双根法是优化解析几何运算的又一利器
“双根法”在解析几何运算中的运用

待定系数法的应用范围非常广,要判断一个问题能
否可以使用待定系数法来解决,主要看该问题中给定的
已知条件是否可以转化为确定的数学表达式 . 假如可以
转换为确定的表达式,那么就可以用待定系数法求解 .
笔者挑选几道可以用待定系数法解答的有代表性的题
目,供各位同行参考 .
一、题目引入及问题剖析
【例 1】(2017 年 湖 北 省 高 考 模 拟 题)已 知 y =
求 k 的值 .
传统解法:(1)易得椭圆的方程为
x2 3
+
y2 2
= 1.
(2)设点 C(x1,y1),D(x2,y2),由 F(-1,0)得直线 CD
的方程为 y=k(x+1),
ìy = k( x + 1),
由
方
程组ïí来自x2ïî
3
+
y2 2
= 1 , 消去 y,整理得(2+3k2)x2+
6k2x+3k2-6=0.
5 4
+y1 y2= m2
y1 +
5 4m
y2 +
5 4m
+ y1 y2.
ì x = my - 1,
由
ï
í
x2
ï
î4
+
y2 2
得(m2+2)y2-2my-3=0,所以,由双 = 1,
根法可得:
( m2 + 2 ) y2 - 2my - 3 = ( m2 + 2 ) ( y - y1 ) ( y - y2 ),
( x1 + 1 ) ( x2 + 1 ) = 8. 因为 x1,x2 是方程 ( 2 + 3k2 ) x2 + 6k2 x + 3k2 - 6 = 0 的
高中数学解析几何知识点总结

高中数学解析几何知识点总结高中数学解析几何知识点总结笔记空间两条直线只有三种位置关系:平行、相交、异面。
按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。
空间向量法。
两异面直线间距离:公垂线段(有且只有一条)esp。
空间向量法。
若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面。
直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。
①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角;b、直线与平面平行或在平面内,所成的角为0°角。
由此得直线和平面所成角的取值范围为[0°,90°]。
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。
直线a叫做平面的垂线,平面叫做直线a 的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
高考数学考点归纳之 解析几何计算处理技巧

高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
高中解析几何简化计算之点乘双根法

( Ⅰ)
设 P( m,0)
则→PA = ( →PA·P→B
x1 =(
,-Am( ,xy1 ,1 )y1,)P→,BB=(
x1 - m) ( x2 -
x2 ,y2 ) , ( x2 - m,y2 m) + y1 y2
), =(
x1
-
m)
(
x2
-
m) + k2 ( x1 - 1) ( x2 - 1) .
解题技巧与方法
JIETI JIQIAO YU FANGFA
131
高中解析几何简化计算之点乘双根法
◎陈俊健 ( 广西南宁市第三中学( 青山校区) ,广西 南宁 530021)
【摘要】高中解析几何在求解圆锥曲线与直线问题的时 候,通常需要联立方程,利用韦达定理去求解. 利用韦达定 理进行运算求解时,稍不注意就容易出错. 在求解点乘或者 斜率乘积为定值,甚至求 x1 x2 ,y1 y2 的时候,我们可以改进 解法,引入 点 乘 双 根 法,避 开 韦 达 定 理,简 化 计 算,减 少 失误.
C:
x2 a2
+
y2 b2
= 1 ( a > b > 0) 上,且椭圆的
离心率为
1 2
.
( 1) 求椭圆 C 的方程.
( 2) 若 M 为椭圆 C 的右顶点,点 A,B 是椭圆 C 上不同
的两点(
均异于
M)
且满足直线
MA
与
MB
斜率之积为
1 4
.
试判断直线 AB 是否过定点? 若是,求出定点坐标; 若不是,
定理进行繁杂计算的过程,达到简化计算、提高解题速度的
效果,下面举例说明.
例 1 ( 2018 年西南四省名校高三第一次大联考) 已知
例谈题根在数学解题中的应用——以对数均值不等式为例

