空间解析几何练习题
空间解析几何习题

空间解析几何习题习题0—11.在空间直角坐标系中,画出下列各点:)2,1,2(),4,3,0(),4,0,0(-。
2.求点),,(c b a 关于(1)各坐标面,(2)各坐标轴,(3)坐标原点的对称点的坐标。
3.自点),,(0000z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。
4.一边长为a 的立方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标。
5.求点)5,3,4(-P 到各坐标轴的距离。
6.在yOz 面上,求与三个已知点)2,1,3(A ,)2,2,4(--B 和)1,5,0(C 等距离的点。
7.证明:以三点)9,1,4(A ,)6,1,10(-B ,)3,4,2(C 为顶点的三角形是等腰三角形。
习题0—21.设向量a 与x 同和y 轴的夹角相等,而与z 同的夹角是前者的两倍,求向量a 的方向余弦。
2.设向量的方向余弦分别满足下列条件,试问这些向量与坐标轴、坐标面的关系如何?(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα3.分别求出向量)5,3,2(),1,1,1(-==b a 及)2,1,2(--=c 的模,并写出单位向量000,,c b a 。
4.设向量)1,0,0(),0,1,0(),0,0,1(===k j i ,证明k j i ,,两两正交。
习题0—31.设b a ,为非零向量,问它们分别满足什么条件时,下列等式成立?(1)||||b a b a -=+;(2)||||b ba a =。
2.设c b a v c b a u -+=+-=3,2,试用c b a ,,表示v u 32-。
3.在A B C ?中,设M ,N ,P 分别为BC ,CA AB 的中点,试用AB CA BC ===c b a ,,表示向量AM ,N B ,CP 。
4.设MB AM =,证明:对任意一点O ,有)(21+=。
空间几何练习题及解析

空间几何练习题及解析题目一:直线与平面的交线问题解析:将题目里的空间几何划分为三个方面进行练习题的解析,分别是点、线和平面。
第一部分:点的几何分析1. 已知平面上四个点A、B、C、D的坐标分别为A(1, 2),B(3, 1),C(4, 4),D(2, 3),判断是否存在一条直线过这四个点的问题。
解答:我们可以根据点的坐标来求取直线的斜率。
设点A的坐标为(Ax, Ay),点B的坐标为(Bx, By)。
直线的斜率可以通过斜率公式求得:k = (By - Ay) / (Bx - Ax)。
根据题目中给出的四个点的坐标求解斜率,可以得到k1 = (1 - 2) / (3 - 1) = -0.5,k2 = (4 - 2) / (4 - 3) = 2。
由于斜率不相等,所以不存在一条直线过这四个点。
2. 已知三点A(1, 2, 3),B(4, 5, 6),C(7, 8, 9),判断是否存在一个平面包含这三个点。
解答:我们可以通过计算向量的点积来判断三个点是否共面。
设向量AB的坐标为(ABx, ABy, ABz),向量AC的坐标为(ACx, ACy, ACz)。
若向量AB与向量AC的点积等于0,则说明三点共面。
根据题目中给出的三个点的坐标求解点积,可以得到(4 - 1) * (7 - 1) + (5 - 2) * (8 - 2) + (6 - 3) * (9 - 3) = 0。
由于点积等于0,所以存在一个平面包含这三个点。
第二部分:线的几何分析1. 已知空间中两条直线的方程分别为L1: (x - 1) / 2 = (y - 2) / 3 = (z - 3) / 4和L2: (x - 2) / 3 = (y - 3) / 4 = (z - 4) / 5,求这两条直线的交点坐标。
解答:将直线的方程进行整理,可以得到L1的参数方程为:x = 1 + 2t,y = 2 + 3t,z = 3 + 4t;L2的参数方程为:x = 2 + 3s,y = 3 + 4s,z = 4 +5s。
空间解析几何练习与答案

空间解析几何与向量代数测试题一、 选择题(每小题6分,共24分 )1.点)1,3,2(-M 关于xoy 平面的对称点是( )(A ))1,3,2(-- (B ))1,3,2(--- (C ))1,3,2(-- (D ))1,3,2(-2.设向量,+=,则必有( )(A )=- (B )=+ (C )0=⋅ (D )=⨯3.向量{}z y x a a a ,,=,{}z y x b b b ,,=,{}z y x c c c ,,=, 则p n m a -+=34在x 轴上投影是( )(A )x x x c b a -+34 (B )()x x x c b a -+±34(C )x x x c b a -+34 (D )y y y c b a -+344.平面0=+++D Cz By Ax 过x 轴,则( )(A )0==D A (B )0,0≠=D A (C )0,0=≠D A (D )0==C B二、填空题 (每小题6分,共30分 )1.向量{}z y x a a a ,,=与三坐标轴正向夹角分别为γβα,,,则的方向余弦中的=αcos _____________2.平面0218419=++-z y x 和0428419=++-z y x 之间的距离等于__________3.球面2222R z y x =++与a z x =+交线在xoy 平面上投影曲线的方程是______________(其中R a <<0)4.设向量a 的方向角3πα=,β为锐角,βπγ-=,且4=,则=___________.5.方程14222=+-z y x 表示的曲面是______________ 三、解答下列各题(46分 )1.(12分) 求经过原点且垂直于两平面 0352:1=++-z y x π,073:2=--+z y x π的平面方程。
2.(12分)已知ABC ∆的顶点分别为)3,2,1(A ,)5,4,3(B 、)7,4,2(C ,求ABC ∆的面积.3.(10分)设{}1,4,1-=,{}5,4,3-=,求∧),sin(b a4.(12分)一直线在xoz 坐标面上,且过原点又垂直于直线 152132-=-+=-z y x ,求它的对称式方程.空间解析几何与向量代数测试题答案一、1.C 解:y x ,坐标不变,z 坐标变为相反数2.C 解:由已知条件得22)()(b a b a +=- ⋅-=⋅∴22 即0=⋅3. A解:由向量的线性运算易得)34,34,34(z z z y y y x x x c b a c b a c b a a -+-+-+=又向量a 在x 轴的投影就是直角坐标系中的坐标x a即 x x a a j =Pr =x x x c b a -+344. A 解:平面必过原点故0=D ;0,}0,0,1{,},,{=⇒⊥==A i i C B A .二、1.222z y x xa a a a ++ 2.1 解:184194221222=++-=d3.⎩⎨⎧==-++0)(2222z R x a y x 解:⎩⎨⎧=+=++a z x R z y x 2222消去z 得:2222)(R x a y x =-++ 与0=z 联立得 ⎩⎨⎧==-++0)(2222z R x a y x 4.{}6,6,2- 解:43411)(cos cos ,21cos 22=-=-+=βπβα }6,6,2{}223,223,21{4223cos cos 83cos 2-=-⋅=⇒=-=⇒=⇒a γββ5.单叶双曲面三、解:1. 21,ππ法向量分别为{}5,1,21-=n ,{}1,3,12-=n …………….….4分 所求平面法向量为{}7,7,1421-=⨯=n n n ………………8分 又平面经过原点,故所求平面方程为 02=--z y x ……..………12分2.解:根据向量积的定义,可知三角形的面积A S ABC =∠=∆……………3分 由于{}{}421,2,2,2,,==,因此2642122+-==⨯ ………… 7分于是142)6(4216421222=+-+=+-=∆S ABC …………10分 3.()533018,cos -=-==∧ ………….5分 ()54,sin =∧ ……..…....10分 4.由直线在xoz 面上,可知此直线垂直于y 轴。
线性代数与空间解析几何综合练习100题

