, 11]. The broad peak at 1330 cm-1 and 1560 cm-1 are commonly termed as D-band and G band respectively. The peaks at 1140 cm-1 and 1470 cm-1 are sometimes assigned to nano-crystalline diamond films[12, 13].However, there is certain ambiguity in these two peaks. Ferrari et. al.[14] and Kuzmany et. al.[15] have assigned these two peaks at 1140 cm-1 and 1470 cm-1 to trans-polyacetylene segments present at the grain boundaries and surfaces of diamond films. However, these two peaks are most commonly observed in UNCD or NCD film[10, 11]. Since the sp2-bonded carbon is highly sensitive to visible Raman spectroscopy than sp3-bonded carbon, sharp peak at 1332 cm-1 is not observed. In our study, the peak height of 1140 cm-1 and 1470 cm-1 suggests the increase in trans-polyacetylne percentage with substrate temperature. Raman spectra of series –P, -C and -MW samples are almost same indicating not much change in crystallinity of UNCD films by varying pressure, CH4/Ar ratio and microwave power.6IV. ConclusionUNCD film of diamond grain less than 10 nm was grown on BEN treated silicon surface. Nucleation density of ~1012 grains/cm2 was obtained in the growth process. Silicon substrate was biased for different time interval to study the formation of nucleation center. Our study has shown that a minimum 8-minute of bias enhanced nucleation was needed for uniform growth of UNCD film. Agglomeration of diamond crystallites obtained in BEN diamond growth was not observed after the growth of UNCD in a CH4-Ar medium. AFM study depicted the improvement in smoothness of UNCD film to 6.83 nm from 10.83 nm obtained by BEN NCD film. Raman spectra have shown the peak at respective positions that normally observed in UNCD films.V. AcknowledgmentThe authors would like to thank National Science Council, R.O.C. for the support of this research through the project No. NSC 93-2112-M-032-010.VI. References[1] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, J. Appl. Phys.83 (1998) 540.[2] D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211.[3] A. Hartl, E. Schmich, J.A. Garrido, J. Hernando, S.C.R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Sreinmuller, M. Stutzmann, Nature Materials, 3 (2004) 736.[4] W. Zhu, G.P. Kochanski, S. Jin, Science282 (1998) 1471.[5] K. Wu, E.G. Wang, Z.X. Cao, Z.L. Wang, X. Jiang, J. Appl. Phys.88 (2000) 2967.[6] M. D. Fries, Y.K. Vohra, Diam. Rel. Mater. 13 (2004) 1740.[7] F. Benedic, M.B. Assouar, F. Mohasseb, O. Elmazria , P. Alnot , A. Gicquel, Diam. Rel. Mater. 13 (2004) 347.[8] S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.[9] Q. Chen, Z. Lin, J. Appl. Phys. 80 (1996) 797.[10] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232.[11] Y. Hayashi, T. Soga, Tribology International 37 (2004) 965.[12] W.A. Yarbrough, R. Messier, Science 247 (1990) 688.7[13] R.J. Nemanich, J.T. Glass, G. Lucovsky, R.E. Shroder, J. Vac. Sci. Technol. A 6 (1988) 1783.