实验报告-半导体泵浦激光原理

合集下载

半导体泵浦激光原理实验

半导体泵浦激光原理实验

半导体泵浦激光原理实验理工学院光信息2班贺扬10329064 合作人:余传祥【实验目的】1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔内倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】激光的产生主要依赖受激辐射过程。

处于激发态的原子,在外的光子的影响下,从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态抽运到激发态,上的粒子通过无辐射跃迁,迅速转移到亚稳态。

是一个寿命较长的能级,这样处于的粒子不断累积,上的粒子又由于抽运过程而减少,从而实现与能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

激光倍频是将频率为的光,通过晶体中的非线性作用,产生频率为的光。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:式中均为与物质有关的系数,且逐次减小。

当E很大时,电场的平方项不能忽略。

,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:式中L为晶体长度,、分别为入射的基频光、输出的倍频光光强。

在正常色散情况下,倍频光的折射率总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。

实验报告_半导体泵浦激光原理

实验报告_半导体泵浦激光原理

半导体泵浦激光原理实验学号:09327085 :武班别:光信二班合作人:程昌、谭宇婷实验日期:3-14 组别:B11【实验目的】1、了解与掌握半导体泵浦激光原理及调节光路方法。

2、掌握腔倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等基本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、Nd:YVO4晶体、KTP倍频晶体、输出镜(前腔片)、光功率指示仪【实验原理】光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开始处于基态,在没有外来光子,将保持不变,如果有一个能量为hυ21的光子接近,则它吸收这个光子,处于激发态E2.在此过程中不是所有光子都能被原子吸收,只有当光子能量正好等于原子能级间距E1−E2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。

E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

半导体泵浦激光器原理

半导体泵浦激光器原理

半导体泵浦激光器原理
半导体泵浦激光器是一种特殊的半导体激光器。

相对于其他激光器,
它的优势在于尺寸小、功率高和效率高,因此被广泛应用于光通信、
医疗、生物科技和材料加工等领域。

半导体泵浦激光器的工作原理是通过电流注入半导体材料(通常是双
异质结或量子阱结构),使得电子和空穴在材料中复合并释放出光子。

这些光子被镜子反射,反复在腔体中反射,从而产生聚集和增强的光。

相比于其他激光器,半导体泵浦激光器的优势在于其工作时不需要高
能输入激光器,因此可以实现高效率转化电能为光能。

此外,由于其
结构较小,积累的热量比其他激光器少,因此可以实现更小的散热系
统和更高的功率密度。

然而,半导体泵浦激光器也存在一些问题,其中最主要是光子漫反射
导致的散射损耗和上行波的影响。

为了解决这些问题,研究人员正在
努力改进半导体材料和腔体结构,以增加激光的强度和时间,从而实
现更高效的反射和收集。

将来,随着我们对半导体泵浦激光器的理解和知识的深入,其应用领
域可能会得到更广泛的扩展。

我们期望,随着时间的推移,人们可以
创造出更高性能、更稳定的半导体泵浦激光器,从而推动发展更广泛的应用场景。

光信息专业实验报告:半导体泵浦激光原理实验

光信息专业实验报告:半导体泵浦激光原理实验

hvE21 (a)21(b)2E1(c)图1 光与物质作用的受激吸收过程光信息专业实验报告:半导体泵浦激光原理实验【实验目的】1.了解与掌握半导体泵浦激光的原理及调节光路的方法2.掌握腔内倍频技术,并了解倍频技术的意义3.掌握测量阈值、相位匹配等基本参数的方法【实验仪器】1.808nm半导体激光器P≤500mW2.半导体激光器可调电源电流0~500mA3.Nd:YVO4晶体3×3×1mm4.KTP倍频晶体2×2×5mm5.输出镜(前腔片)φ6 R=50mm6.光功率指示仪2μW~200mW 6挡【实验原理】一、光与物质的相互作用光与物质的相互作用可以归结为光子与物质原子的相互作用,有三种过程:受激吸收、自发辐射和受激辐射。