综合练习100题一、填空题1.设A 是n 阶矩阵,满足,||0'=<AA E A ,则||+=A E 0. 2.若4阶行列式D 的某一行的所有元素及其余子式都相等,则D =0.3.在一个n 阶行列式中,如果等于零的元素多于2n n -个,那么这个行列式D =0. 4.设A 是m n ⨯矩阵,B 是n m ⨯矩阵,若m n >,则||=AB 0. 5.若n 阶方阵,A B 满足,||0=-≠AB B A E ,则=B 0. 6.若n 阶方阵,A B 满足+=A AB E ,则+=A BA E . 7.若n 阶方阵,,A B C 满足=ABC E ,则'''=B A C E . 8.若、A B 都是n 阶方阵,||1,||3==-A B ,则*1|3|-=A B13n --.9.若n 阶方阵A 满足*||0.=≠0A A ,则秩()=A 1n -. 10.设,A B 是两个n 阶方阵,||1,||2+=-=A B A B ,则=A B BA2 .11.设矩阵111022003⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,则*1()-=A 111666110331002⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 12.A 为m 阶方阵,B 为n 阶方阵,||,||a b ==A B ,则C=0AB (1)mn ab -.13.设矩阵A 满足24+-=0A A E ,其中E 为单位矩阵,则1()--=A E 1(2)2+A E .14.设A 为3阶方阵,其特征值为3,1,2-,则2||+=A E 100.15.已知11000101100100110100*********a -⎛⎫⎪- ⎪ ⎪=-⎪- ⎪ ⎪-⎝⎭A ,则4,4,()5,4.a R a =-⎧=⎨≠-⎩当时当时A16.已知n 阶方阵A 的各行元素之和都等于0,且()1n =-R A ,则=0AX 的通解为(1,1,,1),k k '为任意常数.17.矩阵m n ⨯A 满足,m n <||0'≠AA ,则=0AX 的基础解系一定由n m -个线性无关的解向量构成.18.若矩阵A 满足3=A A ,则A 的特征值只能是0或1或1-.19.如果(1,1,1)'=-ξ是方阵2125312a b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的一个特征向量,则a =3-;b =0.20.已知A 与B 相似,且3021⎛⎫= ⎪⎝⎭B ,则2||λ-=A A 3(1)(31)λλ--.21.已知33⨯A 的特征值为1,2,3,则1*||-+=A A 376.22.已知2是A 的一个特征值,则2|6|+-=A A E 0.23.设,αβ是n 维列向量,0'=βα,则'αβ的特征值为0()n 重. 24.若n 阶方阵A 的行向量组线性相关,则0一定是A 的一个特征值. 25.直线1022270x y x x y z +-=⎧⎨+-=⎩的单位方向向量为. 26.已知2768444424798188D =,41424344,,,A A A A 为D 中第4行元素的代数余子式,则41424344+++=A A A A 0.27.设A 是3阶方阵,X 是3维列向量,使得2,,X AX A X 线性无关,且3232=-A X AX A X ,记2(,,)=P X AX A X ,则1-=P AP 000103012⎛⎫⎪⎪ ⎪-⎝⎭.28.若两个非零几何向量,a b 满足||||a b a b +=-,则a 与b 是夹角θ=2π.29.直线260:210x y z L x y z +--=⎧⎨-+-=⎩的参数方程为8,5113,55.x t y t z t ⎧=-⎪⎪⎪=+⎨⎪=⎪⎪⎩30.圆22212462402210x y z x y z x y z ⎧++-+-+=⎨+++=⎩的半径R =3.二、选择题1.设n 元齐次线性方程组=0AX 的系数矩阵A 的秩为r ,则=0AX 有非零解的充要条件是(C ).(A )r n =; (B )A 的行向量组线性无关; (C )A 的列向量组线性相关; (D )A 的列向量组线性无关.2.设A 是m n ⨯矩阵,=0AX 是非齐次线性方程组=AX β所对应的齐次线性方程组,则下列结论正确的是(C ).(A )若=0AX 只有零解,则=AX β有唯一解; (B )若=0AX 有非零解,则=AX β有无穷多解; (C )若=AX β有无穷多解,则=0AX 有非零解; (D )=AX β的任两解之和还是=AX β的解.3.设非齐次线性方程组=AX β的系数行列式为零,则(C ). (A )方程组有无穷多解; (B )方程组无解; (C )若方程组有解,则有无穷多解; (D )方程组有唯一解.4.设A 是m n ⨯矩阵,对于线性方程组=AX β,下列结论正确的是(A ). (A )若A 的秩等于m ,则方程组有解; (B )若A 的秩小于n ,则方程组有无穷多解; (C )若A 的秩等于n ,则方程组有唯一解; (D )若m n >,则方程组无解.5.设5阶方阵A 的秩是3,则其伴随矩阵*A 的秩为(C ). (A )3; (B )4; (C )0; (D )2.6.设A 是n 阶方阵,*2,n >A 是A 的伴随矩阵,则下列结论正确的是(B ).(A )*||=AA A ; (B )若||0≠A ,则*||0≠A ; (C )**1||=A A A ; (D )秩()=A 秩*()A . 7.设,AB 是n 阶方阵,A 非零,且=AB 0,则必有(D ).(A )=0B ; (B )=0BA ; (C )222()+=+A B A B ; (D )||0=B . 8.设有两个平面方程 11111:0a x b y c z d π+++=,22222:0a x b y c y d π+++=,如果 秩1112222a b c a b c ⎛⎫=⎪⎝⎭,则一定有(D ) (A )1π与2π平行; (B )1π与2π垂直; (C )1π与2π重合; (D )1π与2π相交.9.设A 为n 阶可逆矩阵,λ是A 的一个特征根,则A 的伴随阵*A 的特征根之一是(D ). (A )1n λ-; (B )||λA ; (C )λ; (D )1||λ-A .10.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的(B ). (A )充分必要条件; (B )充分而非必要条件; (C )必要而非充分条件; (D )既非充分条件也非必要条件. 11.已知n 阶方阵A 与某对角阵相似,则(C ).(A )A 有n 个不同的特征值; (B )A 一定是n 阶实对称阵;(C )A 有n 个线性无关的特征向量; (D )A 的属于不同特征值的特征向量正交. 12.下列说法正确的是(D ). (A )若有全不为0的数12,,,m k k k 使11m m k k ++=0αα,则向量组12,,,mααα线性无关;(B )若有一组不全为0的数12,,,m k k k 使得1122m m k k k +++≠0ααα,则向量组12,,,m ααα线性无关;(C )若存在一组数12,,,m k k k 使1122m m k k k +++=0ααα,则向量组12,,,m ααα线性相关;(D )任意4个3维几何向量一定线性相关.13.设,A B 是n 阶方阵,满足:对任意12(,,,)n x x x '=X 都有''X AX =X BX ,下列结论中正确的是(D ).(A )若秩()=A 秩()B ,则=A B ; (B )若'=A A ,则'=B B ;(C )若'=B B ,则=A B ; (D )若,''==A A B B ,则=A B . 14.设,A B 均为n 阶正定矩阵,则必有(B ).(A )AB 正定; (B )2+A B 正定; (C )-A B 正定; (D )k A 正定. 15.设A 是n 阶方阵,2=A E ,则(C ).(A )A 为正定矩阵;(B )A 为正交矩阵;(C )*2()=A E ;(D )2tr()n =A . 16.设,A B 是n 阶方阵,下列结论中错误的是(D ). (A )若,A B 都可逆,则'A B 也可逆;(B )若,A B 都是实对称正定矩阵,则1-+A B 也是实对称正定矩阵; (C )若,A B 都是正交矩阵,则AB 也是正交矩阵; (D )若,A B 都是实对称矩阵,则AB 是实对称矩阵. 17.设,A B 是n 阶方阵,下列结论中错误的是(B ). (A )若A 经列的初等变换化成B ,则秩()=A 秩()B ; (B )若A 经行的初等变换化成B ,则11--=A B ;(C )若A 经行的初等变换化成B ,则=0AX 与=0BX 同解;(D )若A 经列的初等变换化成B ,则A 的列向量组与B 的列向量组等价.18.设111213212223212223111213313233311132123313,a a a a a a a a a a a a a a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭A B 12010100100010001101⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P ,则必有(C ).(A )12=AP P B ;(B )21=AP P B ;(C )12=P P A B ;(D )21=P P A B .19.若A 与B 相似,则(B ).(A )λλ-=-E A E B ;(B )||||λλ+=+E A E B ;(C )**=A B ;(D )11--=A B .20.若2=A E ,则(D ).(A )+A E 可逆; (B )-A E 可逆;(C )+=0A E 或-=A E 0; (D )≠A E 时,+A E 不可逆.21.设1111111111111111⎛⎫ ⎪⎪= ⎪⎪ ⎪⎝⎭A ,4000000000000000⎛⎫⎪⎪= ⎪⎪⎪⎝⎭B ,则A 与B (A ).(A )合同且相似; (B )合同但不相似; (C )不合同但相似; (D )不合同且不相似.22.实二次型f '=X AX 为正定二次型的充要条件是(C ). (A )f 的负惯性指数是0; (B )存在正交阵P 使'=A P P ; (C )存在可逆阵T 使'=A T T ; (D )存在矩阵B 使'=A B B . 23.设B 是m n ⨯实矩阵,'=A B B ,则下列结论中错误的是(D ). (A )线性方程组=0BX 只有零解⇔A 正定;(B )()()R R =A B ; (C )A 的特征值大于等于0; (D )()R m =⇔B A 正定. 24.设A 是n 阶方阵,||0a =≠A ,则*1||-A A 等于(C ). (A )a ; (B )1a; (C )2n a -; (D )na . 25.