[14] A.C. Ferrari, J. Robertson, Phys. Rev. B, 63 (2001) 121405.[15] H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, Carbon 42 (2004) 911.89Table I: Experimental deposition conditions for UNCD growth on BEN silicon surface. Materials Pressure(Torr)CH 4/Ar Ratio (%) Temperature (o C) MW Power (W) Series-P100~150 1 % 400 1200 Series-C150 0.5 ~ 2 % 4001200 Series-T150 1 % 400 ~ 600 750 Series-MW150 1 % 600 600 ~ 1200Figure captionsFig 1. SEM images of diamond films grown on silicon surface after different BEN time intervals, (a) 5 min., (b) 7 min., (c) 8 min. and (d) 10 min of BEN.Fig. 2. Bias current from the electrode to the substrate holder during the bias enhanced nucleation as a function of time.Fig. 3. Effect of pressure, CH4 to Ar ratio, substrate temperature and microwave power on the deposition rate of UNCDFig. 4. FE-SEM image of UNCD grown under deposition condition of 750 W microwave power, 150 torr total pressure, total flow of 200 sccm Ar-CH4 (CH4-1 %) andsubstrate temperature 600 o C in 3 hr deposition period. Inset shows a cross-sectional view.Fig. 5. Visible Raman spectra UNCD films obtained under different experimental conditions.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、 研究目的
本研究主要之研究目的如下: 進行天然生物性高分子幾丁聚醣胺基 官能機之化學修飾後調理濾材,使纖維 濾材成為另一種形式之帶電濾材,並評 估調理後之纖維濾材帶電量。 探討不同濃度調理之濾材對過濾效能 之影響。 探討不同型態之氣膠微粒(固態與液 態)之過濾效能。 評估不同操作條件下(表面風速、相對 濕度等)之過濾效能。
行政院國家科學委員會專題研究計畫成果報告
幾丁聚醣應用於纖維濾材過濾氣膠之效能研究
Study on the Performance of Aerosol Filtration Using Fibrous Filter Modified by Kitosan 計畫編號:NSC 93-2211-E-041-009 執行期限:93 年 8 月 1 日至 94 年 7 月 31 日 計畫主持人:黃小林 嘉南藥理科技大學職業安全衛生系 一、 中文摘要
從氣流中收集細小微粒,使用濾材進行 過濾是最有效及可靠的方法之一。本研究於 實驗室中自行調理幾丁聚醣前處理之帶電 濾材濾材,並利用卡里遜噴霧器產生多粒徑 分佈氣膠,以電移動度分析儀(Differential Mobility Analyzer)篩出單一粒徑分佈氣膠 微粒,再經由氣膠微粒計數器 (Condensation particle counter)同時量測濾材前端與後端 的氣膠微粒數目,及使用差壓計量測過濾前 後之壓降,以評估幾丁聚醣前處理濾材之微 粒穿透率。 實驗結果顯示不帶2.5wt%之幾丁聚醣前處理濾材之穿透率 分別是 65%、63%及 57%,整體穿透率相 比,當處理幾丁聚醣後,微粒穿透率明顯下 降。利用表面電場計量測濾材表面電荷,當 處理幾丁聚醣後,濾材表面電場有明顯上升 現象,故總和兩者結果可知,幾丁聚醣處理 濾材的確可使濾材帶電。另,氣膠微粒之最 大穿透粒徑由不帶電濾材之 0.3 µm 降低至 幾丁聚醣前處理濾材之 0.12 µm。同時當表 面風速增加時,其微粒穿透率會隨之上升, 此一類型之帶電濾材對於固體氣膠有較低 之微粒穿透率,同時相對濕度之變化對於此 型帶電濾材之微粒穿透率影響不大。此研究 結 果 有 助 於 進一 步 開發 新 型 態 之 帶 電 濾 材,並將其應用在空氣微粒清淨領域。 關鍵字: 帶電濾材、過濾、氣膠、幾丁聚醣、 穿透率
及壓降測試,結果顯示在不同粒徑下氣膠微 粒之去除效率曲線會隨著壓降之增加而有 下降之現象,同時不同氣膠微粒之過濾特性 均不相同。雖靜電濾材之過濾效能已較非帶 電濾材來的高,但在不同環境下,去除之微 粒種類不同,處理效率仍有很大之差異。 Kanaoka et al.[3]利用兩台 DMA 控制氣膠微 粒之帶電量,比較不同帶電量微粒對靜電濾 材之穿透率,在表面風速 0.1 m/s 時,帶 2 個正電之微粒穿透率為 1.62×10-4,帶 3 個正 電之微粒穿透率為 1.83×10-5,可發現帶 3 個 正電之氣膠微粒對濾材穿透率較低,換言 之,當微粒帶電量較高時,靜電濾材之效能 更高。Ackley[4]探討在高相對濕度下對靜電 濾材過濾效率之影響,研究中針對三種靜電 濾材進行研究,研究結果發現在高相對濕度 時靜電濾材之過濾效能有明顯下降之趨勢。 本計畫為改善過去靜電濾材之缺點,即 利用天然生物性高分子幾丁聚醣調理一般 未帶電纖維濾材,使其成為帶有電荷之帶電 濾材,降低帶電濾材之價格,並增加表面帶 電之時間,以提升對氣膠微粒之去除效率。 幾丁聚醣取製於天然高分子 (甲殼綱動 物外殼、真菌細胞壁等) ,其具有一些相當 好的性質,例如與生物體細胞具有良好組織 互容性(histocompatibility) ,不會排斥、無 毒 性 ( non-toxicity )、 具 生 物 分 解 性 ( biodegradability ) 、生物活性( biological function) ,且分子結構之可變性大,包括聚 合鍵結方式及聚合長度等。因此,近年來幾 丁 聚 醣 天 然 高分 子 已廣 泛 運 用 在 環 境 保 護、醫療用品、機能保健食品、紡織抗菌、 化妝品、農業、化學工業等領域[5]。幾丁聚 醣除可應用於廢水處理外,也有利用幾丁聚 醣 來 加 強 輔 助薄 膜 過濾 來 去 除 二 價 重 金 屬,例如在 pH 為中性的溶液下,Cu2+去除 效果較佳,而在酸性範圍,重金屬之去除效 率提升 6~10 倍 [6] 。 另有研究將鋁與幾丁聚 醣製成交聯之複合基質薄膜,可將 50mg/L Cu2+降至 1mg/L 以下[7]