1.受激吸收如果一个原子,开始时处于基态,在没有外来光子的情况下,它将保持不变。

如果一个能量为hv21的光子接近,则它吸收这个光子,跃迁上激发态E2。

在此过程中不是所有的光子都能被原子吸收,只有当光子的能量正好等于原子的能级间隔E1-E2时才能被吸收。

2.自发辐射处于激发态的原子寿命很短(一般为10-8~10-9秒),在不受外界影响时,它们会自发地返回到基态,并释放出光子,辐射光子能量为hv=E2-E1。

自发辐射过程与外界作用无关,是一个随机过程,各个原子的辐射都是自发的、独立进行的,因而不同原子发出来的光子的发射方向和初相位是不相同的。

由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。

3.受激辐射处于激发态的原子,在外界光场的作用下,会吸收能量为E 2-E 1的光子,从而由高能态向低能态跃迁,并向外辐射出两个光子。

只有当外来光子的能量正好等于激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全相同。

激光的产生主要依赖受激辐射过程。

二、激光器的组成激光器主要由工作物质、泵浦源、谐振腔三部分组成,如果要实现激光倍频,还需要在谐振腔内部加入倍频晶体。

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理

半导体泵浦固体连续激光器实验原理文章标题:半导体泵浦固体连续激光器实验原理引言:半导体泵浦固体连续激光器(也称作DPSSL)是一种重要的激光器技术,它被广泛应用于科学研究、工业生产、材料加工等领域。

本文将深入探讨半导体泵浦固体连续激光器的实验原理,通过介绍其构造、工作原理和关键技术,帮助读者更全面、深刻地了解该激光器技术。

第一节:半导体泵浦固体连续激光器的构造和工作原理1.1 构造概述半导体泵浦固体连续激光器由激光工作物质、泵浦源、光学谐振腔等组成。

详细介绍每个组成部分的功能和作用。

1.2 工作原理半导体泵浦固体连续激光器的工作原理是基于半导体激光二极管对工作物质进行泵浦,从而实现能量转换。

解释能量转换的过程和原理,包括吸收、激发、跃迁等关键步骤。

第二节:半导体泵浦固体连续激光器的实验关键技术2.1 泵浦源选择介绍如何选择合适的半导体泵浦源,包括波长匹配、功率要求、热效应等因素的考虑。

2.2 激光工作物质选择探讨如何选择适用于半导体泵浦固体连续激光器的工作物质,包括钕掺杂YAG(钇铝石榴石)晶体、钇铝石榴石陶瓷等,比较它们的优缺点和应用领域。

2.3 光学谐振腔设计和优化介绍光学谐振腔的设计原理和方法,包括准稳态、长腔和短腔等不同谐振腔结构的选择和优化。

第三节:实验过程与结果分析3.1 实验步骤详细描述半导体泵浦固体连续激光器实验的步骤,包括调整泵浦源、控制温度、测量输出功率等操作。

3.2 实验结果分析对实验结果进行分析和讨论,包括激光输出功率与输入功率的关系、温度对输出功率的影响等方面。

第四节:对半导体泵浦固体连续激光器的观点和理解4.1 对半导体泵浦固体连续激光器的观点提供对半导体泵浦固体连续激光器技术的观点和评价,包括其优势、局限性以及应用前景等。

