磁性的宏观量子效应

合集下载

分子磁体中的量子隧穿及宏观量子效应

分子磁体中的量子隧穿及宏观量子效应

磁滞回线量子化台阶可由 2+)# 分子自旋态之 间的热助量子隧穿解释( 2+)# 有极强的单轴各向异 性, 无外场时, 每个 2+)# 分子都有一双重简并基态 ( # : < )$ ) 对应自旋平行和反平行于易轴取向( 两 简并基态被各向异性势垒分离, 是宏观可区分态( 外 加磁场使一态能量升高另一态降低, 低温下弛豫过
#! 分子磁体中的宏观量子效应及实验
图 #! 2+)# 分子团簇的低温磁滞回线 ( "$ 表示外磁场)
! ( "# 磁滞回线量子化台阶 )334 年, " 个实验组分别在高自旋大分子醋酸 锰 ( 简称 2+)# , 分子结构如图 ) 所示) 的低温磁滞回
[ )4 —)3 ] 线上观 测 到 有 规 律 的 量 子 化 台 阶 ( 图# 是 [ )3 ] -56,78 等人的实验结果 ( 在磁场增加方向相等
图 =" 6-7 分子团簇结构示意图 [ 摘自 FFF. GHB. $H& C I)##-(’% C J$K-GI-H, 0111 ]
2880 年, L$BB 等人根据自旋相干态路径积分的 观点指出, 几何位相的存在导致磁体总自旋为半整 数时隧穿劈裂淬灭, 这一现象可用 4H+G-H 简并解
[ 03 ] 释 . 后来 M+H& 在分析隧穿路径位相相干的基础
密顿量描述, 即 + $ , % +-# +# " ) . ,& -/ , (0) 其中各向异性常数均为正值, 且 , % K , & 3 若不存在 量子隧穿, 则磁化矢量沿 / * 取向是两宏观稳定态, 即宏观简并基态, 记为 ’ 〉 , (〉 3 磁化矢量 ( 宏观 量) 的量子隧穿导致两简并宏观态相干关联, 能级 分裂3 结果是 0 ) , # 9 〉 $ ( ’〉. (〉 # ! 0 ) , (#) # E 〉 $ ( ’〉& (〉 # ! 其中偶 态 # 9 〉 能 量 较 低, 是 磁 体 的 基 态, 而奇态 是第一激发态3 # 9 〉 , #E 〉 是宏观量子叠加态, #E 〉 即薛定谔猫态的相干叠加3 解含时薛定谔方程容易 发现, 分子磁体磁化矢量在两易磁化方向 ( 宏观简 ! 3 "# 磁弛豫实验 纳米铁磁颗粒的低温弛豫反常是最早确认的宏 观量子效应实验3 044# 年, 5+*1+*+ 小组研究了铁磁 颗粒 ( 61$3 7 89$3 7 :9# ) ( 平均尺寸为 07,; ) 中的弛豫

宏观量子隧道效应

宏观量子隧道效应

宏观量子隧道效应
宏观量子隧道效应是指在宏观尺度上,量子力学的隧道效应在某些特定条件下仍然显著影响系统的行为。

这种效应通常发生在宏观系统的微观结构具有量子特性的情况下,导致了一些经典物理学无法解释或预测的现象。

以下是宏观量子隧道效应的一些常见例子:
1.超导电性:在超导体中,电子对以宏观量子态的形式存在,能够在超导态下通过量子隧道效应自由移动,导致超导体的零电阻和磁通量量子化等特性。