设,A B 是n 阶方阵,则必有(D ). (A )11||||||--+=+A BA B ; (B )111||---+=+A B B A ;(C )222()=AB A B ; (D )||||'=A B BA .26.已知12,ηη是非齐次线性方程组=AX β的两个不同的解,12,ξξ是对应的齐次线性方程组=0AX 的基础解系,12,k k 为任意常数,则方程组=AX β的通解为(B ). (A )1211222k k -++ηηξξ; (B )1211212()2k k ++++ηηξξξ;(C )112121()k k +-+ξηηη; (D )1121212()()k k +-++ξηηηη.27.设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为(C ). (A )6π; (B )4π; (C )3π; (D )2π.28.若12312,,,,αααββ都是4维列向量,且4阶行列式1231||,m =αααβ 1223||n =ααβα,则4阶行列式12312||+αααββ等于(D ).(A )m n +; (B )()m n -+; (C )m n -; (D )n m -. 29.设n 阶矩阵A 非奇异(2)n >,则(C ). (A )**1()||n -=A A A ; (B )**1()||n +=A A A ; (C )**2()||n -=A A A ; (D )**2()||n +=A A A .30.设矩阵111222333a b c a b c a b c ⎛⎫⎪⎪ ⎪⎝⎭的秩是3,则直线333121212x a y b z c a a b b c c ---==---与直线111232323x a y b z c a a b b c c ---==---(A ).(A )相交于一点; (B )重合; (C )平行但不重合; (D )异面.三、计算题1.设1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭A ,求5A 及10||A . 解:由311111111||(4)11111111λλλλλλλ+---+--==+-+---+E A故A 的特征值为12340,4λλλλ====-.对0λ=,由1()λ-=0E A x ,可解得三个线性无关的特征向量,1(1,1,0,0)'=ξ,2(1,0,1,0)'=ξ,3(1,0,0,1)'=-ξ.对4λ=-,由(4)--=0E A x ,可解得特征向量4(1,1,1,1)'=--ξ,令 12341111010010(),0101000114D⎛⎫⎛⎫⎪⎪- ⎪ ⎪== ⎪ ⎪- ⎪⎪--⎝⎭⎝⎭T T T T T ,由=AT TD 得 11*13111131111113||41111---⎛⎫ ⎪- ⎪=== ⎪--- ⎪ ⎪--⎝⎭A TDTT T T 故 1111013111001011311()0101011134001141111-⎛⎫⎛⎫⎛⎫ ⎪⎪⎪-- ⎪⎪⎪=⋅ ⎪⎪⎪---- ⎪⎪⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭A 1111111111111111--⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭551511110131110010113110101011134001141111--⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-⎪⎪ ⎪==⋅ ⎪⎪ ⎪---- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭A TD T 88111111112211111111--⎛⎫ ⎪-- ⎪== ⎪-- ⎪ ⎪--⎝⎭A . 又10161016642,|||2|2||0====A A A A A .2.设0100102a c b ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭A ,(1),,a b c 满足什么条件时,A 的秩是3;(2),,a b c 取何值时,A 是对称矩阵; (3)取一组,,a b c ,使A 为正交阵.解:(1)01002002000010010010120120100102a c a bc a bc a c b b b ⎛⎫⎪--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=→→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭A当2a bc ≠时,A 的秩是3.(2)0100102a b c ⎛⎫ ⎪ ⎪'= ⎪ ⎪ ⎪⎝⎭A ,要想A 成为对称矩阵,应满足'=A A ,即1,0a b c ===.(3)要想A 为正交阵,应满足'=A A E ,即00101001000010110010022a b a c c b ⎛⎫⎛⎫⎪⎪⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪ ⎪⎪⎝⎭ ⎪⎪⎝⎭⎝⎭.2221,10,211,2a b ac b c ⎧⎪+=⎪⎪+=⎨⎪⎪+=⎪⎩ 解得1,2a b c ===. 3.设有三维列向量123211101,1,1,111λλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==+== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭αααβ 问λ取何值时,(1)β可由123,,ααα线性表示,且表达式唯一; (2)β可由123,,ααα线性表示,但表达式不唯一; (3)β不能由123,,ααα线性表示.解法1: 设111111111λλλ+⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭A , 21110111111λλλλλ+⎛⎫⎪=+ ⎪ ⎪+⎝⎭B由22211100(2)(1)1110(1)111111λλλλλλλλλλλλλλλλ⎛⎫+--+-+⎛⎫⎪ ⎪=+−−→-- ⎪ ⎪⎪ ⎪++⎝⎭⎝⎭行B 22222003(12)1110(1)0(1)11100(3)(12)λλλλλλλλλλλλλλλλλλλλλλ⎛⎫⎛⎫----+ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭行行(1)当0λ≠且3λ≠-时,()()3R R ==A B ,此时β可由123,,ααα线性表示,且表达式唯一.(2)当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一.(3)当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示. 解法2:2111||111(3)111λλλλλ+=+=++A① 当0λ≠且3λ≠-时,||0≠A ,β可由123,,ααα线性表示,且表达式唯一, ② 当0λ=时,()()13R R ==<A B ,β可由123,,ααα线性表示,且表达式不唯一, ③ 当3λ=-时,()()R R ≠A B ,β不能由123,,ααα线性表示.4.设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为,1231111,2,3149⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ,又12322=-+βξξξ,求nA β(n 为正整数).解:由于 123123222(,,)21⎛⎫⎪=-+=- ⎪ ⎪⎝⎭βξξξξξξ又由于 1111n n λ==A ξξξ,22222n n nλ==A ξξξ,33333n n n λ==A ξξξ. 所以 12312322(,,)2(,,)211n n n n n⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A A A A A βξξξξξξ111232221232(,2,3)2123211231nn n n n n n n ++++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ 12132223223223n n n n n n +++++⎛⎫-+ ⎪=-+ ⎪ ⎪-+⎝⎭.5.设122212221-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,(1)求A 的特征值;(2)求1-+E A 的特征值.解:(1)2122||212(1)(5)0221λλλλλλ+---=-+=-+=-+E A得A 的特征值为1231,5λλλ===-.·129·(2)由A 是对称阵,A 的特征值是1,1,5-,存在可逆阵T 使1115-⎛⎫ ⎪= ⎪ ⎪-⎝⎭T AT 于是 111115--⎛⎫ ⎪ ⎪= ⎪ ⎪- ⎪⎝⎭T A T , 112()245--⎛⎫⎪ ⎪+= ⎪ ⎪⎪⎝⎭T E A T ,故1-+E A 的特征值为42,2,5.6.已知(1,,1)k '=α是211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆阵1-A 的特征向量,试求常数k 的值.解:设α为A 的特征值为λ的特征向量,则λ=A αα.即 2111112111211k k λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.