3_¥)故学敉学2021年第3期例谈题根在数学解题中的应用----以对数均值不等式为例张国治(新疆生产建设兵团第二中学,新疆乌鲁木齐83_2)笔者通过对近几年高考、竞赛试题的研究,有一个很有趣的发现——许多试题来源于 同一个问题.我们可以把这类不断生长的问题 称为“题根题根是一个题族、一个题系中的 源头,也是一个题群中的典例.把握住了一个 题根,叩源推委,便能寻觅到解决问题的“金钥 匙”,进而辐射到一个题族、题群.以题根方式 展开教学,旨在寻找解题思维入口,通过题根 的变式拓展探求不同的解法,帮助学生理解问 题内涵,总结归纳.那么如何寻找“题根”呢? 将源于课本、高考、竞赛的题目进行提炼与升 华形成结论,然后再将其广泛应用于解题实践 中,这便是寻找题源的不二法门.这一过程意 义非凡,因为茫茫题海中很多题目表象不同,但实质一样(可归结于同一个题根或题源).一 个题源加工而成的结论,其功效不亚于教材中 的一个定理,寻找“题根”需要八方联系,浑然一 体.笔者以一道竞赛题为例,探源溯流,给出一类 高考题、竞赛题命题的题根,多题归一,提供一种 高效学习数学的方法,敬请同行指正.[1]题根(2017年全国高中数学联赛湖南省 预赛第15题)[2]已知a、6 e 11且〇 > 0, i > Q,a #b.(i)求证:#(2)如果 a、6 是函数/(a:) = lnx -的两个零点,求证> e2.证法 1:如图 1,设/(*) = e*,x e [m,n],其中双m,0),B(n,0),过点分别作x轴的垂线,交曲线于c、Z)两点.点)处的切线/分别交BC、于点£、f,则f c pJ f=6〒,所以/:7 1梯形从一(j£+J f)=(n-m*n^l)e ,•^曲边梯形A sa) =| g dx =e一 e , *S梯形^ m数感是《义务教育数学课程标准(2011 版)》中的十大核心概念之一,对运算结果的估 计是数感的一种重要体现.估计(估算)在三个 学段都有明确具体的目标要求,其中在第三学 段(7-9年级)的知识技能目标对运算(包括估 算)技能的要求是达到掌握层级.固然,计算的 准确性是数学学科的基本要求之一,运算能力 是典型的数学能力,但其内涵已发生了变化.运 算能力不仅指能够“正确地从事运算”,还包括 借助工具计算和手算,也包括精确计算和估算[2].作为一线的数学教师,应该充分理解课标 的价值理念,在日常的教学中应该给“估算”留一席之地.准确、标准的答案是我们数学人的追求,但“估算”是数学运算中不可或缺的组成部分估算”过程中所体现出的发散式调适与思考,正是学生创新意识形成、创新能力培养的一个有效载体.参考文献[1]中华人民共和国教育部.义务教育数 学课程标准(2011版)[S].北京:北京师范大学出版社,2012.[2]马复,凌晓枚.新版课程标准解析与 教学指导[M].北京:北京师范大学出版社,2012.2021年第3期故学敉学3-41n - m . 、 n — m / m …、 _ ...2 (yA + J b ) = 2 (e + e )•显然有S 梯形y l B E F < $曲边梯形/I B C D < S 梯形A f i C Z ),艮Pm +nr j一)(n - m ) e 2 < en - em < —-—(em + e n),1_•设%> 1,则欲证不等式成立等价于证明21n % < i ---(x > 1).构造函数则e 宁<^<n - m a2,令 en = a ,可得< , , , - ^In a - lno 2证法2:(1)由对称性,不妨设a > 6 > 0,^ a - b a + b a - b a + l 先证^-----TT < —•因为^----— <In a - Ini 2 〇 In a - Ini >2(a - b )^ a ^In a - \nb 2a + ba—+设% = T > 1,则欲证不等式成立等价于〇证明lnx > ^l l (x > 1}.X + l构造函数/(尤)=lnx - ^~~> 1),则作)=(n因为* > 1,所以尸(*) >x(x + 1)0,/(X )在(1,+ =C )上为单调递增函数,由 f i x ) >/〇) = 0,即得lm > 1),即<In a - In 62再证#< , a ~ f -,-.因为# <In a - Ini In a - Inia<=> In a - In 6 <y 〇b<=> In — <g 〇) = 21m -卜 一(% > 1),则g '(x ) =- (% -J )<〇,因此g U )在(1, + 〇〇)上为单调递减函数.办)<g (l ) = 0,即得21n % < (a :---1 (x > 1),即y 〇b <a综上可知,#<In a - Inia -b In a - Ini2以上结论反映了对数平均与算术平均、几何平均的大小关系,我们知道两个正数a 、6的 对数平均定义:L (a , b ) = jlna - ln 6 () ’la(a = b ).则当 a >〇,i >〇,有<In a - Ini—^一,^^<[(16)<-^—(当且仅当〇=6时,等号成立).若令 lna =文!,Ini =%2,贝l j d = e*1,6 = e*2, < —z —等价于^^?J~a b <In a — Ini 2?V 2__*2 丄 ^2‘1—,利用该不等式,可x X pL e - e " e •十 ee 2 < ------- < —-xx - x 2 2以轻松获解该题的第(2)小题:证明:定义域为(〇, +〇〇 ),尸(%) 1 2017 -x2017 2黯•若p2〇17,则/,(,)= 0;若* e (0,2017),则尸〇) >0,函数/(;〇单调递 增;若;c e (2017, + 〇〇 ),则尸(无)< 0,函数3-42故学敉学2021年第3期/(幻单调递减.由对称性,不妨设 a >6> 〇,则可得〇< 6<2017 <a.由条件知,ln a= 且ln6=故 lna- ln6(a-6),即2017由对数均值不等式得2017即a + 6 > 2 x 2017.-bIn a - Inia -bIn a - In6= 2017,<2 ,1iia;,a:2= \nxl+ \nx2= m(x l+ x2)> 2m•— = 2,所以a:丨a:2> e*12.m评注:不难发现,例1第(2)小题是题根第(2)小题的一般情况,事实上,由对数均值不等,______ 1 X] ~X22J x x x2<—=---------------,艮p<m lnxj -m x2-7,可见必有〇< m < i.m e因为lnafc= In a+ In6 =----(a+ 6) >2017 》^x 2x 2017 = 2,所以d> e2.下面举例说明此题根在高考、竞赛、模考中的应用,也进一步洞悉此类问题的编拟奥秘.类型1直接用对数均值不等式例1(2016年全国高中数学联赛湖南省预赛第15题)[3]已知函数/(幻=i l n x-(1)若m =」2时,求函数/(幻的所有零点;(2)若/(4有两个极值点心、巧,且x, < 尤2•求证:丨内> e2.解析:(1)当m =-2时,/(幻=;*111»:+;*:2-x = x( \nx + x -l) (x> 0). i^,p(x)=ln% + x -1(«:> 0),则p'(A〇=丄+ 1> 0,于是p(a〇在X(〇, + «>)上为增函数.又P(1) = 0,所以,当m =-2时,函数/(幻有唯一的零点a; = 1.(2)若/(x)有两个极值点x,、*2,则导函数/'(*)有两个零点h h•由/'U)= In* -m*,可知例2(2018年全国高中数学联赛福建省预赛第14题)[4]已知/U)= e* -似.(1)当x > 0时,不等式Q-2)/(幻+ m*2+ 2> 0恒成立,求实数m的取值范围;(2)若力、*2是/(幻的两个零点,证明:A C, + A;2> 2.解析:(1)略.(2)证明:由题可得/U)= /U2) = 〇,即I e*' = m x., t _x x,x得。
双根法优化解析几何运算