2.磁通量量子化:在超导环中,磁通量可以通过量子隧道效应以一定的量子单位进行穿过环的不同区域,导致磁通量量子化现象。

3.磁体磁化:在纳米尺度下,由于量子隧道效应的存在,磁体的磁化可能表现出量子隧道磁化的行为,导致磁性的量子涨落和量子隧道磁滞回线等现象。

4.量子点导电性:在量子点等纳米结构中,由于量子隧道效应的存在,电子可以通过量子隧道穿越能带禁带,导致量子点的电导率和电子输运性质发生变化。

5.量子热传导:在纳米尺度下,由于量子隧道效应的存在,声子的热传导可能表现出量子行为,导致纳米材料的热导率呈现出量子涨落和量子隧道热传导等现象。

这些宏观量子隧道效应的存在使得我们对于宏观系统的理解更加丰富和深入,同时也为新型材料和器件的设计和应用提供了新的思路和可能性。

(完整)量子尺寸效应

(完整)量子尺寸效应

(完整)量子尺寸效应1.1.1量子尺寸效应所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等特性与宏观性存在着显著的差异.如金属纳米材料的电阻随着尺寸下降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性.1.1。

2小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应。

例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。

1。

1.3表面与界面效应纳米材料的另一个重要特性是表面与界面效应。

由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表面能和表面结合能都发生很大变化。

人们把由此引起的种种特殊效应统称表面效应[8,9].随着粒径的减小,比表面迅速增大。

当粒径为5nm 时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面。

庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低。

就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。

核磁共振量子力学原理

核磁共振量子力学原理

核磁共振量子力学原理核磁共振(Nuclear Magnetic Resonance,NMR)是一种重要的物理现象,它在医学、化学、物理等领域都有广泛的应用。

核磁共振量子力学原理是解释核磁共振现象的基础理论,通过量子力学的观点,揭示了核磁共振现象的本质和机理。

量子力学是研究微观领域的物理学理论,它描述了微观粒子的行为和性质。

核磁共振现象可以解释为原子核在外加磁场的作用下,由于其自旋而产生的磁矩在外加射频场的作用下发生共振吸收和发射的过程。

我们来了解一下原子核的自旋和磁矩。

原子核由质子和中子组成,它们带有1/2的自旋。

自旋可以看作是一个旋转的量子态,类似于地球的自转。

由于带电粒子的旋转会产生磁场,因此原子核也具有磁矩。

不同的原子核由于质子和中子数目的不同,具有不同的自旋和磁矩。

当一个外加静态磁场作用在原子核上时,原子核的磁矩会朝向磁场方向排列,形成一个总磁矩。

这个总磁矩可以用一个经典物理学中的矢量来表示,称为磁化强度。

在没有外界干扰时,原子核的磁化强度与外加磁场方向一致。

接下来,我们考虑外加射频场对原子核的作用。

外加射频场是一个高频交变磁场,其频率与核磁共振频率相同。

当外加射频场的频率与核磁共振频率一致时,它会与原子核的磁矩发生相互作用。

根据量子力学的原理,原子核的自旋和磁矩只能在某些特定的能级上存在,而不能连续变化。

当外界射频场的频率与核磁共振频率相同时,它会引起原子核从一个能级跃迁到另一个能级,产生能量的吸收和发射。

具体来说,当外界射频场的频率与核磁共振频率一致时,它会引起原子核自旋状态的翻转。

这个过程可以看作是原子核吸收射频能量,从低能级跃迁到高能级。

当射频场停止作用时,原子核会自发地从高能级跃迁到低能级,释放出吸收的能量。

核磁共振现象的观测是通过探测原子核吸收和发射的射频信号来实现的。

在核磁共振实验中,我们可以通过改变外加磁场的强度和方向,调节外界射频场的频率和强度,来研究原子核的磁共振现象。

宏观量子效应

宏观量子效应

图1:超导态的磁通冻结
图2:磁通量子化示意图
图3:第二类超导体中电流与磁场的分布
图4:直流约瑟夫逊效应
图5:超导体的量子衍射效应
图6:4He相变图
谢谢观赏!
参考文献:《非线形量子力学理论》,庞小峰
ቤተ መጻሕፍቲ ባይዱ