penetration through the untreated, 1.0wt%, 1.5wt% and 2.5wt% chitosan-pretreated filters were around 82%, 65%, 63%, and 57%. The electric field measured by an electrofieldmeter of the chitosan-pretreated filter was larger than that of untreated filter obviously. These findings imply that pretreatment with chitosan made the filters charged. The most penetration particle size (MPPS) of aerosols shifted from 0.3 µm to 0.12 µm after coating chitosan on the filter. Additionally, aerosol penetrations through the chitosan-pretreated filters raised with the face velocity. Chitosan-pretreated filter performed better against solid aerosol than against liquid aerosol. RH has no effect on penetration through the chitosan-pretreated filters. The results of the study show that pretreatment with chitosan decreases the aerosol penetration through the filter and provides a good reference to develop a new aerosol control technology for air filtration. Keywords: Electret filter, Filtration, Aerosol, Chitosan, Penetration
除效率,同時過濾時壓力損失低。 不過由於市面上的帶電濾材其價格較 一般普通濾材高得許多,而且目前帶電濾材 之表面上電荷經過一段時間後會逐漸衰 減,因此本計畫將利用天然生物性高分子幾 丁聚醣調理一般未帶電纖維濾材,使其成為 帶有電荷之帶電濾材,降低帶電濾材之價 格,並增加表面帶電之時間,以提升對氣膠 微粒之去除效率。
3
六、 研究方法
1. 過濾理論
過濾是一相當複雜之程序,在說明濾材 對氣膠微粒之收集效率時,通常以單一纖維 效率(Single-Fiber Efficiency)作為估算濾 材之捕集效率 [8] 。假設所有纖維之直徑相 同,且與氣流方向垂直,則將單一纖維所收 集到之粒數與在同一纖維上理論可收集的 微粒數比,即稱為單一纖維效率[8]。根據此 一定義,即可利用質量平衡求得單一纖維效 率為,
2
五、 文獻探討
近年之纖維性濾材發展,因靜電可以增 加過濾效能,因此帶電濾材之研究成果較 多。其中在帶電濾材過濾機制探討方面, Romay et al.[1]針對庫輪力與介電力之過濾 行為進行探討,主要粒徑為 0.05-0.5 µm,結 果顯示在次微米微粒下靜電收集機制十分 明顯,庫倫力在較大微粒時較不明顯,隨著 粒徑之增加,庫倫力就越不明顯,此時介電 力成為主要之靜電收集機制,亦即隨著粒徑 之增加,偶極力就越明顯。 Lehtmäki and Heinonen[2] 利用靜電濾 材分別對三種不同之氣膠微粒進行穿透率
二、 ABSTRACT
Filtration is one of the most effective and reliable methods for the collection of small size particulate matters from gas stream. The chitosan-pretreated filters were applied to investigate the filtration efficiency of aerosols in this work. Polydisperse aerosols were generated from a Collison Atomizer. Then, the polydisperse aerosol was electrically classified using a Differential Mobility Analyzer to obtain monodisperse aerosol. A condensation particle counter measured the upstream and downstream aerosol concentrations and the pressure gauge measured the pressure drop. Thereafter, the filtration efficiency of the chitosan-pretreated filter was determined by the difference of the numbers of the aerosols and the difference of pressure after filtration. The results demonstrate that the aerosol penetrations through the chitosan-pretreated filters were lower than that through the untreated filter. The maximum aerosol