全等三角形各种判定
全等三角形的判定和性质

全等三角形的判定和性质在初中数学的学习中,全等三角形是一个非常重要的概念。
它不仅在几何证明中经常出现,而且对于培养我们的逻辑思维和空间想象力也有着重要的作用。
接下来,让我们一起深入了解全等三角形的判定和性质。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
比如,三角形 ABC 全等于三角形 DEF,记作“△ABC≌△DEF”。
二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果△ABC ≌△DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等即∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的对应线段(角平分线、中线、高)相等例如,如果两个三角形全等,那么它们对应的角平分线长度相等,对应的中线长度相等,对应的高的长度也相等。
4、全等三角形的周长相等、面积相等因为全等三角形的对应边相等,所以它们的周长必然相等。
而由于对应边和对应高都相等,根据三角形面积公式(面积=底×高÷2),可得它们的面积也相等。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如,在△ABC 和△DEF 中,AB = DE,BC = EF,AC = DF,那么就可以判定△ABC ≌△DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如,在△ABC 和△DEF 中,AB = DE,∠B =∠E,BC = EF,那么△ABC ≌△DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
假设在△ABC 和△DEF 中,∠A =∠D,AB = DE,∠B =∠E,就能够得出△ABC ≌△DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
三角形全等的判定+性质+辅助线技巧

三角形全等的判定+性质+辅助线技巧都在这里了,请收好!在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。
有时证不出来,急不可耐、恨它恨的牙痒痒。
王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。
有时证不出来,急不可耐、恨它恨的牙痒痒。
王老师这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法,认真看完这篇文章,保证关于三角形全等所有的题型你都会做!一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
三角形的全等的判定方法

三角形的全等的判定方法三角形的全等判定方法是根据三角形的边长、角度、边角关系以及辅助构造相等边等方面来判断的。
全等(congruent)的含义是指两个或多个物体在形状、大小和位置上完全相同。
以下是常见的三角形全等判定方法:1.SSS判定法(边边边):如果两个三角形的三条边的长度分别相等,那么这两个三角形是全等的。
这是最常见的判定方法之一2.SAS判定法(边角边):如果两个三角形的两边的长相等,并且夹角也相等,那么这两个三角形是全等的。
这是常用的判定方法之一3.ASA判定法(角边角):如果两个三角形的两个角度分别相等,并且夹角的边长也相等,那么这两个三角形是全等的。
4.RHS判定法(直角边斜边):如果两个直角三角形的一个直角边与另一个直角边相等,并且它们的斜边相等,那么这两个三角形是全等的。
5.AAS判定法(角角边):如果两个三角形的两个角度分别相等,并且一个非夹角的边也相等,那么这两个三角形是全等的。
需要注意的是,尽管SSS、SAS、ASA和RHS判定法完全相同,但在AAS判断法中,两个非夹角也可能相等,这就无法得出全等的结论。
此外6.MS辅助构建法:如果两个三角形的两边分别相等,并且它们的中线相等,那么这两个三角形是全等的。
7.AC辅助构建法:如果两个三角形的一个角、相对边以及对角边均相等,那么这两个三角形是全等的。
以上是常见的三角形全等判定方法。
在实际应用中,判定三角形的全等关系非常重要,因为全等的三角形具有相同的角度和边长,可以互相替代,从而证明一些几何性质或解决问题。
因此,熟练掌握这些判定方法对于几何学的学习和问题解决非常有帮助。
全等三角形的判定笔记

全等三角形的判定笔记全等三角形是指具有相同形状和大小的两个三角形。
在几何学中,判定两个三角形是否全等是一个重要的问题,它为我们解决各种几何问题提供了基础。
本文将介绍一些判定两个三角形全等的方法。
方法一:SSS判定法(边边边判定法)SSS判定法是基于三角形的三边长相等这一条件进行判定的。
如果两个三角形的三边对应相等,那么它们一定是全等三角形。
例如,已知三角形ABC和三角形DEF的边长分别为AB=DE,BC=EF, AC=DF。
那么根据SSS判定法,可以判定它们为全等三角形。
方法二:SAS判定法(边角边判定法)SAS判定法是基于三角形的两边和夹角的关系进行判定的。
如果两个三角形的两边和夹角对应相等,那么它们一定是全等三角形。
例如,已知三角形ABC的边长为AB=AC,夹角BAC的度数为x 度,以及三角形DEF的边长为DE=DF,夹角EDF的度数也为x度。
那么根据SAS判定法,可以判定它们为全等三角形。
方法三:ASA判定法(角边角判定法)ASA判定法是基于三角形的两角和一边的关系进行判定的。
如果两个三角形的两角和对应相等,且夹角所对的边长也相等,那么它们一定是全等三角形。
例如,已知三角形ABC的两角BAC和ABC的度数分别为x和y,以及三角形DEF的两角FED和DFE的度数也分别为x和y,且边AC=EF。
那么根据ASA判定法,可以判定它们为全等三角形。
方法四:RHS判定法(直角边斜边判定法)RHS判定法是针对含有直角的三角形的判定方法。
如果两个三角形的一个直角和斜边分别相等,那么它们一定是全等三角形。
例如,已知三角形ABC是直角三角形,且边AC=DF,边AB=DE。
那么根据RHS判定法,可以判定它们为全等三角形。
需要注意的是,在判定全等三角形时,对于每种判定法都需要给出足够的已知条件,以确保判定的准确性。
只有满足相应的条件,才能得出两个三角形全等的结论。
应用举例:1. 在解决几何问题时,可以利用全等三角形判定法将一个复杂的问题转化为一个已知的全等三角形问题,从而简化解题过程。
两三角形全等的几种判定方法