若把上述装置中的两块金属换成超导体后,当其介质 层厚度减少到30A左右时,由超导电子对的长程相干 效应也会产生隧道效应,称为约瑟夫逊效应。实验得 知,这种效应还在超导体-金属-超导体结、超导体-超 导体结及超导桥等多种形式的超导结上发生,因此它 是一种弱连接的超导体。它既具有大块超导体的一些 性质,如可以负载一定的超导电流,又具有许多大块 超导体没有的特殊性质,即: (1) 当在超导体通一直流电流时,只要此电流小雨 一特定值Ic,结上就不出现电压,Ic约在几十μA到几 十mA之间(图4是Sn-SnO-Sn结在V=0时的支流约瑟 夫逊电流)。
由于两块超导体中的波函数不一样,使这两块超导体 中的超导电子的波函数之间存在一个确定的相位差而 相互关联着,因而超导电子对可在一个方向上发生优 先位移,从而形成了直流约瑟夫逊电流。当在结平面 上加一个磁场时,磁场时相位差产生一个空间梯度, 迫使最大超导电流随磁场产生振荡。若在结上加一个 电压,就会使相位差随时间变化,从而引起了交流约 瑟夫逊效应。由此看来,在这种宏观量子效应中,波 函数的相位差起了重要的作用。
(B)第二类超导体中的涡旋线结构. 对于金玆伯-朗道参数k>1/√2的第一类超导体 如NbTi合金和Nb3Sn化合物等,当外磁场H大于超 导体的下临界场强Hc1 时,磁场将部分的穿透到体 内。采用毕特图案技术研究得知,这些穿入的磁场 使超导体的一些小区域由超导态变为正常态,这些 正常态的小区域是圆柱形的,并在超导体内有规则 的排列(如图2所示)。我们把一个圆柱形区域叫 做一根涡旋线(或磁力线),它好像是在湍流中形 成的旋涡结构一样。理论分析和实验测得,一根涡 旋线具有的磁通量也正好等于一个磁通量子φ0 。在 外场H〉Hc1时,内部涡旋线的稳定分布式一个三 角形的涡旋线格子,其相应的超导电流和磁场分布 示于图3 中。

(完整)纳米材料四大效应及相关解释

(完整)纳米材料四大效应及相关解释

纳米材料四大效应及相关解释四大效应基本释义及内容:量子尺寸效应:是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。

当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。

小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。

对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质.表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比.随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。

宏观量子隧道效应:当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒.近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。

四大效应相关解释及应用:表面效应球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。

随着颗粒直径的变小比表面积将会显著地增加.例如粒径为10nm时,比表面积为90m2/g;粒径为5nm时,比表面积为180m2/g;粒径下降到2nm时,比表面积猛增到450m2/g.粒子直径减小到纳米级,不仅引起表面原子数的迅速增加,而且纳米粒子的表面积、表面能都会迅速增加。

这主要是因为处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同所引起的.表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加。

磁性纳米材料的应用

磁性纳米材料的应用

磁性纳米材料的应用磁性纳米颗粒是一类智能型的纳米材料,既具有纳米材料所特有的性质如表面效应、小尺寸效应、量子效应、宏观量子隧道效应、偶连容量高,又具有良好的磁导向性、超顺磁性类酶催化特性和生物相容性等特殊性质,可以在恒定磁场下聚集和定位、在交变磁场下吸收电磁波产热.基于这些特性,磁性纳米颗粒广泛应用于分离和检测等方面.(一)生物分离生物分离是指利用功能化磁性纳米颗粒的表面配体与受体之间的特异性相互作用(如抗原-抗体和亲和素—生物素等)来实现对靶向性生物目标的快速分离。

传统的分离技术主要包括沉淀、离心等过程,这些纯化方法的步骤繁杂、费时长、收率低,接触有毒试剂,很难实现自动化操作.磁分离技术基于磁性纳米材料的超顺磁性,在外加磁场下纳米颗粒被磁化,一旦去掉磁场,它们将立即重新分散于溶液中。