即 322k k kλλ+=⎧⎨+=⎩解得 220k k +-=,即1k =或2-.7.设11 111, 1112a a a ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,已知线性方程组=AX β有无穷多解,试求:(1)a 的值;(2)正交阵P ,使'P AP 为对角阵.解:(1)211111111101101120112a a a a aa a a a ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭B 111011000(1)(2)2a a a a a a ⎛⎫ ⎪→-- ⎪ ⎪-+--⎝⎭要使=AX β有无穷多解,必须()()3R R =<A B ,因此2a =-.·130· (2)此时112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,112||121(3)(3)0211λλλλλλλ---=-+-=-+=--E A ,得A 的特征值1230,3,3λλλ===-.对于10λ=,由1112121211ξ--⎛⎫⎪--=⎪ ⎪--⎝⎭0,得特征向量1111⎛⎫⎪= ⎪ ⎪⎝⎭ξ,单位化得13⎛⎫ ⎪=⎝⎭η; 对于23λ=,由2212151212ξ-⎛⎫⎪--= ⎪ ⎪-⎝⎭0,得特征向量2101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得2202⎛⎫⎪⎪= ⎪ - ⎝⎭η;对于34λ=-,由3412111214ξ--⎛⎫ ⎪---= ⎪ ⎪--⎝⎭0,得特征向量3121⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得363η⎛⎫ ⎪ =- ⎪⎪⎪⎪⎝⎭;·131·令3260⎛⎫ ⎪=⎪⎪⎪⎪⎝⎭P ,此时P 为正交阵,并且'P AP 为对角阵033⎛⎫⎪⎪ ⎪-⎝⎭. 8.已知线性方程组(I )1111221331442112222332440a x a x a x a x a x a x a x a x +++=⎧⎨+++=⎩的一个基础解系为112112221213231424, b b b bb b b b ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,试求线性方程组.(II )11112213314421122223324400b y b y b y b y b y b y b y b y +++=⎧⎨+++=⎩的通解.解:设11121314111213142122232421222324a a a a b b b b a a a a b b b b ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭A B由12,ξξ为(I )的一个基础解系得0'=AB .由12,ξξ线性无关,所以()2R =B ,又0'=BA ,所以1111213142(,,,),a a a a '==ηη21222324(,,,)a a a a '是B 的基础解系,通解为112212,,k k k k +ηη为任意常数.9.已知方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩ 有三个线性无关的解向量,求,a b 的值及方程组的通解.解:1111111111(|)43511011531310131a b a a b a a --⎛⎫⎛⎫⎪ ⎪=--−−→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭行A β10242011530042452a b a a -⎛⎫⎪−−→-- ⎪ ⎪-+--⎝⎭行由于该非齐次线性方程组有三个线性无关的解向量,故()(|),()1 3.R R A n R =-+=A A β·132· 其中4n =. 于是()(|)2R R ==A A β.从而2,3a b ==-. 该方程组与方程组13423424253x x x x x x =-++⎧⎨=--⎩ 同解. 令3142,x k x k ==得该方程组的通解112212314224253x k k x k k x k x k -++⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭X 12242153100010k k -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭其中12,k k 为任意常数.10.设3221423kk -⎛⎫⎪=-- ⎪ ⎪-⎝⎭A ,问当k 为何值时,存在可逆阵P ,使得1-P AP 为对角阵,并求出一个P 及相应的对角阵A . 解:A 的特征方程为:322122||11423123k k k λλλλλλλλ-----=+-=+---+--+E A2122(1)01(1)(1)0123k λλλλλ-=-+-=-+=-+.解得特征根为1231,1λλλ===-.当1λ=时,()2,R -=E A A 有1个线性无关的特征向量.当1λ=-时,211422211100022422000000E A -⎛⎫---⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪--=-→-→- ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭⎝⎭k k k k k k·133·因存在可逆阵P ,使1-P AP 为对角阵,所以(1)1R --=E A ,从而0k =.因此 322010423-⎛⎫⎪=-⎪ ⎪-⎝⎭A , 对应于11λ=的特征向量为1ξ,由222020424--⎛⎫⎪⎪ ⎪--⎝⎭1=0ξ得1(1,0,1)'=ξ 对应于231λλ==-的特征向量为23,ξξ,由422000422--⎛⎫ ⎪= ⎪ ⎪--⎝⎭0ξ,得 23(1,2,0),(0,1,1)''=-=ξξ令110021101⎛⎫⎪=- ⎪ ⎪⎝⎭P 且P 为可逆阵,相应的对角阵111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .11.设101020101⎛⎫⎪=⎪ ⎪⎝⎭A ,方阵B 满足2+=+AB E A B ,求B . 解:由2+=+AB E A B 得 2()()()-=-=-+A E B A E A E A E由于001010100⎛⎫ ⎪-= ⎪ ⎪⎝⎭A E ,所以-A E 可逆,得 201030102⎛⎫ ⎪=+= ⎪ ⎪⎝⎭B A E ,12.已知将3阶可逆阵A 的第2行的2倍加到第3行得矩阵B ,求1-AB .解:令100010021⎛⎫⎪= ⎪ ⎪⎝⎭C ,则=CA B ,由于,A C 均可逆,故B 可逆,所以 11100010021--⎛⎫ ⎪== ⎪ ⎪-⎝⎭AB C .13.设有线性方程组·134· 123123123000ax bx bx bx ax bx bx bx ax ++=⎧⎪++=⎨⎪++=⎩ (,a b 不全为0) (1),a b 为何值时方程组有非零解; (2)写出相应的基础解系及通解; (3)求解空间的维数.解:(1)齐次方程组有非零解的充要条件是系数行列式0a b bba b b b a=即 2()(2)0a b a b -+= 故0a b =≠,或20a b =-≠时,方程组有非零解. (2)当0a b =≠时,方程组为1230x x x ++=,即123x x x =--.其基础解系为12111,001--⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ξξ,通解为12121110,,10k k k k --⎛⎫⎛⎫⎪ ⎪+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.当20a b =-≠时,方程组为123123123202020x x x x x x x x x -++=⎧⎪-+=⎨⎪+-=⎩,解得基础解系为111⎛⎫ ⎪⎪ ⎪⎝⎭,通解为11,1k k ⎛⎫ ⎪⎪ ⎪⎝⎭为任意常数.(3)当0a b =≠时,解空间维数为2;当20a b =-≠时,解空间维数为1.14.设二次型222123122313222f x x x ax x bx x x x =+++++经正交变换=X PY 化成22232f y y =+,其中123123(,,),(,,),x x x y y y ''==X Y P 是3阶正交矩阵,求,a b 及满足上述条件的一个P .解:正交变换前后,二次型的矩阵分别为11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A , 000010002⎛⎫⎪= ⎪ ⎪⎝⎭B故二次型可以写成f '=X AX 和f '=Y BY ,且1-'==B P AP P AP .·135·由,A B 相似知||||λλ-=-E A E B ,即322223(2)()a b a b λλλ-+--+-3232λλλ=-+,比较系数得:0,0a b ==.由1000010002-⎛⎫ ⎪== ⎪ ⎪⎝⎭P AP B ,知A 的特征值是0,1,2.解方程组(0)-=0E A x ,得1101⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得11120||2ξξ⎛⎫⎪ ⎪== ⎪ - ⎝⎭P 解方程组()-=0E A x ,得22201,0⎛⎫ ⎪== ⎪ ⎪⎝⎭P ξξ,解方程组(2)-=0E A x ,得3101⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得33320||2⎛ ⎪== ⎪ ⎝⎭P ξξ故123022()010022⎛ ⎪== ⎪ - ⎝⎭P P P P . 