4.2 对实验原理的理解总结总结半导体泵浦固体连续激光器的实验原理,回顾文章中的关键内容,以帮助读者更全面、深入地理解该技术。

结论:通过对半导体泵浦固体连续激光器实验原理的细致讲解,读者可以加深对该激光器技术的理解,并在科学研究和工业应用中充分发挥其潜力。

半导体泵浦激光原理

半导体泵浦激光原理
c、导数法:在 — 曲线中,将输出功率对泵浦功率求二阶导数,求导数波峰所对应的功率值为 。
③、 — 曲线的斜率
该斜率为 以上的 — 曲线的斜率,表示波长为808nm的泵浦功率有多少转换成1064nm固体激光器的输出功率。
二、LD泵浦Nd:YVO4固体激光器光斑尺寸的测量
在各种不同光强分布形式中,基横模的光强分布不均匀性最小,因此需要激光器工作在基横模状态。激光基横模的光强分布是高斯分布,能够方便地测量光斑的大小。
用刀口法可以测定光斑的大小和验证光斑的光强分布是高斯分布。实验中使刀口平行于y轴,沿垂直于x轴方向移动。当刀口缓慢推入光束时,设刀口挡住了x≤a的所有点。最后,归一化的高斯分布和相对功率与刀口位置关系曲线如下图所示:
相对功率为0.25和0.75的点分别位于高斯分布曲线极大值两侧,其距离为ep=0.6745σ。由实验得到的相对功率与刀口位置的关系曲线可确定ep的值。用ep的值可计算出光斑大小:
自发辐射:在没有外界作用下,原子中的电子自发的由高能级向低能级跃迁,跃迁时将产生光辐射,此即为自发辐射。辐射光子能量为:
原子的自发辐射过程完全是一个随机过程,所辐射的光之间完全没有联系。
波尔兹曼分布规律:在通常的热平衡条件下,处于高能级 上的原子数密度 ,远比处于低能级的原子数密度低。处于能级E的原子数密度N的大小随能级E的增加而指数减小,即N∝ 。于是,在上、下两个能级上的原子数密度比为
4、缓慢旋转螺旋测微器,推进刀口,每0.04mm测一对应的激光功率P,记录下来;
5、重复4,直到光斑全部被刀片挡住,即功率计显示为零,由此建立P—x曲线;
6再将刀口拉回,重新测量一组P—x数据;
7、数据拟合及处理得出光斑尺寸及基横模的判断结果。
三、LD泵浦Nd:YVO4固体激光器远场发散角的测量

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告

半导体泵浦固体激光器实验报告实验名称:半导体泵浦固体激光器实验实验目的:1. 了解半导体泵浦固体激光器的工作原理和基本结构;2. 学习激光器的调谐方法和测量激光器的光学特性;3. 熟悉激光器的使用,掌握激光器实验中的各种技能。

实验原理:半导体泵浦固体激光器是利用半导体激光二极管激发固体激光材料来产生激光的一种激光器。

其基本结构如图所示:![image](其中,激光二极管的电流经过施加,产生激光并通过聚焦透镜进行集中,通过反射镜反射,激活激光材料的原子和分子的电子从基态跃迁到激发态,形成放电状态,当放电状态达到一定密度时,形成激光束发射出去。

半导体泵浦固体激光器的调谐方法有很多种,如通过调整输出反射镜的位置和倾角,调整背面反射镜的位置和倾角等,从而达到调谐的目的。

同时,对激光器的光学特性有很多种测量方法,包括激光器产生激光的波长、光功率等参数,以及激光束的透过合大度、束径、谐波烽度谱等。

实验步骤:1. 搭建半导体泵浦固体激光器实验装置,并对各个部件进行检查和调整。

2. 通过调整输出反射镜和背面反射镜的位置和倾角,调谐激光器的输出波长,并测量激光的光功率。

3. 测量激光束的透过合大度、束径、谐波烽度谱等光学特性。

4. 尝试改变激光二极管的电流和输出反射镜的位置和倾角,观察激光器的输出特性的变化。

实验结果:通过调整输出反射镜和背面反射镜的位置和倾角,成功调谐了激光器的输出波长,同时测量得到了激光的光功率和各种光学特性参数。

实验结论:半导体泵浦固体激光器是一种常见的激光器,其工作原理和基本结构比较简单,可以通过调谐输出镜和背面反射镜的位置和倾角来实现对激光的调谐。

同时,激光器的光学特性也可以通过多种方法进行测量和分析,可以应用于各种实际应用场景中。

实验报告_半导体泵浦激光原理

实验报告_半导体泵浦激光原理

半导体泵浦激光原理实验学号:09327085 :武班别:光信二班合作人:程昌、谭宇婷实验日期:3-14组别:B11【实验目的】1、了解与掌握半导体泵浦激光原理与调节光路方法。

