高一数学函数经典难题讲解

合集下载

高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学 知识点 三角函数  诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。

【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。

属于基础题型。

================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。

【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。

================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。

高一数学复习考点题型专题讲解14 单调性与最大(小)值

高一数学复习考点题型专题讲解14 单调性与最大(小)值

高一数学复习考点题型专题讲解第14讲 单调性与最大(小)值一、单选题1.下列四个函数在(),0∞-是增函数的为( )A .()24f x x =+B .()12f x x =-C .()21f x x x =--+D .()32f x x=- 【答案】D【分析】根据各个函数的性质逐个判断即可【解析】对A ,()24f x x =+二次函数开口向上,对称轴为y 轴,在(),0∞-是减函数,故A 不对.对B ,()12f x x =-为一次函数,0k <,在(),0∞-是减函数,故B 不对.对C ,()21f x x x =--+,二次函数,开口向下,对称轴为12x =-,在1,2⎛⎫-∞- ⎪⎝⎭是增函数,故C 不对.对D ,()32f x x=-为反比例类型,0k <,在(),0∞-是增函数,故D 对. 故选:D2.函数1()f x x=的单调递减区间是( )A .(,0),(0,)-∞+∞B .(0,)+∞C .(,0)(0,)-∞+∞D .(,0)-∞ 【答案】A【分析】根据反比例函数的性质得解;【解析】解:因为1()f x x=定义域为(,0)(0,)-∞+∞,函数在(,0)-∞和(0,)+∞上单调递减, 故函数的单调递减区间为(,0)-∞和(0,)+∞; 故选:A3.定义域为R 的函数()f x 满足:对任意的12,R x x ∈,有1212()(()())0x x f x f x -⋅->,则有( )A .(2)(1)(3)f f f -<<B .(1)(2)(3)f f f <-<C .(3)(2)(1)f f f <-<D .(3)(1)(2)f f f <<- 【答案】A【分析】利用函数的单调性,判断选项即可.【解析】定义域在R 上的函数()f x 满足:对任意的1x ,2x R ∈,有1212()(()())0x x f x f x -⋅->, 可得函数()f x 是定义域在R 上的增函数, 所以(2)f f -<(1)f <(3). 故选:A .4.若函数()f x 的图象如图所示,则其单调递减区间是( )A .[]4,1--,[]1,4B .[]1,1-C .[]4,4-D .[]22-,【答案】B【分析】利用图象判断函数单调性的方法直接写出函数()f x 单调递减区间. 【解析】观察函数()f x 的图象,可知函数()f x 的单调递减区间为[]1,1-. 故选:B5.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是( )A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠ 【答案】C【分析】根据函数单调性的等价条件进行判断即可.【解析】解:由函数的单调性定义知,若函数()f x 在给定的区间上是增函数,则12x x -,与()()12f x f x -同号,由此可知,选项A ,B ,D 都正确. 若12x x >,则()()12f x f x >,故选项C 不正确. 故选:C.6.若()f x 是R 上的严格增函数,令()()13F x f x =++,则()F x 是R 上的( ) A .严格增函数B .严格减函数C .先是严格减函数后是严格增函数D .先是严格增函数后是严格减函数 【答案】A【分析】由函数的单调性的定义判断可得选项.【解析】解:因为()f x 是R 上的严格增函数,所以由复合函数单调性法则可得,()+1f x 也是R 上的严格增函数,所以()()13F x f x =++是R 上的严格增函数.故选:A.7.若函数()()2318f x x mx m =-+∈R 在()0,3上不单调,则m 的取值范围为( )A .02m ≤≤B .02m <<C .0m ≤D .2m ≥ 【答案】B【分析】要想在()0,3上不单调,则对称轴在()0,3内【解析】()()2318f x x mx m =-+∈R 的对称轴为32mx =,则要想在()0,3上不单调,则()30,32m∈,解得:()0,2m ∈ 故选:B8.若函数2()21f x x mx =+-在区间(1,)-+∞上是增函数,则实数m 的取值范围是( ) A .(,4]-∞-B .[4,)+∞C .[2,)+∞D .(,2]-∞- 【答案】B【分析】根据二次函数的性质可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,即可解出.【解析】依题意可知,(1,),4m ⎡⎫-+∞⊆-+∞⎪⎢⎣⎭,所以14m-≤-,解得4m ≥. 故选:B .9.函数s ) A .3,2⎛⎤-∞ ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D【分析】首先求出函数的定义域,再由二次函数的性质以及复合函数的单调性即可求解.【解析】由230x x +≥得3x ≤-或0x ≥,即函数s (][),30,-∞-⋃+∞,又二次函数23t x x =+的图象的对称轴方程为32x =-,所以函数23t x x =+(x ∈(][),30,-∞-⋃+∞)在区间(],3-∞-上单调递减,在区间[)0,+∞上单调递增,又函数0)y t =≥为增函数,所以s (],3-∞-. 故选:D10.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为( )A .103B .152C .3D .4 【答案】B【分析】利用换元法以及对勾函数的单调性求解即可.【解析】设1t x =+,则问题转化为求函数()41g t t t =+-在区间1,32⎡⎤⎢⎥⎣⎦上的最大值.根据对勾函数的性质,得函数()g t 在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,在区间[]2,3上单调递增,所以()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭.故选:B11.已知函数()f x 在[]0,1上单调递减,则实数a 的取值范围是( )A .(](,01,2022)-∞⋃B .(](,00,2022)-∞⋃C .(,0)(1,)-∞⋃+∞D .()(),00,1-∞⋃ 【答案】A【分析】利用换元法以及复合函数的单调性的法则进行处理.【解析】当a =0时,()f x =.当a >0时,设2022t ax =-,则函数y =2022t ax =-在区间[]0,1上单调递减,要使函数()f x =在[]0,1上单调递减,则10? 20220a a ->⎧⎨-≥⎩,解得12022a <≤.当a <0时,2022t ax =-在区间[]0,1上为增函数,要使函数()f x =在[]0,1上单调递减,则10?202200a a -<⎧⎨-⨯≥⎩,解得a <0.综上,a 的取值范围为(](,01,2022)-∞⋃.故B ,C ,D 错误. 故选:A.12.若函数()()2,12225,1a x ax x f x a x x ⎧-+≥⎪=⎨⎪+-<⎩在R 上单调递增,则实数的取值范围为( )A .81,5⎛⎫- ⎪⎝⎭B .81,5⎛⎤- ⎥⎝⎦C .(]1,2-D .()1,2-【答案】B【分析】根据分段函数、二次函数、一次函数的单调性可建立不等式求解.【解析】由题意122201232a a aa ⎧≤⎪⎪+>⎨⎪⎪-≥-⎩,解得815a -<≤,故选:B二、多选题13.(多选)下列函数中,满足“1x ∀,()20x ∞∈+,,都有1212()()0f x f x x x -<-”的有( )A .()1f x x =-B .()31f x x =-+C .()243f x x x =++D .()2f x x=【答案】BD【解析】由题设条件可得()f x 应为()0,∞+上的增函数,逐项判断后可得正确的选项. 【解析】因为1x ∀,()20,x ∈+∞,都有1212()()0f x f x x x -<-,故()f x 应为()0,∞+上的减函数.对于A ,当1x > ,()1f x x =-,则()f x 在()1,+∞上为增函数,故A 错误. 对于B ,()31f x x =-+在()0,∞+上为减函数,故B 正确.对于C ,对称轴20x =-<,故()243f x x x =++在()0,∞+上为增函数,故C 错误.对于D ,()2f x x=在()0,∞+上为减函数,故D 正确. 故选:BD .14.(多选)若函数1y ax =+在[]1,2上的最大值与最小值的差为2,则实数a 的值可以是( )A .2B .2-C .1D .0 【答案】AB【分析】根据一次函数的单调性分0a >和0a <两种情况分别求解最大值和最小值,列出方程得解.【解析】依题意,当0a >时,1y ax =+在2x =取得最大值,在1x =取得最小值,所以()2112a a +-+=,即2a =;当0a <时,1y ax =+在1x =取得最大值,在2x =取得最小值,所以()1212a a +-+=,即2a =-.故选AB .【点睛】本题考查一次函数的单调性和最值求解,属于基础题.15.(多选)已知函数()()22101x x f x x x -+=≥+,则( )A .()f x 最小值为12B .()f x 在[]0,1上是增函数C .()f x 的最大值为1D .()f x 无最大值 【答案】AC【分析】分0x =和0x ≠两种情况,把函数转化为()111f x x x=-+,利用对勾函数的性质和基本不等式求函数的最值与值域即可.【解析】()2221111x x xf x x x -+==-++, 当0x =时,()1f x =;当0x >时,()111f x x x=-+,此时()f x 在()0,1是减函数,在[)1,+∞上是增函数, 所以()()min 112f x f ==,故A 正确,B 错误; 当0x >时,12x x+≥,当且仅当1x =时取等号,所以11012x x<≤+,所以11112x x≤-<1+,此时()112f x ≤<,又0x =时,()1f x =,所以()f x 的值域为1,12⎡⎤⎢⎥⎣⎦,故C 正确,D 错误.故选:AC . 16.设函数()21,21,ax x af x x ax x a-<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2B .-1C .0D .1 【答案】BC【分析】分0a =,0a >和0a <三种情况讨论,结合二次函数的性质,从而可得出答案.【解析】解:当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.三、填空题17.若函数()22f x x x =-,则()1f 、()1f -、f 之间的大小关系为______.【答案】()()11f f f <<-##()()11f f f ->>【分析】结合二次函数开口和对称轴,判断自变量与对称轴距离,进而判断大小.【解析】因为()()22211f x x x x =---=,因为()f x 开口向上,所以()1f 最小,又()1110,1--=∈,所以()1f f->,所以()()11f f f <<-.故答案为:()()11f f f <<-18.已知函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=,则()1a b -的最大值为______.【答案】94##214##2.25【分析】依题意可得4a b +=,再根据函数的定义域求出a ,b 的取值范围,则()239124a b a ⎛⎫- ⎪⎭-=-+⎝,[]1,2a ∈,根据二次函数的性质计算可得.【解析】解:∵函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=, ∴()232130a b -+--=,可得4a b +=,[]1,2a ∈-,[]0,3b ∈,又4b a =-,∴[]1,2a ∈,则()()2391324a b a a a -=-=--⎫ ⎪⎭+⎛⎝,[]1,2a ∈, 所以当32a =时,()max 914a b ⎡⎤⎣⎦-=,即32a =,52b =时,()1a b -取得最大值94. 故答案为:9419.已知函数()3f x x a =-+的增区间是[)2,+∞,则实数a 的值为___________. 【答案】6【分析】去绝对值将()3f x x a =-+转化为分段函数,再根据单调性求解a 的值即可.【解析】因为函数()3,33,3a x a x f x a x a x ⎧-+≤⎪⎪=⎨⎪->⎪⎩,故当3a x ≤时,()f x 单调递减,当3a x >时,()f x 单调递增. 因为函数()3f x x a =-+的增区间是[)2,+∞, 所以23a =,所以6a =. 故答案为:6.20.已知∈a R ,函数()4f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是__________【答案】9-,2⎛⎤∞ ⎥⎝⎦【解析】[][]41,4,4,5x x x ∈+∈,分类讨论: ①当5a ≥时,()442f x a x a a x x x=--+=--, 函数的最大值9245,2a a -=∴=,舍去;②当4a ≤时,()445f x x a a x xx=+-+=+≤,此时命题成立; ③当45a <<时,(){}max max 4,5f x a a a a =-+-+⎡⎤⎣⎦,则:4545a a a a a a ⎧-+≥-+⎪⎨-+=⎪⎩或4555a a a aa a ⎧-+<-+⎪⎨-+=⎪⎩,解得:92a =或92a < 综上可得,实数a 的取值范围是9,2⎛⎤-∞ ⎥⎝⎦.【名师点睛】本题利用基本不等式,由[]1,4x ∈,得[]44,5x x+∈,通过对解析式中绝对值符号的处理,进行有效的分类讨论:①5a ≥;②4a ≤;③45a <<,问题的难点在于对分界点的确认及讨论上,属于难题.