15.求直线110:220x y z L x y z +--=⎧⎨+--=⎩与2220:2240x y z L x y z +--=⎧⎨+++=⎩的公垂线方程.解:1L 与2L 的标准式及参数形式分别为:11:011x y z L -==与1,,;x y t z t =⎧⎪=⎨⎪=⎩22:210x y z L +==-与2,,2.x y z λλ=⎧⎪=-⎨⎪=-⎩·136· 1L 的方向向量为12(0,1,1),L =s 的方向向量为2(2,1,0)=-s .设1L 与2L 公垂线垂足为(1,,),(2,,2)t t λλ--A B ,则应有(21,,2)AB t t λλ=-----,且1220s λ⋅=---=AB t ,2520s λ⋅=+-=AB t .解得4,32.3t λ⎧=-⎪⎪⎨⎪=⎪⎩所以1{1,2,2}3AB =-,故公垂线方程为 44133122y z z ++-==-. 16.求直线210:10x y z L x y z -+-=⎧⎨+-+=⎩在平面:20x y z π+-=上投影的方程.解:A 点坐标为44(1,,)33--.设通过直线L 垂直于平面π的平面0π的方程为21(1)0x y z x y z λ-+-++-+=.0π的法向量为1(2,1,1)λλλ=+-+-n . 平面π的法向量为(1,2,1)=-n . 由0ππ⊥,知10⋅=n n ,得 22(1)(1)0λλλ++-+--= 解得14λ=. 从而得0π方程为310.x y z -+-=所以所求直线0L 方程为310,20.x y z x y z -+-=⎧⎨+-=⎩17.设矩阵A 与B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求一个可逆阵P ,使1-=P AP B .解:(1)因为A 与B 相似,所以有||||λλ-=-E A E B ,32111||242(5)(53)6633a a a aλλλλλλλ---=--=-++++--E A232||(2)()(4)(44)4b b b b λλλλλλ-=--=-+++-E BππL 0L·137·比较两式系数可得:5344664a b a b +=+⎧⎨-=-⎩解得56a b =⎧⎨=⎩.(2)因A 与226⎛⎫⎪= ⎪ ⎪⎝⎭B 相似,所以A 的特征值为2,2,6. 1112222333-⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭E A . 解(2)-=0E A X 得A 的对应于特征值2的特征向量12111,001-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,5116222331-⎛⎫ ⎪-=- ⎪ ⎪⎝⎭E A . 解()E A X -=60得A 的对应于特征值6的特征向量3123⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令123111()102013P -⎛⎫ ⎪==- ⎪ ⎪⎝⎭ξξξ,则有1-=P AP B .18.已知3阶实对称阵A 的特征值为03,2,2,10⎛⎫ ⎪- ⎪ ⎪⎝⎭及01 ⎪ ⎪⎝⎭分别是A 的对应于特征值3,2的特征向量,(1)求A 的属于特征值2-的一个特征向量;(2)求正交变换=X PY 将二次型f '=X AX 化为标准形.解:(1)设2-对应的特征向量为X ,则有12(,)0,(,)0==X X ξξ,可取310⎛⎫⎪= ⎪ ⎝ξ.(2)把特征向量规范正交化后得:·138·12310221,0,00122⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ - ⎪⎝⎭⎝⎭P P P .令10221001022⎛⎫ ⎪⎪= ⎪ - ⎝⎭P , 则在正交变换=X PY 下f 化为 222123322f y y y =+-.19.已知二次型22212312232355266f x x cx x x x x x x =++-+-的秩为2,求c 及此二次型对应矩阵的特征值,指出123(,,)1f x x x =代表三维几何空间中何种几何曲面.解:二次型f 所对应的矩阵为51315333c -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,因f 的秩为2,即A 的秩为2,故有||0=A ,所以3c =.513||153(4)(9)0333λλλλλλλ---=-=--=--E A ,得特征值为0,4,9. 与特征值相对应的单位特征向量分别为123(,,'''===P P P , 取正交变换阵0⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭P ,则在正交线性变换=X PY 下,方程123(,,)1f x x x =化为椭圆柱面2223491y y +=.20.设有数列01201321120,1,,,,,n n n a a a a a a a a a a a --===+=+=+,求1000a .解法1:·139·由1121110n n n n a a a a ---⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 得9991000109991110a a a a ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.记 1110⎛⎫=⎪⎝⎭A 得A,并且1211,2211⎛⎫⎛⎫+ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ分别是A的对应于特征值1122+的特征向量.记1211(,)2211⎛⎫+ ⎪== ⎪ ⎪⎝⎭T ξξ,于是111-⎛ ⎪=⎪-⎪⎝⎭T则100-⎫⎪ = ⎝A T T99999911020-⎛⎫+ ⎪= ⎝A T T1000100010001000999999999999]]-+⎪= ⎪-+⎪⎝⎭所以10001000100011(()())522a +-=-. 解法2:设 1111n D +++=++αβαβαβαβαβαβαβαβ·140· 将n D 按第一行展开可得1n n n D D αβ--= (1)由, αβ的对称性可得1nn n D D βα--= (2)若αβ≠,(1)、(2)联立解之11n n n D αβαβ++-=- (3)若αβ=,由(1)1(1)n nn n D D n ααα-=+=+ (4)考察令 11111111111n D --=-补充定义100,1D D -==,则12,1,2,n n n D D D n --=+= 于是1n n a D -= 解:11αβαβ+=⎧⎨=-⎩, 得001122αβ+==,由(3)知 00000000001000999000000111a D αβαβαβαβαβαβαβαβ+++==++100010000000αβαβ-=-10001000⎡⎤⎥=-⎥⎝⎭⎝⎭⎦.·141·四、证明题1.证明69169169(1)316916n n D n ==+,(n 为正整数). 证:1 1n =时,16(11)3D ==+⋅2 假设当n k ≤时结论成立,当1n k =+时,若12k +=,由226936927(21)316D ==-==+⋅知命题成立.若13k +≥,将1k D +按第一行展开得11169169696(1)39316916k k k k k D D D k k -+-==-=+-⋅⋅1(2)3k k +=+⋅由数学归纳法,对一切自然数n 结论都成立.2.设A 为2阶方阵,证明:若存在大于等于2的自然数m 使m=0A ,则=20A .证:因m=0A ,所以||||0mm==A A ,又A 为2阶方阵,故()1R ≤A .所以A 经初等变换可以化为100000000000⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭,于是存在可逆阵,P Q ,使 1000100000(100)00000⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P Q P Q ,·142· 取10,(100)0⎛⎫ ⎪ ⎪'== ⎪ ⎪⎝⎭U P V Q ,则'=A UV .令k '=V U ,则2.k k '''===A UV UV UV A 由m m k -==10A A 知0k =,或者=0A ,故2k ==0A A . 3.设A 是幂等阵2()=A A ,试证 (1)A 的特征值只能是1或0, (2)()()n R R n +-=A A E , (3)A 可相似对角化; (4)()tr()R =A A .证:(1)设λ是A 的任一特征值,则存在≠0X 使λ=AX X . 于是22λ=A X X .由2=A A 知,2λλ=X X . 由≠0X 得2λλ=,故1λ=或0. (2)由2=A A 知,()-=0A A E ,于是()()R R n +-≤A A E (1)由()n n +-=A E A E 知()()()()()n n n R R R R R =≤+-=+-E A E A A A E (2)综合(1),(2)可得()().n R R n +-=A A E(3)记12(),()n R r R r =-=A A E .