2、掌握腔倍频技术,并了解倍频技术的意义。

3、掌握测量阈值、相位匹配等根本参数的方法。

【实验仪器】808nm半导体激光器、半导体激光器可调电源、Nd:YV O4晶体、KTP倍频晶体、输出镜〔前腔片〕、光功率指示仪【实验原理】光与物质的相互作用可以归结为光与原子的相互作用,有三种过程:吸收、自发辐射和受激辐射。

如果一个原子,开场处于基态,在没有外来光子,将保持不变,如果有一个能量为hυ21的光子接近,那么它吸收这个光子,处于激发态E2.在此过程中不是所有光子都能被原子吸收,只有当光子能量正好等于原子能级间距O1−O2时才能被吸收。

激发态寿命很短,在不受外界影响时,它们会自发地返回基态,并放出光子。

自发辐射过程与外界作用无关,由于各个原子的辐射都是自发、独立进展的,因而不同原子发出来的光子的发射方向和初相位是不同的。

处于激发态的原子,在外的光子的影响下,会从高能态向低能态跃迁,并在两个状态的能量差以辐射光子的形式发出去。

只有外来光子的能量正好为激发态与基态的能级差时,才能引起受激辐射,且受激辐射发出的光子与外来光子的频率、发射方向、偏振态和相位完全一样。

激光的产生主要依赖受激辐射过程。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁〔该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子〕,迅速转移到亚稳态E2。

E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。

激光产生必须有能提供光学正反应的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,局部通过输出镜输出,局部被反射回工作物质,在两个反射镜间往返屡次被放大,形成受激辐射的光放大即产生激光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光器主要有:工作物质、谐振腔、泵浦源组成。

工作物质主要提供粒子数反转。

泵浦过程使粒子从基态E1抽运到激发态E3,E3上的粒子通过无辐射跃迁(该过程粒子从高能级跃迁到低能级时能量转变为热能或晶格振动能,但不辐射光子),迅速转移到亚稳态E2。

E2是一个寿命较长的能级,这样处于E2的粒子不断累积,E1上的粒子又由于抽运过程而减少,从而实现E2与E1能级间的粒子数反转。

激光产生必须有能提供光学正反馈的谐振腔。

处于激发态的粒子由于不稳定性而自发辐射到基态,自发辐射产生的光子各个方向都有,偏离轴向的光子很快逸出腔外,只有沿轴向的光子,部分通过输出镜输出,部分被反射回工作物质,在两个反射镜间往返多次被放大,形成受激辐射的光放大即产生激光。

光的倍频是一种最常用的扩展波段的非线性光学方法。

激光倍频是将频率为ω的光,通过晶体中的非线性作用,产生频率为2ω的光。

当光与物质相互作用时,物质中的原子会因感应而产生电偶极矩。

单位体积内的感应电偶极矩叠加起来,形成电极化强度矢量。

电极化强度产生的极化场发射出次级电磁辐射。

当外加光场的电场强度比物质原子的内场强小得多时,物质感生的电极化强度与外界电场强度成正比。

P=ε0χE在激光没有出现前,当有几种不同频率的光波同时与该物质作用时,各种频率的光都线性独立地反射、折射和散射,满足波的叠加原理,不会产生新的频率。

当外界光场的电场强度足够大时(如激光),物质对光场的响应与场强具有非线性关系:P=αE+βE2+γE3+⋯式中α,β,γ,…均为与物质有关的系数,且逐次减小。

考虑电场的平方项E=E0cosωtP(2)=βE2=βE02cos2ωt=βE02(1+cos2ωt)出现直流项和二倍频项cos2ωt,直流项称为光学整流,当激光以一定角度入射到倍频晶体时,在晶体产生倍频光,产生倍频光的入射角称为匹配角。

倍频光的转换效率为倍频光与基频光的光强比,通过非线性光学理论可以得到:η=I2ωω∝βL2Iωsin2(Δkl/2)式中L为晶体长度,Iω、I2ω分别为入射的基频光、输出的倍频光光强。