解题时,应仔细对各种情况逐一进行讨论.四、解答题21.指出下列函数的单调区间: (1)13y x =-; (2)12y x=+; (3)21y x =+; (4)21y x x =-+-.【答案】(1)单调递减区间为()-∞+∞,,没有单调递增区间;(2)单调递减区间为()0-∞,和()0+∞,,没有单调递增区间;(3)单调递减区间为()0-∞,,单调递增区间为()0+∞,;(4)单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 【分析】(1)根据一次函数的单调性,由30-<,可得出函数的单调区间; (2)根据反比例函数的单调性可得出函数的单调区间; (3)由二次函数的图象和其对称轴可得出函数的单调区间; (4)由二次函数的图象和其对称轴可得出函数的单调区间.【解析】解:(1)函数13y x =-的定义域为()-∞+∞,,因为30-<,所以13y x =-在()-∞+∞,上单调递减,所以13y x =-单调递减区间为()-∞+∞,,没有单调递增区间; (2)函数12y x=+的定义域为()()00-∞∞,,+,因反比例函数1y x=在()0-∞,和()0+∞,上单调递减,所以12y x=+单调递减区间为()0-∞,和()0+∞,,没有单调递增区间; (3)因为函数21y x =+的定义域为()-∞+∞,,它的图象是开口向上的抛物线,对称轴为0x =,所以21y x =+的单调递减区间为()0-∞,,单调递增区间为()0+∞,; (4)函数21y x x =-+-的定义域为()-∞+∞,,它的图象是开口向下的抛物线,对称轴为12x =,所以21y x x =-+-的单调递减区间为12⎛⎫+∞ ⎪⎝⎭,,单调递增区间为12⎛⎫-∞ ⎪⎝⎭,. 22.(1)在定义域[],a b 上单调递减的函数()f x ,最大值是多少? (2)若()f x 在[],a u 上单调递减而在[],u b 上单调递增,最小值是多少? 【答案】(1)()()max f x f a =;(2)()()min f x f u =. 【分析】(1)根据单调递减函数的性质进行求解即可;(2)根据函数的单调性进行求解即可.【解析】(1)因为()f x 是定义域[],a b 上单调递减的函数, 所以()()max f x f a =;(2)因为()f x 在[],a u 上单调递减而在[],u b 上单调递增, 所以()()min f x f u =.23.设a 为实数,已知函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>,求a 的取值范围. 【答案】()1,+∞【分析】直接根据函数的单调性可得12a a +<,从而可得出答案.【解析】解:因为函数()y f x =在定义域R 上是减函数,且(1)(2)f a f a +>, 所以12a a +<,解得1a >, 所以a 的取值范围()1,+∞. 24.已知函数f (x )=12x x ++,证明函数在(-2,+∞)上单调递增. 【答案】证明见解析.【分析】∀x 1,x 2∈(-2,+∞),利用作差法和0比可得函数值大小进而可证得. 【解析】证明:∀x 1,x 2∈(-2,+∞),且x 1>x 2>-2, f (x )=11122x x x +=-++ 则f (x 1)-f (x 2)=212x -+112x + =1212-(2)(2)x x x x ++,因为x 1>x 2>-2,所以x 1-x 2>0,x 1+2>0,x 2+2>0,所以1212-(2)(2)x x x x ++>0,所以f (x 1)>f (x 2),所以f (x )在(-2,+∞)上单调递增.25.设函数()f x 的定义域为()4,5-,如果()f x 在()4,0-上是减函数,在()0,5上也是减函数,能不能断定它在()4,5-上是减函数?如果()f x 在()4,0-上是增函数,在[)0,5上也是增函数,能不能断定它在()4,5-上是增函数? 【答案】见解析【分析】根据反例可判断两个结论的正误.【解析】取()3,405,05x x f x x x -+-<≤⎧=⎨-<<⎩,则()f x 在()4,-0上是减函数,在()0,5上也是减函数, 但()()0.2 3.2,0.01 4.99f f -==,()()0.20.01f f -<, 因此不能断定()f x 在()4,5-上是减函数. 若取()5,403,05x x f x x x +-<<⎧=⎨+≤<⎩,则()f x 在()4,-0上是增函数,在[)0,5上也是增函数,但()()0.2 4.8,0.01 3.01f f -==,()()0.20.01f f ->, 因此不能断定()f x 在()4,5-上是增函数.26.已知函数f (x )=[](],0,24,2,4x x x x ⎧∈⎪⎨∈⎪⎩;(1)在图中画出函数f (x )的大致图象.(2)写出函数f (x )的单调递减区间. 【答案】(1)答案见解析;(2)[2,4].【分析】(1)根据分段函数的解析式可画出图象; (2)根据图象观察可得答案.【解析】(1)函数f (x )的大致图象如图所示.(2)由函数f (x )的图象得出,函数的单调递减区间为[2,4].27.函数()f x ,()(),,x a b b c ∈⋃的图像如图所示,有三位同学对此函数的单调性作出如下的判断:甲说函数()f x 在定义域上是增函数;乙说函数()f x 在定义域上不是增函数,但有增区间;丙说函数()f x 的增区间有两个,分别为(),a b 和(),b c .请你判断他们的说法是否正确. 【答案】甲的说法是错误的;乙的说法是正确的,丙的说法是正确的.【分析】根据函数图象,应用数形结合的思想直接判断甲、乙、丙说法的正误. 【解析】甲的说法是不正确的,乙的说法是正确的,丙的说法是正确的.若取120x b x c <<<<(如上图),则12y y >,与甲的说法矛盾, 故甲的说法是错误的;由甲的说法的错误可知:乙的说法是正确的,这两个增区间分别是(),a b 和(),b c , ∴丙的说法是正确的.28.画出函数2()1f x x x =-++(11x -剟)的图象,并根据图象回答下列问题: (1)当12112x x -<剟时,比较()1f x 与()2f x 的大小; (2)是否存在0[1,1]x ∈-,使得()0 2f x =-? 【答案】(1)()1f x <()2f x ;(2)不存在.【分析】(1)根据图象得到函数的单调性,即得解; (2)根据函数的最小值判断得解. 【解析】(1)函数的图象如图所示,当12112x x -<剟时,由于函数单调递增,所以()1f x <()2f x ; (2)由图得当1x =-时,函数取到最小值1-, 所以不存在0[1,1]x ∈-,使得()0 2f x =-.29.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 【答案】(1)f (x )=x 2-x +1;(2)m <-1.【分析】(1)设f (x )=ax 2+bx +c (a ≠0),则由f (0)=1可求出c ,由f (x +1)-f (x )=2x 可求出,a b ,从而可求出函数的解析式,(2)将问题转化为x 2-3x +1-m >0在[-1,1]上恒成立,构造函数g (x )=x 2-3x +1-m ,然后利用二次函数的性质求出其最小值,使其最小值大于零即可求出实数m 的取值范围【解析】(1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1, ∴c =1,∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴220a a b =⎧⎨+=⎩,∴11a b =⎧⎨=-⎩,∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =3()2x -2-54-m ,其对称轴为x =32, ∴g (x )在区间[-1,1]上是减函数,∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.30.已知函数()()a f x x a R x=+∈(1)当1a =,证明函数在()0,1上单调递减;(2)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()371,12f x ⎡⎤∈⎢⎥⎣⎦,求a 的值. 【答案】(1)证明见解析 (2)14a =【分析】(1)利用证明函数单调性的定义()12,0,1x x ∀∈,由1201x x <<<,()()120f x f x ->,可证明函数在()0,1上单调递减.(2)通过讨论参数a ,分别求出0a =,0a <,0a >时()f x 的值即可. (1)证明:若1a =,则()1f x x x=+()12,0,1x x ∀∈,1201x x <<<()()12121212121111f x f x x x x x x x x x -=+--=-+- ()()1212211212121x x x x x x x x x x x x ---=-+= 当()120,1x x ∈时,1201x x <<,所以()()12121210x x x x x x -->所以,函数在()0,1上单调递减. (2)①当0a =时,()f x x =,不满足条件;②当0a <时,易知函数()f x 在定义域内单调递增,则满足:112f ⎛⎫= ⎪⎝⎭,()37312f =联立()11237312f f ⎧⎛⎫= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,即11122373312a a ⎧+=⎪⎪⎨⎪+=⎪⎩解得14136a a ⎧=⎪⎪⎨⎪=⎪⎩,不满足条件;③当0a >时,令120x x <<<()()()()121212121212x x a a af x f x x x x x x x x x --=+--=- 所以()()12f x f x >,函数在(上单调递减;同理可证,函数在)+∞上单调递增, 所以,函数()f x最小值应在x =当102<时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为12f ⎛⎫⎪⎝⎭,所以112f ⎛⎫= ⎪⎝⎭,解得14a =,符合条件;当3<函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为()3f ,所以()31f =,解得6a =-,不符合条件;当132≤时,函数()f x 在1,32x ⎡⎤∈⎢⎥⎣⎦的最小值为f,所以1f =,解得:14a =,不符合条件; 综上,14a =.31.已知函数()f x 的定义域是(0,)+∞,对定义域的任意12,x x 都有1212()()()f x x f x f x =+,且当1x >时,()0f x >,(4)1f =;(1)求证:1()()f x f x =-;(2)试判断()f x 在(0,)+∞的单调性并用定义证明你的结论; (3)解不等式1(1)(1)2f x f x -++<- 【答案】(1)证明见解析 (2)增函数;证明见解析(3)【分析】(1)使用赋值法,先令121x x ==求得(1)f ,然后再令121,x x x x==可证;(2)先设120x x >>,然后用21x 代换1212()()()f x x f x f x =+中的2x ,结合1x >时,()0f x >可证;(3)先用赋值法求得11()22f =-,然后将不等式转化为21(1)()2f x f -<,利用单调性去掉函数符号,结合定义域可解. (1)令121x x ==,得(1)(1)(1)f f f =+,解得(1)0f = 再令121,x x x x ==,则1()()(1)0f x f f x+== 所以1()()f x f x =- (2)()f x 在(0,)+∞上为增函数,证明如下:设120x x >>,则121x x >,因为1x >时,()0f x > 所以11221()()()0xf x f f x x +=>由(1)知221()()f x f x =- 所以1221()()()f x f f x x >-= 所以()f x 在(0,)+∞上为增函数.(3)因为(4)1f =,所以(2)(2)(4)1f f f +==,得1(2)2f =, 又因为11(2)()22f f =-=, 所以11()22f =-, 所以1(1)(1)2f x f x -++<-⇔21(1)()21010f x f x x ⎧-<⎪⎪->⎨⎪+>⎪⎩由上可知,()f x 是定义在(0,)+∞上为增函数所以,原不等式⇔21121010x x x ⎧-<⎪⎪->⎨⎪+>⎪⎩,解得1x <<. 32.已知函数ty x x=+有如下性质:若常数0t >,则该函数在(上单调递减,在)+∞上单调递增.(1)已知()2412321--=+x x f x x ,[]0,1x ∈,利用上述性质,求函数()f x 的单调区间和值域; (2)对于(1)中的函数()f x 和函数()2g x x a =--,[]0,1x ∈,若对任意[]10,1x ∈,总存在[]20,1x ∈,使得()()21g x f x =成立,求实数a 的值.【答案】(1)()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦,单调递增区间为1,12⎡⎤⎢⎥⎣⎦,值域为[]4,3--. (2)32a =【分析】(1)令21t x =+,[]1,3t ∈,将()f x 化为()48h t t t =+-,由对勾函数的单调性可得()f x 的单调区间和值域(2)由题意可得()f x 的值域是()g x 的值域的子集,结合(1)的值域和一次函数的单调性可得()g x 的值域,可得a 的不等式,解不等式可得所求范围 (1)()2412342182121x x y f x x x x --===++-++. 设21u x =+,[]0,1x ∈,则48y u u =+-,[]1,3u ∈.由已知性质,得当12u ≤≤,即102x ≤≤时,()f x 单调递减,所以()f x 的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,()f x 单调递增,所以()f x 的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由()03f =-,142f ⎛⎫=- ⎪⎝⎭,()1113f =-,得()f x 的值域为[]4,3--. (2)因为()2g x x a =--在[]0,1上单调递减, 所以()[]12,2g x a a ∈---.由题意,得()f x 的值域是()g x 的值域的子集, 所以12423a a --≤-⎧⎨-≥-⎩,所以32a =.。