两三角形全等的几种判定方法
两个三角形是否全等,是初中数学重要的一部分。
在确定两个三
角形全等之前,需要掌握以下几种判定方法:
1. SAS判定法:如果两个三角形的两个边和夹角分别相等,则它们是全等的。
即如果两个三角形的一边、夹角和另一边能一一对应,
则这两个三角形是全等的。
2. SSS判定法:如果两个三角形的三边分别相等,则它们是全等的。
即如果两个三角形各边分别相等,则这两个三角形是全等的。
3. ASA判定法:如果两个三角形的两个角和夹边分别相等,则它们是全等的。
即如果两个三角形的一角、夹边和另一角能一一对应,
则这两个三角形是全等的。
4. RHS判定法:如果两个三角形的两个直角边和一条斜边分别相等,则它们是全等的。
即如果两个三角形的直角边和斜边能一一对应,则这两个三角形全等。
5. AAS判定法:如果两个三角形的两个角和一边分别相等,则它们是全等的。
但要注意,这个一边不能是夹角边。
即如果两个三角形
的两个角和一边能一一对应,则这两个三角形是全等的。
掌握了以上五种判定方法,我们就能准确地判断两个三角形是否
全等,从而解决一些相关的问题。
三角形全等的判定+性质+辅助线的技巧汇总

在初中三角形问题集中体现在“全等”和“相似”2大问题上,非常考验大家的解题能力、思维能力、耐性与定力。
有时证不出来,急不可耐、恨它恨的牙痒痒。
豆姐这次整理了全等三角形判定、性质,最重要的是后面附上了所有证明全等三角形,包括添加各种辅助线的方法一、三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。
2.有两边及其夹角对应相等的两个三角形全等(SAS)。
3.有两角及其夹边对应相等的两个三角形全等(ASA)。
4.有两角及一角的对边对应相等的两个三角形全等(AAS)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。
二、全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
三、找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
缺个角的条件:缺条边的条件四、构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC 是∠AOB的角平分线,D 为OC 上一点,F 为OB 上一点,若在OA 上取一点 E,使得 OE=OF,并连接 DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
例:如上右图所示,AB//CD,BE 平分∠ABC,CE 平分∠BCD,点 E 在AD 上,求证:BC=AB+CD。
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
全等三角形的六种判定