当10r =或20r =时,=0A 或n =A E ,命题显然成立. 以下设120,0r r ≠≠,由12r r n +=知10r n <<,20r n <<. 取112,,,n r -ξξξ为=0AX 的基础解系212,,,n r -ηηη是()n -=0A E X 的基础解系,则112,,,n r -ξξξ是A 的属于特征值0的线性无关的特征向量,212,,,n r -ηηη是A 的属于特征值1的线性无关的特征向量,故由12()()n r n r n -+-=知A 有n 个线性无关的特征向量1211,,,,,n r n r --ξξηη. 从而A可相似对角化.(4)由(1)、(3)可知存在可逆阵T 使10r-⎛⎫=⎪⎝⎭E T AT 于是1()tr()tr()R r -===A TAT A .4.设,A B 是n 阶正定矩阵,证明:AB 的特征值全大于0.·143·证:因,A B 正定,则存在可逆阵12,P P ,使11221122''''===A P P B P P AB P P P P12221121212()()()-'''''==P AB P P P P P P P P P因12,P P 可逆,则12'P P 可逆,从而1212()()''P P PP 正定,它的特征值全大于0, 因AB 与1212()()''''P P P P 相似,从而AB 的特征值全大于0. 5.设A 为n 阶方阵,试证:(1)若1k +=0A α且k≠0A α,则1,,,,kk -A A A αααα线性无关;(2)1n +=0A X 的解一定是n =0A X 的解; (3)1()()n nR R +=A A .证:(1)反证法若1,,,,kk +A A A αααα线性相关,则存在不全为零的数01,,,k l l l ,使01k k l l l +++=0αααA A ,设i l 是第一个不等于零的系数,即0110,0i i l l l l -====≠, 则 11i i k i i k l l l +++++=0A A A ααα,两边乘以矩阵k i -A ,得121k k k i i i k l l l +-++++=0A A A ααα,由于1k +=0Aα,故对任意1m k ≥+都有m =0A α,从而由上式得k i l α=0A ,但k ≠0A α,故0i l =与假设矛盾. (2)证明:假设α是1n +=0A X 的解,但不是n =0A X 的解,即有 1n +=0A α 但n≠0A α.由(1)知1,,,,nn -A A A αααα线性无关,与1n +个n 维向量1,,,,n n -A A A αααα线性相关矛盾,故α是n =0A X 的解. (3)由(2)知1n +=0AX 的解一定是n =0A X 的解,且易知n =0A X 的解一定是1n +=0A X 的解,所以方程1n +=0A X 与n =0A X 同解,所以1()()n n +=R A R A .6.已知向量组12,,,(2)m m ≥ααα线性无关,试证:向量组1112,m k =+=βααβ22111,,,m m m m m m m k k ---+=+=ααβααβα线性无关.证:假设有一组数121,,,,m m l l l l -使得112211m m m m l l l l --++++=0ββββ.则有11222111()()()m m m m m m m m l k l k l k l ---+++++++=0ααααααα,即有·144· 112211112211()m m m m m m l l l l k l k l k l ----++++++++=0αααα由于12,,,m ααα线性无关,所以 1211122110m m m m l l l l k l k l k l ---====++++=,所以1210m m l l l l -=====.故12,,,m βββ线性无关.7.设12,,,m ααα线性无关,m 为奇数,试证:1122231,,,m -=+=+=βααβααβ11,m m m m -+=+ααβαα线性无关.证:假设存在一组数12,,,m k k k 使112211m m m m k k k k --++++=0ββββ,则有112223111()()()()m m m m m k k k k --++++++++=0αααααααα,即111221()()()m m m m k k k k k k -++++++=0ααα 又由于12,,,m ααα线性无关,所以11210m m m k k k k k k -+=+==+=,因为m 是奇数,所以线性方程组(1)的系数行列式1101111(1)20010001m D +==+-=≠, 1121000m m m k k k k k k -+=⎧⎪+=⎪⎨⎪⎪+=⎩ (1) 故(1)只有零解,所以120m k k k ====,故12,,,m βββ线性无关.8.设n 阶矩阵A 的n 个列向量为12,,,n ααα,n 阶矩阵B 的n 个列向量为122311,,,,,()n n n R n -++++=ααααααααA ,问齐次线性方程组=0BX 是否有非零解,证明你的结论.证:当n 为奇数时,齐次线性方程组=0BX ,没有非零解. 当n 为偶数时,=0BX 有非零解.·145·由于()R n =A ,所以n 阶矩阵A 的n 个列向量12,,,n ααα线性无关,由上题知,当n 为奇数时,122311,,,,n n n -++++αααααααα也线性无关,所以()R n =B ,因此齐次线性方程组=0BX 没有非零解,但当n 为偶数时,因122311()()()()n n n -+-++++-+=0αααααααα,122311,,,,n n n -++++αααααααα线性相关,所以()R n <B .因此,齐次线性方程组=0BX 有非零解.9.设12,,,n ξξξ是n 阶方阵A 的分别属于不同特征值的特征向量,12n =+++αξξξ. 试证:1,,,n -A A ααα线性无关.证:设A 的n 个互不相同的特征值为12,,,n λλλ,对应的特征向量依次为12,,,n ξξξ,则1111(),,n n n n λλ=++=++=++A A A A αξξξξξξ11111n n n n n λλ---=++A αξξ.设有一组数011,,,n k k k -,使得1011n n k k k --+++=0αααA A 即1101111111()()()n n n n n n n k k k λλλλ---+++++++++=0ξξξξξξ.可得1101111101212201(λλ)(λλ)(λn n n n n k k k k k k k k ξξ----+++++++++++11)n n n n k λ--+=0ξ.由于12,,,n ξξξ线性无关,所以1011111012121011000n n n n n nn n k k k k k k k k k λλλλλλ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩ 即 1011212211111n n n n n n k k k ----⎛⎫⎛⎫⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0λλλλλλ又由于1111221111()01n n i j j i nn nn --≤<≤-=-≠∏λλλλλλλλ.所以0110n k k k -====, 即21,,,,n -A A A αααα线性无关.·146· 10.已知,A B 是两个n 阶实对称矩阵,试证A 与B 相似的充要条件是,A B 的特征多项式相等.证:(1)若A 与B 相似,记1-=T AT B ,则11||||||||||||λλλλ---=-=-=-E B E T AT T E A T E A .(2)若,A B 的特征多项式相等,则,A B 有相同的特征值12,,,n λλλ. 因,A B 都是实对称矩阵,存在正交阵,P Q 使112211,n n λλλλλλ--⎛⎫⎛⎫⎪⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP Q BQ 于是11--=P AP Q BQ .即111()()---=PQ A PQ B故A 与B 相似.11.设A 是n 阶实矩阵,证明当0k >时,k '+E A A 正定.证:()()()k k k ''''''+=+=+E A A E A A E A A ,即k '+E A A 是实对称阵. 对任意n 维非零实列向量X ,有()()()()k k k '''''''+=+=+X E A A X X E X X A AX X X AX AX由于0k >,所以()0k '>X X ,又()0'≥AX AX ,所以()0k ''+>X E A A X .即k '+E A A 正定.12.设A 是m n ⨯实矩阵,证明:()()()R R R ''==A A AA A ,并举例说明A 是复矩阵时,结论未必成立. 证:考察方程组'=0A AX , (1)=0AX (2)显然(2)的解均为(1)的解,因而()()n R n R '-≤-A A A ,即有()()R R '≤A A A (3)·147·另一方面,对任意1nn x x ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭R X 如果'=0A AX ,则()0''=X A AX , 即()()0'=AX AX (4)设12(,,,)n a a a '=AX ,由(4)知210ni i a ==∑,因为A 为实矩阵,X 为实向量,故i a 均为实数,所以120n a a a ====,即=0AX ,由于(2)的解也是(1)的解,故有()()n R n R '-≤-A A A ,即()()R R '≤A A A (5)综合(3),(5)式知()()R R '=A A A由()()R R '=A A 知()(())()()R R R R '''''===AA A A A A故有()()()R R R ''==A A AA A .