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解16 幂函数

高一数学复习考点题型专题讲解 第16讲 幂函数(难点)一、单选题1.已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是( )A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞【答案】A【分析】构造函数()()2g x f x =-,容易判断()g x 为奇函数,且在R 上单调递增,进而将原不等式转化为()()12g a g a >-,最后根据单调性求得答案.【解析】设()()2g x f x =-,R x ∈,则()()()()()()53533535g x x x x x x x g x -=-+-+-=-++=-,即()g x 为奇函数,容易判断()g x 在R 上单调递增(增+增),又()()214f a f a +->可化为,()()()()()22122112f a f a g a g a g a ->---⇒>--=-⎡⎤⎣⎦,所以a >1-2a ,∴ a >13. 故选:A.2.已知R α∈,则函数2()1x f x x a=+的图像不可能是( )A .B .C .D .【答案】A【分析】根据含参函数的解析式和函数特殊值判断函数可能的图像.【解析】根据2()1x f x x a=+可知210x +>,所以当0x >时,0x α>,即()0f x >,故选项A 错误,而当α为其他值时,B,C,D 均有可能出现. 故选:A3.已知命题p :幂函数2y x -=在(),0∞-上单调递增;命题q :若函数()1f x +为偶函数,则()f x 的图象关于直线1x =对称.则下列命题为假命题的是( ) A .p q ∧B .p q ⌝∨C .()()p q ⌝∧⌝D .()p q ∨⌝ 【答案】C【分析】首先分别判断命题p 和命题q 的真假,然后再根据逻辑连接词“且”、“或”、“非”进行判断即可. 【解析】()2210y x x x-==?∴2y x -=是偶函数, 幂函数2y x -=在()0+∞,上单调递减, ∴2y x -=在(),0∞-上单调递增, ∴命题p 为真命题;则p ⌝为假命题;函数()1f x +为偶函数,()()11f x f x ∴+=-+()f x ∴的图象关于直线1x =对称∴命题q 为真命题;则q ⌝为假命题;又逻辑连接词“且”为“一假必假”,“或”为“一真必真”, 则对于A ,p q ∧为真命题; 对于B ,p q ⌝∨为真命题; 对于C ,()()p q ⌝∧⌝为假命题; 对于D ,()p q ∨⌝为真命题; 故选:C.4.①函数值域为[0,)+∞;②函数为偶函数;③函数在[0,)+∞上()()12120f x f x x x ->-恒成立;④若任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭.已知函数:①121x y =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =.其中同时满足以上四个条件的函数有( )个 A .0B .1C .2D .3 【答案】C【分析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象,再根据图象逐一判断四个函数是否满足①②③④四个条件即可求解.【解析】分别作出①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =;④124y x =四个函数的图象:由图知,四个函数的值域都是[)0,∞+都满足①;由图知:①121xy =-;②212xy ⎛⎫= ⎪⎝⎭;③23y x =图象关于y 轴对称,都是偶函数,④124y x =的定义域为[)0,∞+不关于原点对称,既不是奇函数也不是偶函数,故④124y x =不满足条件②;排除函数④124y x =; 条件③:函数在[)0,∞+上()()12120f x f x x x ->-恒成立;由函数单调性的定义可知:函数在[)0,∞+上单调递增,由四个函数图象可知,①121x y =-,③23y x =,④124y x =满足条件③,函数②212x y ⎛⎫= ⎪⎝⎭不满足条件③,排除函数②212xy ⎛⎫= ⎪⎝⎭;对于条件④:函数①121xy =-:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数①121xy =-满足条件④,函数③23y x =:如图任意120,0x x ≥≥都有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,故函数③23y x =满足条件④,所以同时满足以上四个条件的函数有函数①121xy =-、函数③23y x =,共有2个,故选:C5.已知点(n ,8)在幂函数()(2)m f x m x =-的图象上,则函数()g x =域为( )A .[0,1]B .[2,0]-C .[1,2]-D .[2,1]- 【答案】D【分析】由()(2)m f x m x =-为幂函数可求m ,由点(n ,8)在幂函数()(2)m f x m x =-的图象上可求n ,再根据函数的单调性求函数()g x .【解析】由题可得m -2=1,解得m =3,所以3()f x x =,则3()8,2f n n n ===,因此()g x ==[2,3],因为函数=yy =-[2,3]上单调递减,所以函数g (x )在[2,3]上单调递减,而g (2)=1,g (3)=-2,所以g (x )的值域为[-2,1]. 故选:D.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()2221()232f x x a x a a =-+--,若x R ∀∈,(1)()f x f x -≤,则实数a 的取值范围为( )A .11,66⎡⎤-⎢⎥⎣⎦B.⎡⎢⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D.⎡⎢⎣⎦ 【答案】B【分析】根据函数的解析式,分20x a ≤≤、222a x a <<和22x a ≥三种情况分类讨论,得出函数的解析式,结合函数的图象,即可求解. 【解析】由题意,当0x ≥时,()2221()232f x x a x a a =-+--, 所以当20x a ≤≤时,()2221()232f x a x a x a x =-+--=-; 当222a x a <<时,()22221()232f x x a a x a a =-+--=-; 当22x a ≥时,()22221()2332f x x a x a a x a =-+--=-. 综上,函数()2221()232f x x a x a a =-+--, 在0x ≥时的解析式等价于222222,0(),23,2x x a f x a a x a x a x a ⎧-≤≤⎪=-<<⎨⎪-≥⎩. 根据奇函数的图像关于原点对称作出函数()f x 在R 上的大致图像如图所示,观察图像可知,要使x R ∀∈,(1)()f x f x -≤,则需满足()22241a a --≤,解得a ≤≤故选:B.7.定义新运算“⊕”如下:2,,a a b a b b a b⎧⊕=⎨<⎩…,已知函数()(1)2(2)([2,2])f x x x x x =⊕-⊕∈-,则满足(2)(2)f m f m -…的实数m 的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .122⎡⎤⋅⎢⎥⎣⎦C .[0.1]D .[ 1.4]-【答案】C【解析】根据新定义,得到()f x 的表达式,判断函数()f x 在定义域的单调性,可得结果. 【解析】当21x -≤≤时,()f x =1?224x x -⨯=-;当12x <≤时,23()224f x x x x =⋅-⨯=-; 所以34,21()4,12x x f x x x --⎧=⎨-<⎩剟…,易知,()4f x x =-在[ 2.1]-单调递增,3()4f x x =-在(1,2]单调递增,且当12x -≤≤时,max ()3f x =-, 当12x <…时,max ()3f x =-,则()f x 在[ 2.2]-上单调递增, 所以(2)(2)f m f m -…得22222222m m m m -≤-≤⎧⎪-≤≤⎨⎪-≤⎩,解得01m 剟. 故选:C【点睛】本题考查对新定义的理解,以及分段函数的单调性,重点在于写出函数()f x 以及判断单调性,难点在于m 满足的不等式,属中档题.8.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决.【解析】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、多选题9.黄同学在研究幂函数时,发现有的具有以下三个性质:①是奇函数;②值域是{y y R ∈且0}y ≠;③在(,0)-∞上是减函数则以下幂函数符合这三个性质的有( ) A .2()f x x =B .()f x x = C .1()f x x -=D .13()f x x -= 【答案】CD【分析】通过已知三个条件,分别奇偶性、值域和单调性即可排除选项.【解析】由已知可得,此函数为奇函数,而A 选项2()f x x =为偶函数,不满足题意,排除选项;选项B ,()f x x =的值域为}{y y R ∈,且该函数在R 上单调递增,不满足题意条件,排除选项;选项C 、D 同时满足三个条件. 故选:CD.10.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()321f x g x x x -=++,则下列选项中正确的是( ) A .()f x 和()g x 在()0,∞+上的单调性相同 B .()f x 和()g x 在()0,∞+上的单调性相反 C .()f x 和()g x 在(),0-∞上的单调性相同 D .()f x 和()g x 在(),0-∞上的单调性相反 【答案】BC【分析】通过解方程组求出23()1,(),f x x g x x =+=-再判断单调性即得解.【解析】解:由题得()()32321,()()1f x g x x x f x g x x x ---=-++∴+=-++(1),又()()321f x g x x x -=++ (2),解(1)(2)得23()1,(),f x x g x x =+=-3()g x x =-在(,)-∞+∞上单调递减(因为幂函数3y x =是R 上的增函数),因为23()1,(),f x x g x x =+=-在()0,∞+上的单调性相反(()f x 单调递增()g x 单调递减),23()1,(),f x x g x x =+=-在(),0-∞上都是单调递减,故选:BC11.若函数()f x 在定义域内的某区间M 是增函数,且()f x x在M 上是减函数,则称()f x 在M 上是“弱增函数”,则下列说法正确的是( ) A .若()2f x x =,则不存在区间M 使()f x 为“弱增函数”B .若()1f x x x =+,则存在区间M 使()f x 为“弱增函数”C .若()3f x x x =+,则()f x 为R 上的“弱增函数”D .若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则4a =【分析】根据“弱增函数”的定义,结合基本初等函数的性质,对四个选项一一判断,即可得到正确答案.【解析】对于A :()2f x x =在[)0,∞+上为增函数,()==f x y x x在定义域内的任何区间上都是增函数,故不存在区间M 使()2f x x =为“弱增函数”,A 正确; 对于B :由对勾函数的性质可知:()1f x x x =+在[)1,+∞上为增函数,()21f x y x x-==+,由幂函数的性质可知,()21f x y x x-==+在[)1,+∞上为减函数,故存在区间[)1,M =+∞使()1f x x x=+为“弱增函数”,B 正确;对于C :()3f x x x =+为奇函数,且0x ≥时,()3f x x x =+为增函数,由奇函数的对称性可知()3f x x x =+为R 上的增函数,()21f x y x x==+为偶函数,其在0x ≥时为增函数,在0x <时为减函数,故()3f x x x =+不是R 上的“弱增函数”,C 错误;对于D :若()()24f x x a x a =+-+在区间(]0,2上是“弱增函数”,则()()24f x x a x a =+-+在(]0,2上为增函数,所以402a --≤,解得4a ≤,又()()4f x a y x a xx==+-+在(]0,2上为减函2,则4a ≥,综上4a =.故D 正确. 故选:ABD .12.记使得函数()269f x x x =-+在[]1,x n ∈上的值域为[]0,4的实数n 的取值范围为集合A ,过点()4,2的幂函数()g x 在区间[]1,13m m -+上的值域为集合B ,若A 是B 的必要不充分条件,则整数m 的取值可以为( ) A .10B .11C .12D .13【分析】根据二次函数的性质可得集合A ;根据幂函数的性质可得集合B ,由集合A 是集合B 的必要不充分条件,则B 是A 的真子集,即可得出答案.【解析】函数()269f x x x =-+的对称轴为3x =,在3x =时取最小值0,故3n ≥,又1x =与5x =时函数值均为4,故5n ≤, 故n 的取值范围为[]3,5,即集合[]3,5A =; 设幂函数()ag x x =,()g x 过点()4,2,即42a =,得12a =,故()g x =[]1,13m m -+上的值域为()1m ≥,即()1B m =≥,若集合A 是集合B 的必要不充分条件,则是[]3,5的真子集,即5(3等号不能同时成立), 解得1012m ≤≤.则整数m 的取值可以为10,11,12. 故选:ABC三、填空题13.已知函数()33x x f x -=-,则关于 的下列结论:①(0)0f =②()f x 是奇函数③()f x 在(,)-∞+∞上是单调递增函数④对任意实数a ,方程()0f x a -=都有解,其中正确的有(填写序号即可)__________.【解析】∵()33x x f x -=-,()33(33)x x x x f x ---=-=--,∴()()f x f x =--所以函数()33x x f x -=-是奇函数,由奇函数的性质,①②均正确;又1()3333xxxx f x -⎛⎫=-=- ⎪⎝⎭,13xy ⎛⎫= ⎪⎝⎭是R 上的单调递减函数,3x y =-是R 上的单调递减函数,由函数单调性的性质,所以()33x x f x -=-在R 上单调递减,③不正确;因为()f x 函数值域为R ,所以对任意实数a ,方程()0f x a -=都有解,④正确,故答案为①②④.14.已知函数()()2231m m f x m m x +-=--是幂函数,对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,R b ∈,且()()0f a f b +<,则a b +______0(填“>”“=”或“<”).【答案】<【分析】由函数()f x 为幂函数,可得m =-1或m =2,又由题意函数()f x 在()0,∞+上单调递增,可得()3f x x =,从而根据函数()f x 的奇偶性和单调性即可求解.【解析】解:因为函数()f x 为幂函数,所以211m m --=,即220m m --=,解得m =-1或m =2.当m =-1时,()31f x x=;当m =2时,()3f x x =. 因为函数()f x 对任意的1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,所以函数()f x 在()0,∞+上单调递增, 所以()3f x x =,又()()33f x x x -=-=-,所以函数()3f x x =是奇函数,且为增函数,因为()()0f a f b +<,所以()()()f a f b f b <-=-, 所以a b <-,即0a b +<. 故答案为:<.15.定义在R 上的函数()y f x =是减函数,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若,s t 满足不等式22(2)(2)f s s f t t -≤--.则当13s ≤≤时,t s的取值范围是___________.【答案】1,13⎡⎤-⎢⎥⎣⎦【解析】由f (x −1)的图象相当于f (x )的图象向右平移了一个单位 又由f (x −1)的图象关于(1,0)中心对称 知f (x )的图象关于(0,0)中心对称, 即函数f (x )为奇函数, 得f (s 2−2s )⩽f (t 2−2t ),从而t 2−2t ⩽s 2−2s ,化简得(t −s )(t +s −2)⩽0, 又1⩽s ⩽3,则-1⩽2-s ⩽1,故2−s ⩽t ⩽s , 从而211t ss -剟,而211,13s ⎡⎤-∈-⎢⎥⎣⎦,故t s 的取值范围是1,13⎡⎤-⎢⎥⎣⎦.点睛:对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若f (x )为偶函数,则f (-x )=f (x )=f (|x |). 16.对于函数1()1ax f x x +=-(a 为常数),给出下列命题: ①对任意a ∈R ,()f x 都不是奇函数;②()f x 的图像关于点(1,)a 对称;③当1a <-时,()f x 无单调递增区间;④当2a =时,对于满足条件122x x <<的所有1x ,2x 总有1221()()3()f x f x x x -<-.