在正常色散情况下,倍频光的折射率n2ω总是大于基频光的折射率,所以相位失配,双折射晶体中的o光和e光折射率不同,且e光的折射率随着其传播方向与光轴间夹角的变化而改变,可以利用双折射晶体中o光、e光间的折射率差来补偿介质对不同波长光的正常色散,实现相位匹配。

【实验装置】图4 实验装置示意图实验使用808nm LD泵浦晶体得到1.064μm 近红外激光,再利用KTP晶体进行腔内倍频得到0.53μm的绿激光,长度为3x3x1mm掺杂浓度3at% α轴向切割Nd:YVO4晶体作为工作介质,入射到内部的光约95%被吸收,采用ΙΙ类相位匹配2x2x5mmKTP晶体作为倍频晶体,它的通光面同时对1.064μm、0.53μm高透,采用端面泵浦以提高空间耦合效率,用等焦距为3mm 的梯度折射率透镜收集808LD激光聚焦成0.1μm的细光束,使光束束腰在Nd:YVO4晶体内部,谐振腔为平凹型,后腔片受热后弯曲。

输出镜用K9玻璃,R为50mm,对808.5,1.604高反,0.53增透。

用632.8nmHe-Ne激光器作为准直光源。

【操作步骤】1、将808nmLD固定在二维调节架,将He-Ne632.nm红光通过白屏小孔聚到折射率梯度透镜上。

让He-Ne激光和小孔及808nmLD在同一轴线上。

2、将Nd:YVO4晶体安装在二维调节架,将红光通过晶体并将返回的光点通过小孔。

3、将输出镜固定在四维调节架上。

调节输出镜使返回光点通过小孔。

对于有一定曲率的输出镜,会有几个光斑,应区分从球心返回的光斑。

4、在Nd:YVO4晶体和输出镜之间插入KTP晶体,接通电源,调节多圈电位器。

5、产生532nm倍频绿激光。

调节输出镜,LD调节架,使532nm绿光功率最大。

【实验数据记录与分析】表1 光源电流与光功率关系 可调光源电流I/mA 20 40 60 80 100 120 140 160180 200 808nmLD 激光光功率P/mW 0.04 0.10 0.20 1.95 7.03 13.3 20.1 27.5 35.443.1 可调光源电流I/mA 220 240 260 280 300 320 340 360 380 400808nmLD 激光光功率P/mW 49.0 53.7 59.0 63.9 69.5 75.4 82.1 91.2 101.3 110.5将数据导入Origin8.5,并拟合为平滑曲线如下:20406080100120激光功率P /m W 可调电源输出电流I/mA半导体激光LD 的PI 特性曲线图4 实验测得LD 的PI 特性曲线由激光原理可知:工作物质一定时,LD 输出激光频率与谐振腔长度和激励源强度有关,即输出频率取决于PN 结温度和注入电流大小。

一般半导体激光器的发光特性如图5所示。

可以看出在温度一定时,驱动电流低于阈值电流(门限电流)时,激光器输出功率趋近于零,此即为LD 荧光区;只有当驱动电流高于阈值电流时才能产生激光,即为激光区,在这个区域内,输出功率随电流I 的增大而迅速呈似线性式增大。

024681012510152025输出功率P 正向电流I 门限电流荧光区激光区图5 半导体LD 一般PI 特性曲线对比图5,从图4可看出实验测得PI 曲线大致符合理论,一定程度说明数据正确性。

可容易看出实验所用808nmLD的门限电流大致在70mA左右。

在激光区的线性拟合度不是很高,尤其在220mA附近。

这是由于光功率计示数不稳定且波动较大,而且外光源(如台灯,走廊灯等)的影响也较大,但是不改变曲线的整体趋势。

表2激励源电流与532nm绿色激光光功率关系及转换效率激励电流I/mA300 320 340 360 380 400降序绿激光功率P1/mW 0.2360.2450.307 0.380.450.53升序绿激光功率P2/mW 0.2360.2890.307 0.430.480.571绿激光功率平均值0.2360.2670.307 0.4050.4530.551P/mW808nmL D激光功率P’/mW 69.5 75.4 82.1 91.2 101.3110.5转换效率η0.34%0.35%0.37% 0.44%0.45%0.50%注:η=PP×100%由上表数据可看出:随激励电流的增大(或者说LD光功率增大),532nm绿激光的转换效率整体上呈增加趋势。