因此,可以通过外界磁场来控制磁性纳米材料的磁性能,从而达到分离的目的,如细胞分离、蛋白质分离、核酸分离、酶分离等,具有快速、简便的特点,能够高效、可靠地捕获特定的蛋白质或其它生物大分子。

此外,由于磁性纳米材料兼有纳米、磁学和类酶催化活性等特性,不仅能实现被检测物的分离与富集,而且能够使检测信号放大,具有重要的应用前景。

通常磁分离技术主要包括以下两个步骤:(1)将要研究的生物实体标记于磁性颗粒上;(2)利用磁性液体分离设备将被标记的生物实体分离出来.①细胞分离:细胞分离技术的目的是快速获得所需的目标细胞。

传统的细胞分离技术主要是根据细胞的大小、形态以及密度差异进行分离,如采用微滤、超滤和超滤离心等方法.这些方法虽然操作简单,但是特异性差,而且纯度不高,制备量偏小,影响细胞活性.但是利用磁性纳米材料可以避免一定的局限性,如在磁性纳米材料表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质和外源凝结素等),利用它们与目标细胞特异性结合,在外加磁场的作用下将细胞分离、分类以及对数量和种类的研究。

磁性纳米材料作为不溶性载体,在其表面上接有生物活性的吸附剂或其它配体等活性物,利用它们与目标细胞的特性结合,在外加磁场作用下将细胞分离。

磁性功能材料——纳米磁性材料的基本特征

磁性功能材料——纳米磁性材料的基本特征
材料的能级间距是和原子数N成反比的,因此,当 颗粒尺度小到一定的程度,颗粒内含有的原子数N有 限,纳米金属费米能级附近的电子能级由准连续变为 离散,纳米半导体微粒则存在不连续的最高被占据分
子轨道和最低未被占据的分子轨道,能隙变宽。当这
能隙间距大于材料物性的热能,磁能,静电能,光子 能等等时,就导致纳米粒子特性与宏观材料物性有显
3 表面效应
当粒子尺寸变小时,位于表面的原子 数相对于内部的原子数所占比例变大, 例如对铜而言,100纳米的粒子,比表 面积为6.6m2/g, 而10纳米粒子的比表面 积就为66m2/g, 当粒子小到 1 纳米时, 比表面积就高达 660m2/g。表面能很大, 极大提高了粒子的活性,造成表面原子 输运和构型的变化,也引起原子自旋构 象的变化。 极端情况是碳纳米管,只有表面原子,
热运动能 kT 使体积为V的粒子磁矩Ms越过各向异性为K的 势垒KV的几率为
p=exp (-KV/kT),
即原一致磁化的粒子集合体,经过足够长的时间可衰减到剩 磁为零,其弛豫时间 τ 为
τ =(1/f0) exp (KV/kT), 频率因子f0=109 s-1 。
如果要等一年(107秒)才会衰减为“顺磁”态,那就一定不能 认为这材料是超顺磁性,因此这里有个 τ 的相对标准,譬如可 用τ<10-1秒为超顺磁性的标准。显然 τ 和材料的各向异性K, 温度T,粒子的直径D=V-3都有关。
对固定的材料和粒子尺寸V,要表现为超顺磁性就有个临界 温度 T0, 称其为截止温度。
对固定的温度,如室温,要表现出超顺磁性,粒子就要小于 临界尺寸V0 。
举几个超顺磁性的实际数据:
对 K=107J/m3 而 T=100K 的条件,尺寸6.3nm 的粒子的弛 豫时间 τ=10-1s , 而6.8nm时, τ=101s; 到 7.6nm 时 τ=10+5s(即 一天! ), 可见表现出超顺磁性的尺度范围是很窄的。 室温下呈现出超顺磁性的尺寸是:球形铁12nm,椭球铁 3nm,六角密积钴4nm,面心立方钴14nm。 了解材料的具体数据是重要的,因为不同的测量方法会得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

本页已使用福昕阅读器进行编辑。

福昕软件(C)2005-2007,版权所有,仅供试用。

相关文档
最新文档