其中正确命题的序号为__________. 【答案】①②④【解析】①()f x 定义域为{}1x x ≠,∴()f x 不可能为奇函数,正确;②(1)11()11a x a a f x a x x -+++==+--,图像关于(1,)a 对称,正确;③当1a <-时,1()1af x a x +=+-在(,1)-∞和(1,)+∞上为增,错误;④2a =时,3()21f x x =+-在(2,)+∞上为减函数,211221123()()()3()(1)(1)x x f x f x x x x x --=<---,正确,故答案为①②④.四、解答题17.已知函数()()()()212813f x a x b x c x =-+-+-∈R . (1)如果函数()f x 为幂函数,试求实数a 、b 、c 的值;(2)如果0a >、0b >,且函数()f x 在区间1,32⎡⎤⎢⎥⎣⎦上单调递减,试求ab 的最大值.【答案】(1)5a =,8b =,1c =,或2a =,9b =,1c =. (2)18【分析】(1)根据幂函数的定义得到方程组,解得即可;(2)分2a =、2a >、02a <<三种情况讨论,结合二次函数的性质及基本不等式计算可得; (1)解:由函数()f x 的定义域为R 知,当()f x 为幂函数时,应满足()12138010a b c ⎧-=⎪⎪⎨-=⎪⎪-=⎩或()12038110a b c ⎧-=⎪⎪-=⎨⎪-=⎪⎩解得,a 、b 、c 的值分别为:5a =,8b =,1c =,或2a =,9b =,1c =. (2)解:①当2a =时,()()()81f x b x c x =-+-∈R 由题意知,08b <<,所以16ab <. ②当2a >时,函数()f x 图象的对称轴为()()3822b x a -=-,以题意得:()()38322b a -≥-,即212a b +≤所以122a b ≥+≥18ab ≤. 当且仅当3a =,6b =时取等号. ③当02a <<时,以题意得:()()381222b a -≤-,即326a b +≤,即()10263b a <≤- 又因为02a <<,所以()()()22111691169026132131633333ab a a a <≤-=--+<--+= 综上可得,ab 的最大值为18. 18.已知函数()()90f x x x x=+≠.(1)当()3,x ∈+∞时,判断并证明()f x 的单调性;(2)求不等式()()2330f x f x +≤的解集.【答案】(1)单调递增,证明见解析;(2){}1-.【解析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可;(2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f x f x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集.【解析】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭ 因为12120,90x x x x -<->, 所以()()120f x f x -<, 所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++…, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭…,所以121x x-+剟, 当0x >时,12x x+…,不合题意,舍去; 当0x <时,只需解12x x-+…,可化为2(1)0x +…,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增,又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f x f x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.19.已知函数()23111x x f x x +++=+.(1)求()f x 的解析式;(2)若对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,求m 的取值范围.【答案】(1)()11f x x x=-+(2)()),2-∞-⋃+∞【分析】(1)令1t x =+,则1x t =-,进而根据换元法求解即可;(2)结合函数()f x 的单调性得()max 52f x =,进而将问题转化为对任意[]0,1a ∈,不等式25122ma m <++恒成立,再求解恒成立问题即可. (1)解:令1t x =+,则1x t =-, 则()()()2131111t t f t t t t-+-+==-+,故()11f x x x=-+. (2)解:由(1)可得()11f x x x=-+.因为函数1y x =+和函数1y x =-均在1,22⎡⎤⎢⎥⎣⎦上单调递增,所以()f x 在1,22⎡⎤⎢⎥⎣⎦上单调递增.故()()max 522f x f ==.对任意1,22x ⎡∈⎤⎢⎥⎣⎦,[]0,1a ∈,不等式()212f x ma m <++恒成立,即对任意[]0,1a ∈,不等式25122ma m <++恒成立,则2251,2251,22m m m ⎧<+⎪⎪⎨⎪<++⎪⎩解得m 2m <-.故m 的取值范围是()),2-∞-⋃+∞.20.已知幂函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭,且在定义域内单调递增. (1)求函数()f x 的解析式;(2)若函数()()()21g x f x kf x ⎡⎤=+-⎣⎦,1,12x ⎡⎤∈⎢⎥⎣⎦,是否存在实数k ,使得()g x 的最小值为0?若存在,求出k 的值,若不存在,说明理由. 【答案】(1)()f x x = (2)存在,且32k =.【分析】(1)结合幂函数的定义、单调性求得m 的值.(2)求得()g x 的解析式,对k 进行分类讨论,结合()g x 的最小值为0来求得k 的取值范围. (1)函数()2122mx m m x f ⎛⎫=+- ⎪⎝⎭是幂函数, 222131,0,2302222m m m m m m +-=+-=+-=, 解得1m =或32m =-.由于()f x 在定义域内递增,所以32m =-不符合, 当1m =时,()f x x =,符合题意. (2)()21g x x kx =+-,1,12x ⎡⎤∈⎢⎥⎣⎦,()g x 图象开口向上,对称轴为2kx =-,当122k -≤,即1k ≥-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递增,11310,2422k g k ⎛⎫=+-== ⎪⎝⎭.当1,122k ⎛⎫-∈ ⎪⎝⎭,即21k -<<-时,()222min 1102424k kk k g x g ⎛⎫=-=--=--< ⎪⎝⎭,不符合题意.当12k -≥,即2k ≤-时,()g x 在1,12⎡⎤⎢⎥⎣⎦上递减,()1112g k k =+-=≤-,不符合题意.综上所述,存在32k =使得()g x 的最小值为0.21.1.已知函数2,01,()1, 1.x x f x x x≤<⎧⎪=⎨≥⎪⎩(1)求函数()f x 的值域;(2)记()()()a F x f x f a =-,则4()F x m ≤在[0,4]x ∈上恒成立,求实数m 的取值范围. 【答案】(1)[0,2)(2)7,4⎡⎫+∞⎪⎢⎣⎭【分析】(1)分别求出()2f x x =和1()f x x=在各自区间上的值域,最后求并集即为分段函数的值域;(2)写出分段函数4()F x ,求出4()F x 的值域70,4⎡⎫⎪⎢⎣⎭,然后74m ≥即可(1)当01x ≤<时,()2f x x =,在[)0,1上单调递增,所以 0()2f x ≤< 当1≥x 时,1()f x x=,在[)1,+∞上单调递减,所以0()1f x <≤ 故函数()f x 的值域为[0,2). (2)由题意可知,412,01,41()()(4)()411,1 4.4x x F x f x f f x x x ⎧-≤<⎪⎪=-=-=⎨⎪-≤≤⎪⎩当01x ≤<时,1172444x -≤-<,则4170()244F x x ≤=-<;当14x ≤≤时,113044x ≤-≤,则430()4F x ≤≤; 所以470(),[0,4]4F x x ≤<∈,所以要使4()F x m ≤在[0,4]x ∈上恒成立,只要74m ≥即可,m 的取值范围为7,4⎡⎫+∞⎪⎢⎣⎭.22.已知幂函数()()224222m m f x m m x -+=--在()0,∞+上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()()()211ag x a x f x =--+在(]0,2上的值域为(]1,11?若存在,求出a 的值;若不存在,请说明理由. 【答案】(1)3m =,()1f x x -=;(2)存在,6a =.【分析】(1)根据幂函数的定义及单调性,令幂的系数为1及指数为负,列出方程求出m 的值,将m 的值代入()f x 即可;(2)求出()g x 的解析式,按照1a -与0的大小关系进行分类讨论,利用()g x 的单调性列出方程组,求解即可.【解析】(1)(1)因为幂函数()2242()22m m f x m m x -+=--在(0,)+∞上单调递减,所以22221420m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=;(2)由(1)可得,1()f x x -=,所以()(21)1(1)1g x a x ax a x =--+=-+, 假设存在0a >,使得()g x 在(]0,2上的值域为(]1,11,①当01a <<时,10a -<,此时()g x 在(]0,2上单调递减,不符合题意;②当1a =时,()1g x =,显然不成立;③当1a >时,10a ->,()g x 在和(]0,2上单调递增, 故(2)2(1)111g a =-+=,解得6a =.综上所述,存在6a =使得()g x 在(]0,2上的值域为(]1,11.23.已知幂函数()21()22m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()()30h x f x ax a =++-≥在区间[2,2]-上恒成立,求实数a 的取值范围. 【答案】(1)2()f x x =;(2)[7,2]-.【解析】(1)由幂函数概念及偶函数性质求()f x 解析式(2)由(1)知22()()324a a h x x a =+--+,再由()0h x ≥在[2,2]-上恒成立,即()h x 的最小值恒大于等于0,应用函数思想分类讨论,求a 的范围【解析】(1)由()f x 为幂函数知2221m m -++=,得1m =或12m =-()f x 为偶函数∴当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去所以2()f x x =(2)22()()324a a h x x a =+--+,令()h x 在[2,2]-上的最小值为()g a①当22a-<-,即4a >时,()(2)730g a h a =-=-≥,所以73a ≤ 又4a >,所以a 不存在;②当222a -≤-≤,即44a -≤≤时,2()()3024a ag a h a =-=--+≥所以62a -≤≤.又44a -≤≤,所以42a -≤≤ ③当22a ->,即4a <-时,()(2)70g a h a ==+≥ 所以7a ≥-.又4a <- 所以74a -≤<-.综上可知,a 的取值范围为[7,2]-【点睛】本题考查了幂函数,并综合了偶函数、及根据不等式恒成立求参数范围,应用了分类讨论、函数的思想,属于较难的题 24.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 在()1,1-上的单调性,并用定义证明;(3)解不等式:11022f t f t ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭+-≤.【答案】(1)()21xf x x =+; (2)函数()f x 在()1,1-上单调递增,证明见解析;(3)1,02⎛⎤- ⎥⎝⎦.【分析】(1)根据奇函数的定义可求得b 的值,再结合已知条件可求得实数a 的值,由此可得出函数()f x 的解析式;(2)判断出函数()f x 在()1,1-上是增函数,任取1x 、()21,1x ∈-且12x x <,作差()()12f x f x -,因式分解后判断()()12f x f x -的符号,即可证得结论成立;(3)由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得1122f t f t ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,根据函数()f x 的单调性与定义域可得出关于实数t 的不等式组,由此可解得实数t 的取值范围.(1)解:因为函数()21ax bf x x +=+是定义在()1,1-上的奇函数,则()()f x f x -=-, 即2211ax b ax b x x -++=-++,可得0b =,则()21axf x x =+,所以,211222255112af a ⎛⎫=== ⎪⎝⎭⎛⎫+ ⎪⎝⎭,则1a =,因此,()21x f x x =+. (2)证明:函数()f x 在()1,1-上是增函数,证明如下:任取1x 、()21,1x ∈-且12x x <,则()()()()221212112212222212121111x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()12211212122222121211111x x x x x x x x x x xx xx -+---==++++,因为1211x x -<<<,则120x x -<,1211x x -<<,故()()120f x f x -<,即()()12f x f x <. 因此,函数()f x 在()1,1-上是增函数. (3)解:因为函数()f x 是()1,1-上的奇函数且为增函数,由11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭得111222f t f t f t ⎛⎫⎛⎫⎛⎫+<--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 由已知可得112211121112t t t t ⎧+<-⎪⎪⎪-<+<⎨⎪⎪-<-<⎪⎩,解得102t -<<.因此,不等式11022f t f t ⎛⎫⎛⎫++-< ⎪ ⎪⎝⎭⎝⎭的解集为1,02⎛⎫- ⎪⎝⎭.25.已知______,且函数()22x bg x x a+=+. ①函数()()224f x x a x =+-+在定义域[]1,1b b -+上为偶函数;②函数()()0f x ax b a =+>在[1,2]上的值域为[]2,4.在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a ,b 的值,并解答本题.(1)判断()g x 的奇偶性,并证明你的结论;(2)设()2h x x c =--,对任意的1x ∈R ,总存在[]22,2x ∈-,使得()()12g x h x =成立,求实数c 的取值范围.【答案】(1)选择条件见解析,a =2,b =0;()g x 为奇函数,证明见解析;(2)77,88⎡-⎤⎢⎥⎣⎦. 【分析】(1)若选择①,利用偶函数的性质求出参数,a b ; 若选择②,利用单调性得到关于,a b 的方程,求解即可;将,a b 的值代入到()g x 的解析式中,再根据定义判断函数的奇偶性; (2)将题中条件转化为“()g x 的值域是()f x 的值域的子集”即可求解. (1) 选择①.由()()224f x x a x =+-+在[]1,1b b -+上是偶函数,得20a -=,且()()110b b -++=,所以a =2,b =0. 所以()222xg x x =+. 选择②.当0a >时,()f x ax b =+在[]1,2上单调递增,则224a b a b +=⎧⎨+=⎩,解得20a b =⎧⎨=⎩,所以()222xg x x =+. ()g x 为奇函数.证明如下:()g x 的定义域为R . 因为()()222xg x g x x --==-+,所以()g x 为奇函数. (2)当0x >时,()122g x x x =+,因为224x x +≥,当且仅当22x x=,即x =1时等号成立,所以()104g x <≤; 当0x <时,因为()g x 为奇函数,所以()104g x -≤<;当x =0时,()00g =,所以()g x 的值域为11,44⎡⎤-⎢⎥⎣⎦.因为()2h x x c =--在[]22-,上单调递减,所以函数()h x 的值域是[]22,22c c ---. 因为对任意的1x R ∈,总存在[]22,2x ∈-,使得()()12g x h x =成立,所以[]11,22,2244c c ⎡⎤-⊆---⎢⎥⎣⎦,所以12241224c c ⎧--≤-⎪⎪⎨⎪-≥⎪⎩,解得7788c -≤≤. 所以实数c 的取值范围是77,88⎡-⎤⎢⎥⎣⎦.。