令1i ⎛⎫= ⎪⎝⎭A ,则(1,)i '=A ,于是(0)'=A A ,即A 是复矩阵,结论不成立. 13.若任意n 维列向量都是n 阶方阵A 的特征向量,试证:A 一定是标量矩阵. 证:先证A 的任两个特征值都相等,否则设1212,()λλλλ≠是A 的两个特征值,≠0X ,≠0Y ,使12,λλ==AX X AY Y . 因12λλ≠,所以,X Y 线性无关,+≠0X Y . 依题意存在k ,使()()k +=+A X Y X Y ,于是1212()(),k k k λλλλ-+-===0X Y ,矛盾,故A 的所有特征值都相等,记为λ.令j e 为n 阶单位阵E 的第j 个列向量,1,,j n =,于是 1()E e e e =jn由已知,1,2,,j j j n λ==Ae e得11()(),,A e e e e e e AE E A E λλλ===j n j n即A 是数量矩阵.14.设A 是n 阶正定矩阵,试证:存在正定矩阵B 使2=A B . 证:A 是正定阵,则存在正交矩阵P ,使得·148· 121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭P AP D ,其中0,(1,2,,)ii n λ>=令(1,2,,)i i n δ==,则21111222222n n n n λδδδλδδδλδδδ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪===⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭D 而 11221n n δδδδδδ-⎛⎫⎛⎫ ⎪⎪⎪⎪'== ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭A PDP P P 1122n n δδδδδδ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪''= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P P P P 令 12n δδδ⎛⎫ ⎪⎪'= ⎪ ⎪ ⎪⎝⎭B P P ,易验证B 为正定阵,故2=A B . 15.设α是n 维非零实列向量,证明:2'-'E αααα为正交矩阵.证:因为22()'''-=-''E E αααααααα,故2222()()()()'''''--=--''''E E E E αααααααααααααααα 224444()()()()()''''''=-+=-+''''E E αααααααααααααααααααα 44''=-+=''E E αααααααα. 因而2'-'E αααα为正交矩阵.16.设方程组=0AX 的解都是=0BX 的解,且()()R R =A B ,试证:=0AX 与·149·=0BX 同解.证:设()()R R r ==A B ,则=0AX 的基础解系含有n r -个线性无关的向量,不妨设为12,,,n r -ξξξ. 有,(,,)A ==-01i i n r ξ.又=0AX 的解必为=0BX 的解,从而,(,,)i i n r ξ==-01B从而12,,,n r -ξξξ也是=0BX 的基础解系.于是=0BX 的通解为11.n r n r k k --+ξξ则=0AX 与=0BX 同解.17.设A 是n 阶方阵,12(,,,)n b b b '=β是n 维列向量,0⎛⎫= ⎪'⎝⎭A B ββ,若()()R R =A B ,则=AX β有解.证:由于()()()R R R ≤=A B A β,又由于()()R R ≤A A β,所以()()R R =A A β即=AX β有解.18.设12(,,,)(1,2,,,)i i i in a a a i r r n '==<α是r 个线性无关的n 维实向量,12(,,,)n b b b '=β 是线性方程组111122121122221122000n n n n r r rn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 的实非零解向量,试证:12,,,,r αααβ线性无关.证:假设12,,,,r αααβ线性相关,由已知12,,,r ααα线性无关,必有1122r r k k k =+++βααα, (1)又由β为方程组的解,从而(,)0,(1,,)i i r ==βα于是11(,)(,)0r r k k =++=βββαα, 从而=0β,矛盾.所以12,,,,r αααβ线性无关. 19.设,A B 是两个n 阶正定矩阵,若A 的特征向量都是B 的特征向量,则AB 正定. 证:因为,A B 是两个n 阶正定矩阵,因此,A B 也必为实对称矩阵,设12,,,n P P P 为A 的n 个标准正交的特征向量,记12()n =P P P P ,则·150· 112211,,n n k k k λλλ--⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭P AP P BP 并且,0,(1,,)i i k i n λ>=,所以 1122111n n k k k λλλ---⎛⎫⎛⎫ ⎪⎪ ⎪⎪=⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭P ABP P AP P BP 1122n n k k k λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭ 且0,(1,,)i i k i n λ>=. 再由1-'=P P 得()'=AB AB ,因此AB 正定.20.设12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,试证向量组12,,,,t +++ββαβαβα线性无关. 证:设有一组数01,,,t k k k 使得011()()t t k k k +++++=0ββαβα即0121122()t t t k k k k k k k ++++++++=0βααα (1)由于12,,,t ααα是齐次线性方程组=0AX 的基础解系,向量β不是=0AX 的解,所以β不能表为1,,t αα的线性组合,所以0120t k k k k ++++=,因此(1)式变为1122t t k k k +++=0ααα,由于1,,t αα线性无关,所以120t k k k ====,进而00k =,故向量组12,,,,t +++ββαβαβα线性无关.。
空间几何练习题

空间几何练习题题一:求直线与平面的交点坐标已知直线L的方程为:x=2t+1y=3t-4z=-t-2平面P的方程为:2x+y-3z+4=0求直线L与平面P的交点坐标。
解答:直线与平面的交点满足直线上的点同时满足平面的方程,即直线上的点代入平面的方程后等式成立。
将直线L的方程代入平面P的方程,得:2(2t+1)+(3t-4)-3(-t-2)+4=04t+2+3t-4+3t+6+t+6+4=011t+14=011t=-14t=-14/11将t的值代入直线L的方程,得:x=2(-14/11)+1=-28/11+1=-28/11+11/11=-17/11y=3(-14/11)-4=-42/11-4=-42/11-44/11=-86/11z=-(14/11)-2=-14/11-22/11=-36/11所以,直线L与平面P的交点坐标为:(-17/11, -86/11, -36/11)。
题二:平面中两直线的位置关系已知平面P的方程为:2x-3y+z+4=0直线L1的方程为:x=2t+3y=t+1z=-t-2直线L2的方程为:x=3t-1y=t+2z=2t-1判断直线L1和直线L2在平面P中的位置关系。
解答:直线在平面中的位置关系可以通过将直线的方程代入平面的方程,判断等式是否成立。
将直线L1的方程代入平面P的方程,得:2(2t+3)-3(t+1)+(-t-2)+4=04t+6-3t-3-t-2+4=0t+5=0t=-5将t的值代入直线L1的方程,得:x=2(-5)+3=-10+3=-7y=-5+1=-4z=-(-5)-2=5-2=3将直线L2的方程代入平面P的方程,得:2(3t-1)-3(t+2)+(2t-1)+4=06t-2-3t-6+2t-1+4=05t-5=0t=1将t的值代入直线L2的方程,得:x=3(1)-1=3-1=2y=1+2=3z=2(1)-1=2-1=1所以,直线L1和直线L2在平面P中的位置关系为:直线L1和直线L2相交于点(-7, -4, 3)。
空间解析几何与向量代数测试题