双根法优化解析几何运算1.双根法使用类型:形如12121212,,()(),()()x x y y x t x t y t y t ++++或者,MA MB MA MB ⋅⋅u u u r u u u r(其中1212,,,x x y y 分别为直线与曲线交点,A B 的横纵坐标)2.双根法理论基础:设12,x x 为一元二次方程20ax bx c ++=的两根则212()()ax bx c a x x x x ++=--(其意义为将一个二次多项式进行因式分解)引例.设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右焦点分别为12,F F ,线段12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.(1)求其椭圆的方程(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.解:(1)221204x y +=(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y因为22PB QB ⊥,则22=0PB QB u u u u r u u u u rg ,所以211221212(2,)(2,)0(2)(2)(2)(2)0x y x y x x k x x --=⇒--+++=*L现联立22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--= 即2222125(2)20(15)()()x k x k x x x x ++-=+--令2x =,22212122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=+令2x =-,212122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=+结合21212(2)(2)(2)(2)0x x k x x --+++=*L 化简可得:222280161601515k k k k --+=++2222118016160641642k k k k k --=⇒=⇒=∴=±所以直线l 方程为:1(2)2y x =±+.1.已知椭圆2222:1(0)x y C a b a b+=>>离心率为2,直线20x y -+=与以原点为圆心,椭圆的短半轴长为半径的的圆相切. (1)求椭圆的方程;(2)设直线l 与椭圆交于,A B 两点,若22OA OB OA OB +=-u u u r u u u r u u u r u u u r,求直线l 与y 轴交点的纵坐标的取值范围.2.已知椭圆22143x y +=,若直线l 与椭圆交于,A B 两点,(,A B 不是左右顶点),且以AB 为直径的圆过椭圆的右顶点,求证:直线l 过定点,并求出定点坐标.3. 设00(,)P x y 是抛物线22y px =上的一个定点,,A B 是抛物线上两点,且PA PB ⊥,证明:直线AB 恒过定点00(2,)p x y +-.4.已知椭圆E :错误!未找到引用源。
操千曲而晓声,观百剑而识器——简化解析几何运算的策略