高一函数经典难题讲解

高一函数经典难题讲解

高一函数经典难题讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1.已知函数f(x)=(x+1-a)/(a-x),x∈R且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a-1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。

a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a土√(a^2+4a)]/2;x<a时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m的值(2)当x∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解12--- 幂函数

高一数学复习考点知识与题型专题讲解3.3 幂函数【考点梳理】知识点一幂函数的概念一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.知识点二五个幂函数的图象与性质1.在同一平面直角坐标系内函数(1)y=x;(2)y=12x;(3)y=x2;(4)y=x-1;(5)y=x3的图象如图.2.五个幂函数的性质y=x y=x2y=x312y xy=x-1定义域R R R[0,+∞){x|x≠0}值域R[0,+∞)R[0,+∞){y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增在[0,+∞) 上增,增增在(0,+∞)上减,在(-∞,0] 上减在(-∞,0)上减知识点三 一般幂函数的图象特征1.所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).2.当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸. 3.当α<0时,幂函数的图象在区间(0,+∞)上是减函数.4.幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.5.在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.【题型归纳】题型一:幂函数的定义1.(2020·江苏省平潮高级中学高一月考)如果幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( ) A .1B .2C .1或2D .无解2.(2021·云南省玉溪第一中学高一月考)已知幂函数()y f x =的图象过点()33,,则该函数的解析式为( )A .2y x =B .2y x =C .3y x =D .y x =3.(2020·江苏镇江市·)已知幂函数()2()33m f x m m x =--在区间()0,∞+上是单调递增函数,则实数m 的值是( )A .-1或4B .4C .-1D .1或4题型二:幂函数的值域问题4.(2021·全国高一课时练习)已知幂函数()f x x α=的图像过点(8,4),则()f x x α= 的值域是( )A .(),0-∞B .()(),00,-∞⋃+∞C .()0,∞+D .[)0,+∞5.(2020·湖南衡阳市·高一月考)函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-6.(2018·南京市第三高级中学高一期中)以下函数12y x =,2y x =,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .4题型三:幂函数的定点和图像问题7.(2021·高邮市临泽中学高一月考)已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x b f x m m m -=->≠的图象所经过的定点,则b 的值等于( )A .12±B .22±C .2D .2± 8.(2020·南宁市银海三美学校高一月考)函数23y x =的图象是( )A .B .C .D .9.(2019·宁都县宁师中学高一月考)已知函数y =x a ,y =x b ,y =x c 的图象如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2021·江西宜春市·高安中学高一月考)已知 1.13a =, 1.14b =,0.93c =,则a ,b ,c 的大小关系为( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<11.(2020·江苏省平潮高级中学高一月考)幂函数223a a y x --=是奇函数,且在()0+∞,是减函数,则整数a 的值是( ) A .0B .0或2C .2D .0或1或212.(2020·江西鹰潭一中)已知幂函数12()f x x =,若()()132f a f a +<-,则实数a 的取值范围是( )A .[)1,3-B .21,3⎡⎫-⎪⎢⎣⎭C .[)1,0-D .21,3⎛⎤- ⎥⎝⎦题型五:幂函数的奇偶性问题13.(2020·江西南昌市·南昌十中高一月考)已知幂函数y =f (x )经过点(3,3),则f (x )( )A .是偶函数,且在(0,+∞)上是增函数B .是偶函数,且在(0,+∞)上是减函数C .是奇函数,且在(0,+∞)上是减函数D .是非奇非偶函数,且在(0,+∞)上是增函数14.(2021·吴县中学)有四个幂函数:①()2f x x -=;②()1f x x -=;③()3f x x =;④()3f x x =,某向学研究了其中的一个函数,并给出这个函数的三个性质:(1)()f x 为偶函数;(2)()f x 的值域为()(),00,-∞⋃+∞;(3)()f x 在(),0-∞上是增函数.如果给出的三个性质中,有两个正确,一个错误,则他研究的函数是( ) A .①B .②C .③D .④15.(2020·乌苏市第一中学高一月考)已知112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭,若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则a =( ) A .1-,12-B .1,3C .2-D .12,2【双基达标】一、单选题16.(2021·镇远县文德民族中学校高一月考)已知幂函数()()21f x m x =-,则实数m 等于( )A .2B .1C .0D .任意实数17.(2020·南京市第十三中学高一月考)函数 85y x =的图象是( )A .B .C .D .18.(2021·全国高一课时练习)下列结论中,正确的是( ) A .幂函数的图象都经过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当α=-1时,幂函数y =x α在其整个定义域上是减函数19.(2021·全国高一单元测试)已知幂函数()f x 的图象过点1(2,)2,则f (4)的值是( ) A .64B .42C .24D .1420.(2021·全国高一专题练习)函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭21.(2021·全国高一课前预习)已知幂函数()3m f x x -=(m ∈N *)为奇函数,且在区间(0,+∞)上是减函数,则m 等于( ) A .1B .2C .1或2D .322.(2021·全国)幂函数()f x 满足:对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,则(1)(0)(1)f f f -++=( ). A .1-B .0C .1D .223.(2021·全国)下列比较大小中正确的是( ).A .0.50.532()()23<B .1123()()35---<-C .3377( 2.1)( 2.2)--<-D .443311()()23-<24.(2019·云南昭通市第一中学高一月考)已知函数()f x x =,若(1)(102)f a f a+<-,则a 的取值范围是( )A .(0,5)B .(5,)+∞C .[1,3)-D .(3,5)25.(2021·全国)幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限: I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是( )A .IV,VII B . IV,VIII C . III, VIII D . III, VII 【高分突破】一:单选题26.(2021·全国高一课前预习)幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,则m的值为( ) A .1B .2C .3D .1或227.(2021·浙江)下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .()y x x R =-∈B .3()y x x x R =--∈ C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠28.(2021·全国高一课时练习)点(,8)m 在幂函数()(1)n f x m x =-的图象上,则函数()g x n x x m =-+-的值域为( )A .0,2⎡⎤⎣⎦B .1,2⎡⎤⎣⎦C .2,2⎡⎤⎣⎦D .[]2,329.(2021·全国高一课时练习)如图,①②③④对应四个幂函数的图像,其中②对应的幂函数是( )A .3y x =B .2y x =C .y x =D .y x =30.(2021·全国高一课时练习)已知幂函数()()2133m f x m m x +=-+的图象关于原点对称,则满足()()132m ma a +>-成立的实数a 的取值范围为( )A .22,33⎛⎫- ⎪⎝⎭B .22,3⎛⎫-- ⎪⎝⎭C .22,3⎛⎫- ⎪⎝⎭D .2,43⎛⎫ ⎪⎝⎭31.(2021·全国高一课时练习)设11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭则“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的( )A .充分不必要件B .必要不充分条件C .充要条件D .既不充分也不必要条件32.(2021·浙江高一期末)已知实数a ,b 满足等式35a b =,给出下列五个关系式:①1b a <<;②1a b <<-;③01b a <<<;④10a b -<<<;⑤a b =,其中,可能成立的关系式有( ) A .1个B .2个C .3个D .5个33.(2021·全国高一单元测试)已知函数1a y ax b =-+-是幂函数,直线20(0,0)mx ny m n -+=>>过点(,)a b ,则11n m ++的取值范围是( ) A .11,,333⎫⎫⎛⎛-∞⋃ ⎪ ⎪⎝⎝⎭⎭B .(1,3)C .1,33⎡⎤⎢⎥⎣⎦D .1,33⎛⎫ ⎪⎝⎭二、多选题34.(2021·全国高一课时练习)下列关于幂函数y x α=的性质,描述正确的有( ) A .当1α=-时函数在其定义域上是减函数B .当0α=时函数图象是一条直线 C .当2α=时函数是偶函数D .当3α=时函数在其定义域上是增函数35.(2021·全国高一课时练习)已知函数()21m m y m x -=-为幂函数,则该函数为( ) A .奇函数B .偶函数C .区间()0,∞+上的增函数D .区间()0,∞+上的减函数36.(2021·全国高一课时练习)已知幂函数223()(1)m m f x m m x +-=--,对任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-,若,a b ∈R 且()()0f a f b +<,则下列结论可能成立的有( )A .0a b +> 且0ab <B .0a b +< 且0ab <C .0a b +< 且0ab >D .以上都可能37.(2021·全国高一专题练习)已知幂函数9()5m f x m x ⎛⎫=+ ⎪⎝⎭,则下列结论正确的有( )A .()13216f -=B .()f x 的定义域是RC .()f x 是偶函数D .不等式()()12f x f -≥的解集是[)(]1,11,3-38.(2020·江苏常州市·常州高级中学高一期中)若函数()f x 同时满足:①对于定义域上的任意x ,恒有()()0f x f x +-=;②对于定义城上的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-,则称函数()f x 为“理想函数”.下列四个函数中,能被称为“理想函数”的有( ) A .()2121x f x x -=+B .()3f x x =-C .()f x x =-D .()22,0,,0x x f x x x ⎧-≥=⎨<⎩三、填空题39.(2021·湖南邵阳市·高一期末)已知幂函数()y f x =的图象过点()2,2,则()5f =______.40.(2021·雄县第二高级中学高一期末)已知幂函数()f x 过定点18,2⎛⎫ ⎪⎝⎭,且满足()()2150f a f ++->,则a 的范围为________.41.(2021·全国高一课时练习)不等式()()1133312a a -<+的解集为______42.(2021·上海上外浦东附中高一期末)已知幂函数()223()m m f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________.43.(2021·全国高一单元测试)已知112,1,,1,,2,322k ⎧⎫∈---⎨⎬⎩⎭,若幂函数()kf x x =为奇函数,且在()0,∞+上单调递减,则k =______.四、解答题44.(2021·全国高一课时练习)已知函数()()21212223m f x m m xn -=+-+-是幂函数,求2m n -的值.45.(2021·全国高一课时练习)已知函数()()()()1221a a f x a a x -+=--是幂函数()a R ∈,且()()12f f <.(1)求函数()f x 的解析式;(2)试判断是否存在实数b ,使得函数()()32g x f x bx =-+在区间[]1,1-上的最大值为6,若存在,求出b 的值;若不存在,请说明理由.46.(2021·全国高一专题练习)已知幂函数()()1222mf x m m x =--在()0,∞+上单调递减.(1)求实数m 的值.(2)若实数a 满足条件()()132f a f a ->+,求a 的取值范围.47.(2021·江西省乐平中学高一开学考试)已知幂函数()()()22322k k f x m m x k -=-+∈Z 是偶函数,且在()0,∞+上单调递增. (1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围: (3)若实数()*,,a b a b ∈R 满足237a b m +=,求3211a b +++的最小值.【答案详解】1.C 【详解】由幂函数的定义得m 2-3m +3=1,解得m =1或m =2;当m =1时,m 2-m -2=-2,函数为y =x -2,其图象不过原点,满足条件; 当m =2时,m 2-m -2=0,函数为y =x 0,其图象不过原点,满足条件. 综上所述,m =1或m =2. 故选:C. 2.D 【详解】设()f x x α=,依题意()13332f αα==⇒=,所以()f x x =. 故选:D 3.B 【详解】幂函数()2()33mf x m m x =--在(0,)+∞上是增函数则2331m m m ⎧--=⎨>⎩ ,解得4m = 故选:B 4.D【详解】幂函数()f x x α=的图像过点(8,4),84α∴=,解得23α=,2332(0)f x x x ∴==≥,∴()f x 的值域是[)0,+∞. 故选:D. 5.A 【详解】∵函数2y x -=在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,∴2min 124y -==, 故选:A. 6.C 【详解】函数12y x x ==,其定义域为[0,)+∞,值域为[0,)+∞; 函数2y x =的定义域为R ,值域为[0,)+∞; 函数2323y x x ==,20x ≥Q ,∴函数值域为[0,)+∞;函数331y x x -==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C. 7.B 【详解】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,则2()g x x =; 函数1()(0,1)2x b f x m m m -=->≠,当x b = 时,11()22b b f b a -=-=,故()f x 的图像所经过的定点为1,2b ⎛⎫ ⎪⎝⎭, 所以1()2g b =,即212b =,解得:22b =±, 故选:B. 8.C 【详解】首先由分数指数幂运算公式可知()21233x x ⎛⎫=⎪⎝⎭,则()()23y f x x ==,()()f x f x -=,且函数的定义域为R ,所以函数是偶函数,关于y 轴对称,故排除AD ,因为2013<<,所以23y x =在第一象限的增加比较缓慢,故排除B , 故选:C 9.A试题:由幂函数图像特征知,1a >,01b <<,0c <,所以选A . 