经查阅资料,实验所得转换效率远小于一般LD泵浦激光器的转换效率。

造成偏低的原因可能有:(1)透镜或出射窗有污渍影响光强输出。

(2)KTP晶体损坏(实验过程确有遇到晶体损坏,更换KTP晶体才明显看到绿色激光光功率增强)。

(3)光路调节不够准直,主要器件的光轴不在同一条水平线上。

(4)激光未能在增益介质膜中多次振荡便出射,光强增益放大不足。

(5)光功率计数值显示不稳定,LD 激光输出本身也不十分稳定,测量读数会有一定误差。

再将升序、降序(对电流而言)测得的功率值以激励电流为横坐标,导入Origin8.5,并拟合为平滑曲线如下图: 0.200.250.300.350.400.450.500.55绿色激光功率P /m W 电源电流I/mA升序降序图6 绿色激光(波长为532nm )的PI 特性曲线由上图可以看出,当激励电流一定时,不管是升序还是降序,测得的绿激光光功率最大值相差甚小,但整体来说,升序测得的数据略大于降序测得的数据。

因为实际实验中升序降序所取电流值一一对应,而降序过程中由于起始激励电源高,散热慢而导致光路系统(器件)温度会略高于升序时的温度。

因为温度的升高会引起某些方向振动模式增益得到加强,某些方向振动模增益得到减弱。

推测:1、降序系统温度偏高,绿光532nm激光振动模式增益得到削弱所致;2、电流一定的情况下,随着温度升高,半导体激光器LD的阈值电流增大,导致发光功率降低。

【实验总结】本实验大致主要过程步骤为:用波长为808nm的半导体激光光源作为固体增益介质Nd:YVO4晶体的泵浦光源,从而得到波长为1064nm的红外激光,利用He-Ne激光器进行光路准直校准,使激光通过KTP倍频晶体,利用其非线性作用可得波长为532nm的绿色激光,再稍微调整晶体和透镜调节架,使得绿激光光功率为最大值,并测量记录。

最为关键和主要的步骤是光路的准直校准,具体步骤如下:1、将小孔光屏置于轨道上,打开准直He-Ne激光光源。

将光屏从靠近He-Ne光源一端向远端移动,直至准直光能全部透过小孔。

(物镜、输出镜、KTP晶体等独立非固定器件先不放在光轨上)2、将物镜放置在离泵浦光源距离为50mm左右的位置(物镜靠LD侧贴膜Nd:YVO4实为增益介质)。

打开泵浦光源(实验设置为300mA 输出电流),观察光斑是否在物镜正中心,注意中心光斑应为白色或亮黄色,区别于其他的红色反射光点。

可调节物镜四维调节架旋钮使最亮光点严格在透镜中心。

固定物镜关闭LD光源并再打开准直光源,细调物镜使激光反射点与光阑中心重合。

实际实验中反射光点并未能完全与小孔重合。

3、将输出镜放上轨道,打开准直光源进行校准。

根据光点随输出镜旋钮扭动方向的移动,判断物镜与输出镜是否严格平行。

关闭He-Ne准直光源。

4、将倍频晶体KTP放上轨道,尽量靠近物镜(增益介质),也用He-Ne光源进行准直调节。

5、关闭准直光源,打开LD泵浦光源,在输出镜与小孔间放上滤光片(滤红外);旋动KTP 晶体直至出现绿色激光。

细调KTP、输出镜等的调节架可使绿激光功率尽可能达到最大值。

实际实验中调节良久,测量并读取得到了如表2中的数据。

为了方便可以全程打开着准直He-Ne 激光器,在不需要它的时候只需要在其出射端轨道上加遮挡屏即可。

相关文档
最新文档