空间解析几何与向量代数测试题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题六一、 填空题1. 过点(3,-2,2)垂直于平面5x-2y+6z-7=0和3x-y+2z+1=0的平面方程为____________.2.轴的正向的夹与轴的正向的夹角为与的模为已知向量y x OM ,45.100→=→OM 则向量角为,600_________________.3. 过()3,1,2-点且平行于向量{}3,2,2-=和{}5,3,1--=的平面方程为__________.{}{}=-=-=→→λλλ则互相垂直和若两向量,,2,12,3,b a .5. ()向量决定的平面垂直的单位与三点)3,1,3(),1,3,3(,2,1,1321M M M - =→a ________________{}{}上的投影等于在向量向量1,2,24,1,1-==→→a b .的模等于则向量已知→→→→→→→-==⎪⎭⎫ ⎝⎛==n m a n m n m 3260,,2,50.垂直的平面方程是且与平面过点⎩⎨⎧=+-+=-+--012530742)3,0,2(z y x z y x .9. 设a b c →→→,,两两互相垂直,且a b c →→→===121,,,则向量s a b c →→→→=+-的模等于_____________.10. 过点(0,2,4)且与平面x+2z=1,y-3z=2都平行的直线是________________.1 =⎩⎨⎧=-+-=+-+D x z y x D z y x 则轴有交点与若直线,06222032.二、 选择题1. 表示方程⎩⎨⎧==++13694222y z y x ;1)(;)(平面上的椭圆椭球面=y B A():.0)(;)(答上的投影曲线椭圆柱面在椭圆柱面=y D C2. :,轴的单位向量是且垂直于则垂直于已知向量oy a k j i a →→→→→++=⎪⎭⎫⎝⎛+-±⎪⎭⎫⎝⎛++±→→→→→→k j i B k j i A 33)(33)(():22)(22)答⎪⎭⎫ ⎝⎛+±⎪⎭⎫⎝⎛-±→→→→k i D k i C3.=+=⎪⎭⎫ ⎝⎛==→→→→→→b a b a b a 则且已知,4,,2,1π ():.5)(;2)(;21)(;1)(答D C B A +4. 平面3x-3y-6=0的位置是(A)平行xoy 平面 (B)平行z 轴,但不通过z 轴; (C)垂直于z 轴; (D)通过z 轴. 答:( ) 5.则有且但方向相反互相平行设向量,0,,,>>→→→→b a b a→→→→→→→→->+-=+b a b a B b a b a A )(;)(():)()(答→→→→→→→→+=+-<+ba b a A b a b a C6.是旋转曲面1222=--z y x 轴旋转所得平面上的双曲线绕x xoy A )( 轴旋转所得平面上的双曲线绕z xoz B )( 轴旋转所得平面上的椭圆绕x xoy C )( ():)(答轴旋转所得平面上的椭圆绕x xoz D7. :,0,0结论指出以下结论中的正确设向量→→→→≠≠b a ;0)(垂直的充要条件与是→→→→=⨯b a b a A ;0)(平行的充要条件与是→→→→=⋅b a b a B ;)(平行的充要条件与的对应分量成比例是与→→→→b a b a C():.0),()(答则是数若=⋅=→→→→b a b a D λλ8. =⨯⎪⎭⎫ ⎝⎛+→→→→→→c b a c b a 则为三个任意向量设,,,→→→→→→→→⨯+⨯⨯+⨯b c a c B bc c a A )()( ():)()(答→→→→→→→→⨯+⨯⨯+⨯cb ac D cb c a C9.方程x y y 224912+==⎧⎨⎪⎩⎪在空间解析几何中表示 (A)椭圆柱面, (B) 椭圆曲线;(C)两个平行平面, (D)两条平行直线. 答:( ) 10. 对于向量,,,有(A ) 若0=⋅b a ,则,中至少有一个零向量(B ) ()())(c a c b c b a ⋅+⋅=⋅+(C ) ()()c b a c b a ⋅⋅=⋅⋅ (D ) ()()0=⋅⋅1 1. 方程y z x 22480+-+=表示(A)单叶双曲面; (B)双叶双曲面;(C)锥面; (D)旋转抛物面. 答:( )12.双曲抛物面(马鞍面)()x p y qz p q 22200-=>>,与xoy 平面交线是 (A) 双曲线; (B) 抛物线,(C)平行直线; (D)相交于原点两条直线; 答( )三、 计算题(本题共6小题,每小题8分,满分48分。
空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,k j i 532+-与k j m i 23-+互相垂直.4.设kj i a ++=2,kj i b 22+-=,kj i c 243+-=,则)(b a prj c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=c b a ,则=⨯⨯c b a )(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=b a b k j i a ,则,且,14//236( ) A .)4612(k j i -+± B .)612(j i +± C .)412(k i -± D .)46(k j -± 4.若ϕ的夹角与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223B .553C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90o D .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________. 1.设k j i a 32+-=,j i b +=2,k j i c ++-=,则c b a 与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。
第4章向量代数与空间解析几何练习题_3

3.母线平行于轴, 准线为的柱面的方程是
_____________________.
4.顶点在原点且经过圆的圆锥面的方程是
________________________.
5.经过, 且与曲面相切的平面的方程是____________.
三、计算题与证明题
1.一动点到定点的距离是它到的距离的两倍, 程.
复习题四
一、选择题
1.将下列列向量的起点移到同一点,
终点构成一个球面的是
()
(A)平行于同一平面的单位向量;(B)平行于同一直线的单位
向量;
(C)平行于同一平面的向量; (D)空间中的所有单位向 量.
2.下列叙述中不是两个向量与平行的充分条件的是
(
)
(A); (B)与的内积等于零;
(C)对任意向量有混合积; (D)与的坐标对应成比例.
3.设向量的坐标为, 则下列叙述中错误的是( )
(A)向量的终点坐标为; (B)若为原点,且, 则点的坐标为;
(C)向量的模长为;(D) 向量与平行.
4.行列式的值为( )
(A) 0 ; (B) 1 ; (C) 18 ; (D) .
5.对任意向量与, 下列表达式中错误的是( )
(A)与; (B) 与;
(C)与; (D) 与.
5.原点到平面的距离是( )
(A) ; (B) ; (C) ; (D) 1.
二、填空题
1.垂直于向量且到点的距离为5的平面的方程是 ______________________或者__________________________.
2.经过原点与且平行于向量的平面的方程是_________________. 3.平面与三坐标轴分别交于点(A)、(B)、(C),则Δ(A) (B)(C)的面积为_________________. 4.一动点移动时与及坐标平面等距离,则该点的轨迹方程为 ________________. 5.通过轴和点的平面的方程是________________________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一 空间解析几何
一、填空题
1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。
2、直线2100x y --=方向向量为 。
3、直角坐标系XY 下点在极坐标系中表示为 。
4、平行与()6,3,6a =-的单位向量为 。
5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。
6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。
7、向量(3,-2)和向量(1,-5)的夹角为 。
8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。
9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)⋅a b = 。
10、点(1,2,1)到平面2100x y z -+-=的距离为 。
二、解答题
1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。
2、求过点(4,2,3) 且平行与直线
31215
x y z --==的直线方程。
3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩
垂直的平面方程。
4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。
5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。
6、求222
19416
x y z ++=在XOY 平面上的投影域。
7、求2z z =≤≤在XOZ 平面上的投影域。
8、求曲线222251x y z x z ⎧++=⎨+=⎩
在XOY 平面上的投影曲线。
9、求曲线 22249361x y z x z ⎧++=⎨-=⎩
在XOY 平面上的投影曲线。
10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。