10.A 【详解】由题意,构造函数 1.13,x y y x ==,由指数函数和幂函数的性质, 可知两个函数在(0,)+∞单调递增;由于0.9 1.10.9 1.133c a <∴<∴<;由于 1.1 1.13434a b <∴<∴<;综上:c a b << 故选:A 11.B由于幂函数223a a y x --=是奇函数,且在(0,)+∞是减函数,故2230a a --<,且223a a --是奇数,且a 是整数,13a -<<∴,a Z ∈,当0a =时,2233a a --=-,是奇数,; 当1a =时,2234a a --=-,不是奇数; 当2a =时,2233a a --=-,是奇数; 故0a =或2. 故答选:B 12.B 【详解】因为幂函数()12f x x =是增函数,且定义域为[)0,+∞,由()()132f a f a +<-得13210320a aa a +<-⎧⎪+≥⎨⎪-≥⎩,解得213a -≤<.所以实数a 的取值范围是21,3⎡⎫-⎪⎢⎣⎭故选:B 13.D 【详解】设幂函数的解析式为y x α=, 将点()3,3的坐标代入解析式得33α=,解得12α=, ∴12y x =,函数的定义域为[)0,+∞,是非奇非偶函数,且在()0,+∞上是增函数,14.A 【详解】对于①,函数()2f x x -=为偶函数,且()2210f x x x -==>,该函数的值域为()0,∞+, 函数()2f x x -=在()0,∞+上为减函数,该函数在(),0-∞上为增函数,①满足条件;对于②,函数()11x x f x -==为奇函数,且()10f x x=≠,该函数的值域为()(),00,-∞⋃+∞, 函数()f x 在(),0-∞上为减函数,②不满足条件;对于③,函数()3f x x =的定义域为R ,且()()33f x x x f x -=-=-=-,该函数为奇函数, 当0x ≥时,()30f x x =≥;当0x <时,()30f x x =<,则函数()f x 的值域为R , 函数()3f x x =在()0,∞+上为增函数,该函数在(),0-∞上也为增函数,③不满足条件;对于④,函数()3f x x =为奇函数,且函数()3f x x =的值域为R ,该函数在(),0-∞上为增函数,④不满足条件. 故选:A. 15.C 【详解】112,1,,,1,2,322α⎧⎫∈---⎨⎬⎩⎭若幂函数()f x x α=为偶函数,且在(0,)+∞上递减,则0α<且2,k k Z α=∈, 所以2a =-. 故选:C 16.A因为函数()()21f x m x =-为幂函数,所以m -1=1,则m =2.故选:A. 17.A 【详解】由幂函数85y x =可知: 85y x =是定义域为R 的偶函数,在(0,+∞)上单调递增,且当x >1时,函数值增长的比较快. 故选:A 18.C 【详解】当幂指数α=-1时,幂函数y =x -1的图象不经过原点,故A 错误;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R)>0,所以幂函数的图象不可能出现在第四象限,故B 错误; 当α>0时,y =x α是增函数,故C 正确;当α=-1时,y =x -1在区间(-∞,0),(0,+∞)上是减函数,但在整个定义域上不是减函数,故D 错误. 故选:C. 19.D 【详解】幂函数()a f x x =的图象过点1(2,)2,122a ∴=,解得1a =-,1()f x x∴=, f ∴(4)14=, 故选:D . 20.B 【详解】因为()()()()121121211f x x x x x-=-+-=+--, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:B. 21.B 【详解】因为()3m f x x -=在(0,+∞)上是减函数,所以m -3<0,所以m <3. 又因为m ∈N *,所以1m =或2.又因为()3m f x x -=是奇函数,所以m -3是奇数, 所以m =2. 故选:B. 22.B 【详解】设()a f x x =,由已知,函数()f x 的定义域为R ,∴0a >,又∵对任意12x x R ∈、,当且仅当12x x =时,有12()()f x f x =,即y 与x 一一对应,()f x 必定不是偶函数,∴必定为奇函数,∴答案为0,故选:B. 23.C 【详解】A 选项,0.5y x =在[0)+∞,上是递增函数,0.50.523()()32<,错, B 选项,1y x -=在()0-∞,上是递减函数,1123()()35--->-,错, C 选项,37y x =在()0-∞,上是递增函数, 337721( 2.1)()10-=-,33775( 2.2)()11--=-,3377( 2.1)( 2.2)--<-,对,D 选项,43y x =在[0)+∞,上是递增函数, 443311()()22-=,443311()()23>,443311()()23->,错,故选:C . 24.C 【详解】()f x x =的定义域为[)0,+∞,且在[)0,+∞单调递增,所以(1)(102)f a f a +<-可化为:1010201102a a a a +≥⎧⎪-≥⎨⎪+<-⎩,解得:13x -≤<. 故a 的取值范围是[1,3)-. 故选:C 25.B【详解】对于幂函数13y x -=,因为103-< ,所以13y x -=在第一象限单调递减, 根据幂函数的性质可知:在直线1x =的左侧,幂函数的指数越大越接近y 轴 ,因为113->-,所以13y x -=的图象比1y x -=的图象更接近y 轴 ,所以进过第IV 卦限, 在直线1x =的右侧,幂函数的指数越小越接近x 轴,因为1103-<-<, 所以13y x -=的图象位于1y x -=和1y =之间,所以经过VIII 卦限,所有函数13y x -=的图象在第一象限中经过的“卦限”是IV,VIII , 故选:B 26.A 【详解】解:幂函数2266()(33)m m f x m m x -+=-+在(0,)+∞上单调递增,2331m m ∴-+=,且2660m m -+>,解2331m m -+=得1m =或2m =,当1m =时26610m m -+=>符合题意; 当2m =时26620m m -+=-<不符合题意; 故选:A . 27.B 【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误.故选:B28.B【详解】解:因为点(,8)m 在幂函数()(1)n f x m x =-的图象上,所以11m -=,即2m =,()()228n f m f ===,所以3n =, 故()32g x x x =-+-,[]2,3x ∈, ()()22()12321256g x x x x x =+--=+-+-, 因为[]2,3x ∈,所以21560,4x x ⎡⎤-+-∈⎢⎥⎣⎦, 所以[]2()1,2g x ∈, 所以函数()g x n x x m =-+-的值域为1,2⎡⎤⎣⎦.故选:B.29.C【详解】 解:由图知:①表示y x =,②表示y x =,③表示2y x =,④表示3y x =.故选:C.30.D【详解】由题意得:2331m m -+=,得1m =或2m =当1m =时,2()f x x =图象关于y 轴对称,不成立;当2m =时,3()f x x =是奇函数,成立;所以不等式转化为22(1)(32)a a +>-,即231480a a -+<,解得243a <<.故选:D31.C【详解】 由11,,1,2,32α⎧⎫∈-⎨⎬⎩⎭,由()f x x α=的图像经过()1,1--,则α的值为11,3-,,此时()f x x α=为奇函数. 又当()f x x α=为奇函数时,则α的值为11,3-,,此时()f x x α=的图象经过()1,1--. 所以“()f x x α=的图象经过()1,1--”是“()f x x α=为奇函数”的充要条件故选:C32.C【详解】在同一坐标系中画出函数3y x =和5y x =的图像,如图所示:数形结合可知,在(1)处1a b <<-;在(2)处10b a -<<<;在(3)处01a b <<<; 在(4)处1b a <<;在1a b ==或1a b ==-也满足,故①②⑤对故选:C.33.D【详解】由1a y ax b =-+-是幂函数,知:1,1a b =-=,又(,)a b 在20mx ny -+=上,∴2m n +=,即20n m =->,则1341111n m m m m +-==-+++且02m <<, ∴11(,3)13n m +∈+. 故选:D.34.CD【详解】对于A 选项,1y x =,在(,0)-∞和(0,)+∞上递减,不能说在定义域上递减,故A 选项错误.对于B 选项,0y x =,0x ≠,图像是:直线1y =并且除掉点(0,1),故B 选项错误. 对于C 选项,2y x =,定义域为R ,是偶函数,所以C 选项正确.对于D 选项,3y x =,函数在其定义域上是增函数,所以D 选项正确.故选:CD35.BC【详解】由()21m m y m x -=-为幂函数,得11m -=,即m =2,则该函数为2y x =,故该函数为偶函数,且在区间()0,∞+上是增函数,故选:BC .36.BC【详解】因为223()(1)m m f x m m x +-=--为幂函数,所以211m m --=,解得:m =2或m =-1.因为任意12,(0,)x x ∈+∞,且12x x ≠,都满足1212()()0f x f x x x ->-, 不妨设12x x >,则有12())0(f x f x ->,所以()y f x =为增函数,所以m =2,此时3()f x x =因为()33()()f x x x f x -=-=-=-,所以3()f x x =为奇函数.因为,a b ∈R 且()()0f a f b +<,所以()()f a f b <-.因为()y f x =为增函数,所以a b <-,所以0a b +<.故BC 正确.故选:BC37.ACD【详解】 因为函数是幂函数,所以915m +=,得45m =-,即()45f x x -=, ()()()45451322216f --⎡⎤-=-=-=⎣⎦,故A 正确;函数的定义域是{}0x x ≠,故B 不正确; ()()f x f x -=,所以函数是偶函数,故C 正确;函数()45f x x -=在()0,∞+是减函数,不等式()()12f x f -≥等价于12x -≤,解得:212x -≤-≤,且10x -≠,得13x -≤≤,且1x ≠,即不等式的解集是[)(]1,11,3-,故D 正确.故选:ACD38.BCD【详解】对于①对于定义域内的任意x ,恒有()()0f x f x +-=,即()()f x f x -=-,所以()f x 是奇函数;对于②对于定义域内的任意1x ,2x ,当12x x ≠时,恒有()()12120f x f x x x -<-, ()f x 在定义域内是减函数; 对于A :()2121x f x x -=+,()113f =,()13f -=,故不是奇函数,所以不是“理想函数”; 对于 B :()3f x x =-是奇函数,且是减函数,所以是“理想函数”;对于C :()f x x =-是奇函数,并且在R 上是减函数,所以是“理想函数”;对于D :()22,0,0x x f x x x x x ⎧-≥==-⎨<⎩,()||()f x x x f x -==-, 所以()22,0,0x x f x x x ⎧-≥=⎨<⎩是奇函数; 根据二次函数的单调性,()f x 在(,0)-∞,(0,)+∞都是减函数,且在0x =处连续,所以()22,0,0x x f x x x ⎧-≥=⎨<⎩在R 上是减函数, 所以是“理想函数”.故选:BCD.39.5【详解】设()f x x α=,则()12222f αα==⇒=, 所以()(),55f x x f ==. 故答案为:540.()22-,【详解】设幂函数()y f x x α==,其图象过点18,2⎛⎫ ⎪⎝⎭, 所以182α=,即3122α-=,解得:13α=-,所以()13f x x -=, 因为()()()13f x x f x --=-=-,所以()13f x x -=为奇函数,且在()0-∞,和()0+∞,上单调递减, 所以()()2150f a f ++->可化为()()()2155f a f f +>--=, 可得215a +<,解得:22a -<<,所以a 的范围为()22-,, 故答案为:()22-,. 41.()4,-+∞【详解】 解:因为幂函数13y x =在R 上为增函数,()()1133312a a -<+, 所以312a a -<+,解得4a >-,所以不等式的解集为()4,-+∞,故答案为:()4,-+∞42.{}1,1,3-【详解】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤,又m Z ∈,即{}1,0,1,2,3m ∈-,()223()m m f x x m Z --=∈的图像关于y 轴对称, 即函数为偶函数,故223m m --为偶数, 所以{}1,1,3m ∈-,故答案为:{}1,1,3-.43.1-【详解】由题意知,幂函数()k f x x =在(0)+∞,上单调递减, 则k 为负数,则k =-2,-1,12-,又由函数()k f x x =为奇函数,则k =-1,故答案为:-144.-6【详解】因为()()21212223m f x m m x n -=+-+-是幂函数,所以22221,10,230,m m m n ⎧+-=⎪-≠⎨⎪-=⎩,解得3,3,2m n =-⎧⎪⎨=⎪⎩, 所以323262m n -=--⨯=-.45.(1)()2f x x =;(2)存在,2b =±. 解:因为函数()()()()1221a a f x a a x -+=--是幂函数,所以211a a --=,解得2a =或1a =-,当2a =时,()4f x x -=,则()()12f f >,故不符题意,当1a =-时,()2f x x =,则()()12f f <,符合题意,所以()2f x x =;(2)由(1)得 ()()()22232233g x f x bx x bx x b b =-+=-++=--++, 函数图像开口向下,对称轴为:x b =,当1b ≤-时,函数()g x 在区间[]1,1-上递减,则()()11236max g x g b =-=--+=,解得2b =-,符合题意; 当1b ≥时,函数()g x 在区间[]1,1-上递增,则()()11236max g x g b ==-++=,解得2b =,符合题意;当11b -<<时,()()22236max g x g b b b ==-++=,解得3b =±,不符题意, 综上所述,存在实数2b =±满足题意.46.(1)1m =-;(2)32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 【详解】解:(1)()f x 是幂函数,2221m m ∴--=,解得:3m =或1m =-, 3m =时,()13f x x =在(0,)+∞上单调递增,1m =-时,()1f x x=在(0,)+∞递减, 故1m =-;(2)若实数a 满足条件()()132f a f a ->+,则10320a a ->⎧⎨+<⎩或10320132a a a a ->⎧⎪+>⎨⎪-<+⎩或10320132a a a a-<⎧⎪+<⎨⎪-<+⎩,解得:32a <-或213a -<<,故a 的取值范围是32,,123⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. 47.(1)2()f x x =;(2)(1,1)-;(3)2.【详解】(1)()f x 是幂函数,则2221m m -+=,1m =,又()f x 是偶函数,所以23(3)k k k k -=-是偶数,()f x 在(0,)+∞上单调递增,则230k k ->,03k <<,所以1k =或2. 所以2()f x x =;(2)由(1)偶函数()f x 在[0,)+∞上递增, (21)(2)f x f x -<-22(21)(2)212f x f x x x ⇔-<-⇔-<-11x ⇔-<<. 所以x 的范围是(1,1)-.(3)由(1)237a b +=,2(1)3(1)12a b +++=,0,0a b >>, []3213219(1)2(1)2(1)3(1)121112111211b a a b a b a b a b ++⎛⎫⎛⎫+=++++=++ ⎪ ⎪++++++⎝⎭⎝⎭ 19(1)4(1)12221211b a a b ⎛⎫++≥+⨯= ⎪ ⎪++⎝⎭,当且仅当9(1)4(1)11b a a b ++=++,即2,1a b ==时等号成立. 所以3211a b +++的最小值是2.。