全等三角形的六种判定
判定全等三角形(包括直角三角形全等的判定)有六种方法:(1)定义法:两个完全重合的三角形全等。
(2)SSS:三个对应边相等的三角形全等。
(3)SAS:两边及其夹角对应相等的三角形全等。
(4)ASA:两角及其夹边对应相等的三角形全等。
(5)AAS:两角及其中一角的对边对应相等的三角形全等。
(6)HL:斜边和一条直角边对应相等的两个直角三角形全等。
①全等三角形的对应边相等;全等三角形的对应角相等。
②全等三角形的周长、面积相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形各种判定-CAL-FENGHAI.-(YICAI)-Company One1FE DCBA1.三角形全等的判定一(SSS )1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗为什么2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF , BE =CF . 求证∠A =∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。
5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.CA A C E AD C B2.三角形全等的判定二(SAS)1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.2.如图,△ABC≌△A B C''',AD,A D''分别是△ABC,△A B C'''的对应边上的中线,AD与A D''有什么关系证明你的结论.3.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.4.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.5.已知:如图AD∥BC,AD=CB,AE=CF。
求证:△AFD≌△CEB.6.已知,如图,AB=AC,AD=AE,∠1=∠2。
求证:△ABD≌△ACE.ACDBAEBCFDAB CDAH FED CB A7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.11.证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:首先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)AB E F12.证明:如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.13.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF .14.已知:E 是正方形ABCD 的边长AD 上一点,BF 平分∠EBC , 交CD 于F ,求证BE=AE+CF.(提示:旋转构造等腰)15.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。
A C DE F GFE D C A BA D E F3~4.三角形全等的判定三、四(ASA 、AAS )1.如图,点B ,F ,C ,E 在一条直线上,FB =CE ,AB ∥ED ,AC ∥FD .求证AB =DE ,AC =DF .2.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2.5cm ,DE =1.7cm . 求BE 的长.3.已知,D 是△ABC 的边AB 上的一点,DE 交AC 于点E ,DE=FE ,FC ∥AB 。
求证:AE=CE 。
4.已知:如图 , 四边形ABCD 中 , AB ∥CD , AD ∥BC .求证:△ABD ≌△CDB5.如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.A DB CFEA B CD EP QNM6.如图, AD ∥BC, AB ∥DC, MN =PQ. 求证:DE =BE.7.如图, 在ABC 中, ∠A =90°, BD 平分B, DE ⊥BC 于E, 且BE =EC,(1)求∠ABC 与∠C 的度数; (2)求证:BC =2AB.8.如图,四边形ABCD 中,AD ∥BC ,E 是CD 上一点,且AE 、BE 分别平分∠BAD 、∠ABC .(1)求证:AE ⊥BE ;(2)求证:E 是CD 的中点;(3)求证:AD +BC =AB .9.已知,如图Rt △ABC ,∠BAC =90°,AD ⊥BC ,D 为垂足,∠ABD 的平分线交AD 于E 点,EF ∥AC ,求证:AE =EF .B C EA DA BE10.△ABC 是等腰直角三角形 ,∠BAC=90°,AB=AC.⑴若D 为BC 的中点,过D 作DM ⊥DN 分别交AB 、AC 于M 、N ,求证:DM =DN 。
⑵若DM ⊥DN 分别和BA 、AC 延长线交于M 、N 。
问DM 和DN 有何数量关系。
11.已知:C 点的坐标为(4,4),A 为y 轴负半轴上一动点,连CA ,CB ⊥CA 交x 轴于B 。
① 求证:CA =CB ;② 问OB -OA12.已知A (-4,0),B (0,4),C (0,-4),过O 作OM ⊥ON 分别交AB 、AC 于M 、N 两点。
①求证:OM =ON ;②连MN ,MN 交x 轴于Q ,若M 点的纵坐标为3,求M 与N 的坐标。
MND C B AM ND CBA5.三角形全等的判定五(HL )1.如图,△ABC 中,AB =AC ,AD 是高.求证:(1)BD=CD ;(2)∠BAD =∠CAD .2.如图,AC ⊥CB ,DB ⊥CB ,AB =DC .求证:∠ABD =∠ACD .3.已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.4.如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC ,求证:EB=FCA A C A D E C BF5.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.6.角的平分线的性质1.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC.求证∠1=∠2.2.如图,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE ⊥OB交OB于E.F是OC上的另一点,连接DF,EF.求证DF=EF.3.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.4.如图, 在ABC 中, ∠A =90°, BD 平分B, DE ⊥BC 于E, 且BE =EC,(1)求∠ABC 与∠C 的度数; (2)求证:BC =2AB.7.倍长中线法与截长补短法1.在△ABC 中,AB =5,AC =3,AD 为BC 边的中线,则AD 的长的取值范围是( ).<<4 <<5 C.2<<3 <<52.AD 是△ABC 中BC 边上的中线,AB =4,AC =6,则AD 的取值范围是 . 3.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。