高一数学知识点难题及解答

高一数学知识点难题及解答

高一数学知识点难题及解答随着高中学习的深入,数学作为一门理科学科,对于学生来说常常是最令人头疼的。

特别是在高一这个阶段,新的数学知识点和难题不断涌现。

本文将围绕高一数学知识点中的几个难题展开讲述,并提供相应的解答。

一、平方根的处理问题高一数学中,平方根的处理经常会对学生造成困扰。

在计算平方根时,首先需要明确一个原则:不能直接对负数开平方。

因此,当题目中出现像√(-16)这样的表达时,我们首先要做的是将其转化成复数的形式。

通过定义我们知道,√(a × b) = √a × √b。

因此,我们可以将√(-16)转化为√(-1) × √16。

根据定义√(-1) = i,其中i是虚数单位。

所以√(-16) = i × 4 = 4i。

二、函数的复合问题在高一数学中,函数的复合也是一个常见的难点。

当两个函数进行复合运算时,很多学生容易弄混运算的顺序。

以f(x) = 2x + 1和g(x) = x^2为例,我们可以先求f(g(x))。

首先将g(x)代入f(x)的表达式中,得到f(g(x)) = 2(g(x)) + 1 = 2(x^2) + 1。

类似地,我们也可以求g(f(x))。

将f(x)代入g(x)的表达式中,得到g(f(x)) = (f(x))^2 = (2x + 1)^2 = 4x^2 + 4x + 1。

通过这个例子,我们可以看到函数的复合运算顺序的影响。

因此,在解题过程中,要注意先执行内层函数的运算,再执行外层函数的运算。

三、不等式的求解问题在高一数学中,不等式的求解是一个需要注意的难点。

首先,我们要掌握不等式的性质:等号两边同时加(减)一个数时,不等号不变;等号两边同时乘(除)一个正数时,不等号不变;等号两边同时乘(除)一个负数时,不等号反向。

以2x - 5 > 3为例,我们首先将不等式转化成等价的形式:2x -5 - 3 > 0,即2x - 8 > 0。

高一函数经典难题讲解

高一函数经典难题讲解

高一函数经典难题讲解2、已知函数f(x)=log3为底1-m(x+2)/x-3的图像关于原点对称,可得:f(-x)=log3[1-m(-x+2)/(-x-3)]=log3[1+m(x+2)/(x+3)]因为f(-x)=-f(x),所以有:log3[1-m(x+2)/(x-3)]=-log3[1+m(x+2)/(x+3)]即:log3[(1-m(x+2)/(x-3))(1+m(x+2)/(x+3))]=-1化简得到:m=23、当x∈(3,4)时,有:f(x)=log3[1-m(x+2)/(x-3)]=log3[(x-3-m(x+2))/(x-3)]因为m=2,所以有:f(x)=log3[(x-7)/(x-3)]因此,f(x)的值域为(-∞,log3(4/3))4、对于f(x)=log3[(x-7)/(x-3)],求导可得:f'(x)=1/(x-7)-1/(x-3)当x>7时,f'(x)<0,即f(x)单调递减;当30,即f(x)单调递增;因此,f(x)在定义域内为单调函数。