4.如图,四边形ABCD 中,AD ∥BC ,E 是CD 上一点,且AE 、BE 分别平分∠BAD 、∠ABC .(1)求证:AE ⊥BE ;(2)求证:E 是CD 的中点;B C EA DOE D CB A(3)求证:AD +BC =AB .5.如图△ABC 中,∠A =500,AB >AC ,D 、E 分别在AB 、AC 上,且BD=CE ,∠BCD =∠CBE ,BE 、CD 相交于O 点,求∠BOC 的度数.6.△ABC 中,D 是BC 中点,DE ⊥DF ,E 在AB 边上,F 在AC 边上,判断并证明BE+CF 与EF 的大小.7.已知:如图,在△ABC 中,∠A =90°,AB =AC ,∠1=∠2, 求证:BC =AB +AD .(分别用截长法和补短法各证一次)8.已知,如图,在正方形ABCD 中AB=AD ,∠B =∠D =90°.AB CD E F ADA 2 1CBDO FE DCB A EDC BA (1)如果BE +DF =EF ,求证:①∠EAF =45°;②FA 平分∠DFE .(2)如果∠EAF =45°,求证:①BE +DF =EF .②FA 平分∠DFE .(3)如果点F 在DC 的延长线上,点E 在CB 的延长线上,且DF -BE =EF ,求证:①∠EAF =45°;②FA 平分∠DFE .(画图并证明)8.全等三角形检测一.选择题:1.在△ABC 、△DEF 中如果∠C =∠D ,∠B =∠E ,要使△ABC ≌△FED ,还需要的条件是( )=ED =FD =FD D.∠A =∠F2.如图:AB ∥CD ,AD ∥BC ,AC 、BD 交于点O ,AE ⊥BD于E ,CF ⊥BD 于F 点,那么图中全等三角形共有( )对 对 对 对3.如图,D 在AB 上,E 在AC 上且∠B =∠C ,那么补充下列一个条件后,仍无法判定△ABE ≌△ACD 的是( )=AE B.∠AEB =∠ADC =CD =AC 4.如图:某同学把一块三角形玻璃打碎成了三块,现有要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) A.带①去 B.带②去C.带③去D.带①和②去 5.下列说法中,正确的个数是( )①两边及其中一边上的中线对应相等的两个三角形全等;②两角及第三角的平分线对应相等的两个三角形全等;③两边及其中一边上的高对应相等的两个三角形全等;④有两边相等的直角三角形全等;⑤腰和一个角分别对应相等的两等腰三角形全等。
MED CB A G F ED C B A POE D B A ABC D EF 个 个 个 个6.在△ABC 中,AB =5,AC =3,AD 为BC 边的中线,则AD 的长的取值范围是( ).<<4 <<5 C.2<<3 <<57.下列四个命题: ①直角三角形只有一条高线;②有两边对应相等的两个直角三角形一定全等;③两内角之差等于第三个内角的三角形必为直角三角形;④腰和底角对应相等的两个等腰三角形一定全等.其中正确的命题有( ). 个 个 个 个8.等腰三角形周长为a ,一腰的中线将周长分成5:3两部分,则它的底边长为( ).A.6aB.2aC.6a 或2aD.45a 9.下列条件中,能判断两个等腰三角形全等的条件的个数是( ).①顶角和一条腰对应相等; ②一条腰和底边对应相等; ③顶角和底边对应相等; ④两条腰和底角对应相等. 个 个 个 个 10.已知:如图,BD 为△ABC 的的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF ⊥AB ,F 为垂足. 下列结论:①△ABD ≌△EBC ; ②∠BCE +∠BCD =180°; ③AD =AE =EC ;④BA +BC =2BF . 其中正确的是( ). A.①②③ B.①③④ C.①②④ D.①②③④11.如图:已知AD ⊥AB ,AE ⊥AC ,AD =AB ,AE =AC 则下列结论:①∠DAC =∠BAE ;②△DAC ≌△BAE ;③DC ⊥BE ;④MA 平分∠DME ;⑤△BMC ≌△CEA ;正确个数是( )个 个 个 个 12.如图P 是等腰Rt △ABC 斜边AC 上任意一点,PE ⊥AB 于E ,PF ⊥BC 于F ,PG ⊥EF 于G ,在GP 的延长线上取一点D ,使PD=PB ,则BC 与DC 关系是( ) =DC =DC ,且BC ⊥DC >DC ⊥DC二.填空题:是△ABC 中BC 边上的中线,AB =4,AC =6,则AD 的取值范围是 .14.如图△ABC 中,∠A =500,AB >AC ,D 、E 分别在AB 、AC 上,且BD=CE ,∠BCD =∠CBE ,BE 、CD 相交于O 点,则∠BOC的度数为 . 15.已知:如图,点A 在线段DE 上,点F 在线段AB 上,且∠1=∠2=∠3,要使得△ABC ≌△EDC ,需要添加的一个条件是 _____________(只需写出一个满足的条件)321E D CBA F7654321E DCBA 16.已知△ABC 中,高AD 与高BE 交于H 点,BH =AC ,则∠ABC 的度数等于 .17.如图,∠1=∠2=25°,∠3=∠4,∠5=∠6,则∠7= . 18.有一张等腰三角形纸片, 若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片, 则原等腰三角形纸片的顶角为 度.三.解答题: 19.如图,已知:AB =AC ,AD =AE ,∠BAC =∠DAE . 求证:△ABD ≌△ACE .20.如图,AB =AD ,BC =DE ,∠1=∠2,求证:(1)AC =AE ;(2)∠CAE =∠CDE21.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .A BCDE21ABCDE F22.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE =21(AB +AD ).①求证:BC=DC .②求∠ABC +∠ADC 的度数.23.如图,△ABE 和△ACF 分别是以△ABC 的AB 、AC 为一边在形外所作的等边三角形,BF 与CE 相交于O .①求证:BF=EC .②求∠EOB 的度数.③求证:OA 平分∠EOF .OFECBAA BCDE。