1.给定方程u(t) = (a-1)t^2 - 4/3at - 1 = 0,要求找出唯一的正根。

因为两个函数图像只有一个公共点,所以问题转化为寻找这个正根。

当a=1时,方程没有正根;当△=0时,a=3/4或a=-3,其中a=3/4时,t=-1/2,a=-3时,t=1/2.如果方程有一个正根和一个负根,那么(a-1)×u(0)。

1.综上所述,a=-3或a>1.2.给定方程f²(x) + bf(x) + c = 0,要求确定它有五个根的充要条件。

首先,我们分析函数f(x)的图像,发现当f(x)=1时,有三个对称的x值,除了x=2之外还有两个。

当f(x)≠1时,有两个对称的x值。

因此,满足f²(x) + bf(x) + c = 0的f(x)有两个,一个对应三个x值,另一个对应两个x值。

高一数学函数经典难题讲解

高一数学函数经典难题讲解

- 1 - 高一函数经典难题讲解1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a -1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a 土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。

a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2;x<a 时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m 的值(2)当x ∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 - 高一函数经典难题讲解1.已知函数f(x)=(x+1-a)/(a-x),x∈R 且x≠a,当f(x)的定义域为[a-1,a-1/2]时,求f(x)值解:由题知,已知函数f(x)=(x+1-a)/(a-x),所以,f(x)= -1+1/(a-x),当f(x)的定义域为[a-1,a-1/2]时x∈[a -1,a-1/2](a-x)∈[1/2,1]1/(a-x)∈[1,2]f(x)=-1+1/(a-x)∈[0,1]2.设a 为非负数,函数f(x)=x|x-a|-a. (1)当a=2时,求函数的单调区间(2)讨论函数y=f(x)的零点个数解析:(1)∵函数f(x)=x|x-2|-2当x<2时,f(x)=-x^2+2x-2,为开口向下抛物线,对称轴为x=1当x>=2时,f(x)=x^2-2x-2,为开口向上抛物线,对称轴为x=1 ∴当x∈(-∞,1)时,f(x)单调增;当x∈[1,2]时,f(x)单调减;当x∈(2,+∞)时,f(x)单调增;(2).f(x)=x|x-a|-a=0,x|x-a|=a,①a=0时x=0,零点个数为1;a>0时x>0,由①,x>=a,x^2-ax-a=0,x1=[a+√(a^2+4a)]/2;0<x<a<4时,x^2-ax+a=0②,x2,3=[a 土√(a^2-4a)]/2,零点个数为3;a=4时,x2,3=a/2,零点个数为2;a>4时,②无实根,零点个数为1。

a<0时,x<0,由①,x>=a>-4,x^2-ax-a=0③,x1,2=[a 土√(a^2+4a)]/2;x<a 时x^2-ax+a=0,x3=[a-√(a^2-4a)]/2,零点个数为3;a=-4时x1,2=a/2,零点个数为2;a<-4时③无实根,零点个数为1.综上,a<-4,或a=0,或a>4时零点个数为1;a=土4时,零点个数为2;-4<a<0,或0<a<4时,零点个数为3.3.已知函数f(x)=log3为底 1-m(x+2)/x-3的图像关于原点对称(1)求常数m 的值(2)当x ∈(3,4)时,求f(x)的值域;(3)判断f(x)的单调性并证明。

- 2 - 解:1、函数f(x)=log3 [1-m(x+2)[/(x-3)图象关于原点对称,则该函数是奇函数,满足f(-x)=-f(x)。

log3 [1-m(2-x)]/(-x-3)=-log3 [1-m(x+2)]/(x-3)log3 [1-m(2-x)]/(-x-3)=log3(x-3)/ [1-m(x+2)][1-m(2-x)]/(-x-3)=(x-3)/[1-m(x+2)]化简得 -x^2+9=-m^2(x^2)+(2m-1)^2所以 -m^2=-1(2m-1)^2=9解得 m=-1所以,函数解析式为f(x)=log3 [ (x+3)/(x-3)]2、先求t(x)=(x+3)/(x-3)在(3,4)上的值域。

t(x )=(x+3)/(x-3)=[(x-3)+6]/(x-3)=1+[6/(x-3)]当3<x<4时,0<x-3<11/(x-3)>1,6/(x-3)>6所以 t(x)=1+[6/(x-3)]>7那么,原函数在(3,4)上值域是(log3 (7),正无穷) 3、先求函数定义域(x+3)/(x-3)>0且x≠3 解得 x>3或x<-3(1)当x>3时,因为t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以 函数f(x)=log3 t(x)单调递减。

(2)当x<-3时,因为t(x)=(x+3)/(x-3)=1+[6/(x-3)]单调递减,所以函数f(x)=log3 t(x)单调递减。

4.已知函数f (x )=log4(4^x+1)+kx 是偶函数.(1)求k 的值(2)设f (x )=log4(a2^x-4/3a)有且只有一个实数根,求实数的取值范围. 解:(1)f(x)=log4(4^x+1)+kx (K∈R)是偶函数,∴f(-x)=f(x),即log<4>[4^(-x)+1]+k(-x)=log<4>(4^x+1)+kx,∴log<4>{[4^(-x)+1]/(4^x+1)}=2kx,-x=2kx,k=-1/2.(2)f(x)=log4(4^x+1)-x/2=log4(4^x+1)-log4(2^x)=log4[(4^x+1)/2^x]g(x)=log4(a · 2^x -4/3a)- 3 - 联立 log4[(4^x+1)/2^x]=log4(a · 2^x -4/3a)∴ (4^x+1)/2^x=a·2^x -4/3a不妨设t=2^x t >0t^2+1/t=at-4/3at^2+1=at^2-4/3at(a-1)t^2-4/3at-1=0设u(t)=(a-1)t^2-4/3at-1∵两函数图像只有1个公共点,在这里就变成了有且只有一个正根1.当a=1时 t=- 3/4 不满足 (舍)2.当△=0时 a=3/4 或a=-3a=3/4时 t= -1/2<0 (舍)a=-3时 t=1/2满足3.当一正根一负根时(a-1) × u(0)<0 (根据根的分布)∴a>1综上所述,得a=-3或a >15.这个是概念的问题:1.对于f(x)取值范围(0,无穷),f²(x)+bf(x)+c=0最多有两个不同的f(x)。

2.对f(x)的图像进行分析,知道f(x)=1对应的x 值有三个,即除x=2外另有两个关于x=2对称的x 。

f(x)不等于1时对应的x 值有两个,即两个关于x=2对称的两个x 。

3.题意说f²(x)+bf(x)+c=0对应的x 根有5个,显然满足f²(x)+bf(x)+c=0的f(x)有两个,一个f(x)对应三个x 值,设为x1,x2,x3;另一个f (x )对应两个x,设为x4,x5;根据以上分析,应有x1+x3=2*2,x2=2;x4+x5=2*2=4 则f (x1+x2+x3+x4+x5)=f(10)=1/8,选B6.已知函数0x ,0x ,0x 1x )x (f ≠⎪⎩⎪⎨⎧=+=,,f(x)的值域是{0}∪【1,+∞).求关于x 的方程f^2(x)+bf(x)+c=0有五个根的充要条件?函数图像是一个“W”字样两个V字的连接点落到坐标原点的形状,也就是两个“V”字加原点- 4 -- 5 -- 6 -7.定义域为R 的偶函数f(x),当x>0时,f(x)=lnx-ax(a 属于R),方程f(x)=0在R 上恰有5个不同的实数解(1)求x<0时,函数f(x)的解析式(2)求实数a 的取值范围(1)f(x)为偶函数,有一个大于零的解,则一定会有一个小于零的解和他对应,f(x)=0在R 上有5个不同的实数解,则f(0)=0,f(x)在x >0时有两个解当x<0时,-x>0,f(x)=f(-x)=ln(-x)+ax2)当a <0时,y=lnx , y=-ax 在x >0时都单调增,则f(x)=lnx-ax 在x >0时单调增,只有一个解,不满足题意当a=0时,f(x)=lnx 在x >0时单调增,只有一个解,不满足题意当a >0时,f '(x)=1/x-a 当x=1/a 时,f '(x)=0,f(x)在(0,1/a)单调增,在(1/a,+∞)单调减,在x=1/a 取到最大值 要f(x)在x >0时有两个解,只要f(1/a)>0,即ln(1/a)>1,1/a >e,得a <1/e 综上,a∈(0,1/e)8.定义域为R 的偶函数f (x ),当x >0时,f (x )=lnx-ax (a∈R),方程f (x )=0在R 上恰有5个不同的实数解.(1)求x <0时,函数f (x )的解析式; (2)求实数a 的取值范围.解答:解:(1)设x <0,则-x >0.∵f(x )为偶函数,∴f(x )=f (-x )=ln (-x )+ax .(2)∵f(x )为偶函数,∴f(x )=0的根关于原点对称.由f (x )=0恰有5个不同的实数解知5个实根中有两个正根,二个负根,一个零根.且两个正根和二个负根互为相反数.∴原命题⇔当x >0时f (x )图象与x 轴恰有两个不同的交点. 下面研究x >0时的情况:f (x )=0的零点个数⇔y=lnx 与直线y=ax 交点的个数.∴当a≤0时,y=lnx 递增与直线y=ax 下降或与x 轴重合,故交点的个数为1,不合题意,∴a>0.由几何意义知y=lnx 与直线y=ax 交点的个数为2时,直线y=ax 的变化应是从x 轴到与y=lnx 相切之间的情形.设切点(t ,lnt)⇒k =(lnx )′|x =t =t1,- 7 - ∴切线方程为:y −lnt =t1(x −t). 由切线与y=ax 重合知a =t 1,lnt =1⇒t =e ,a =e1, 故实数a 的取值范围为(0,e 1). 9.函数y=loga(2x-3)+22的图像恒过定点P ,P 在幂函数f(x)的图像上,则f(9)=___ 解:由于 loga(1) 恒等于0,所以 P 坐标为(2,22),而P 在幂函数的图像上,所以设这个函数为 f(x)=x^a , 则 22=2^a ,解得 a=-1/2,所以 f(9)=9^(-1/2)=1/√9=1/3。

10.函数y=loga(-x)+2的图像恒过定点P ,P 在幂函数f(x)的图像上,则f(2)=___解:P 点坐标为(-1,2),与a 无关而幂函数f(x)=b^x 要经过P 点,则2=b^-1,所以b=1/2所以f(2)=(1/2)^2=1/4 11.若偶函数f (x )满足f (x-1)=f (x+1)且在x 属于【0,1】时 f (x )=x 的平方,则关于x 的方程f (x )=(1/10)的x 的平方在[0,10/3]上的实数根有几个f(x -1)=f(x +1),则函数f(x)的周期为2,可以作出函数f(x)的图像。

另外设g(x)=(1/10)x&sup 2;,利用图像,得出方程f(x)=g(x)的根有2个。

12.已知偶函数f (x )满足f (x +1)=f (x-1),且x∈[0,1],f (x )=(x-1)²,则f(7/2)=解:由f(x+1)=f(x-1) 则f(x+2)=f(x) 所以 T=2 所以偶函数f(7/2)=f(7/2-4)=f(-1/2) =f(1/2)=(1/2-1)²=1/4- 8 -13.已知f(x)是定义在R 上的奇函数,且当x<0时,f(x)=2^x+1(1)求函数f(x)的解析式,作出函数的图象。

相关文档
最新文档