时, A = }为 最 小; 将
直线 绕点 P逆 时针 旋转 至相切 ( , 重 合 )有 A = I ;回转至 A ( 0 ,一 3 ) ,B ( 0 ,3 )有 A - 5为 最大 ,故 有 A =
— 、 A( B)
0
B( a)
图 1
\
例3 . 椭圆内车+ 车= 1 有一点P ( 1 , 1 ) , 一直线
为、 / 的点 的轨迹 , 根 据圆锥 曲线 的定 义 .此轨迹
为双曲线 .选 C . 点评 :本题 采用 了 “ 回归定义”的策略 ,达到 准
确判 断、灵 活解题 、避免 大量运算的麻 烦. 其 实,很 多解析几何 问题都是 由定 义派生 出来的 ,这时理解 定
免繁琐的推理运算 ,往往事半功倍 、别样精彩.
f - O fl - 成等差数列,  ̄B - f 与 同向, 求双曲线的 离
心率.
求 简思维是 建立在对定 义 、概念深入 理解 的基 础
上 ,掌握其本质属性 ,运用相关 的概念 、定义对问题
的定性分析和定量计算有机结合起来 ,可 以使运算过 程 简捷 明快 ,因此我们在解题 中若能 回归定义 ,则很
以事半功倍. 解 析 :由、 / ( x + 3 ) 2 + ( y 一 1 ) 一 I x — y + 3 1 = 0 ,得
一
平 分 线 盼 眭 质 定 理 得 = 槲 , 再 由 等 比 性 质 可 得 ] = = 斟=
1
,
即t a n 0
,由渐近线方 程 由 = ,再
我们备战高考同样如此本文笔者通过认真研究近6年来的广东高考数学选做题发现对几何证明选讲部分内容的考查多集中在与圆相关的性质定理和相似三角形相似三角形的判定和性质定理射影定理圆的切线的判定和性质定理圆周角定理弦切角定理相交弦定理割线定理切割定理圆内接四边形的性质和判定定理等知识上难度不算大一般为中等难度题目
解决解析几何问题的六种通法

解决解析几何问题的六种通法中点问题点差法已知点A 、B 的坐标分别是(-1,0)、(1,0),直线AM 、BM 相交于点M ,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝⎛⎭⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.【解】 (1)设M (x ,y ),因为k AM ·k BM =-2,所以y x +1·y x -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1), 即为动点M 的轨迹方程. (2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,则C ⎝⎛⎭⎫12,62,D ⎝⎛⎭⎫12,-62,此时CD 的中点不是N ,不合题意.故设直线l 的方程为y -1=k ⎝⎛⎭⎫x -12, 将C (x 1,y 1),D (x 2,y 2)代入2x 2+y 2=2(x ≠±1)得2x 21+y 21=2,① 2x 22+y 22=2,②①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×2×122×1=-1,所以直线l 的方程为y -1=(-1)×⎝⎛⎭⎫x -12, 即所求直线l 的方程为2x +2y -3=0.直线y =kx +m 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,其中点为M (x 0,y 0),这类问题最常用的方法是“点差法”,即A ,B 在圆锥曲线上,坐标适合圆锥曲线方程,得两个方程作差,通过分解因式,然后使用中点坐标公式、两点连线的斜率公式建立求解目标方程,解方程解决问题.对称问题几何意义法已知椭圆C :x 216+y 29=1,直线l :y =2x +b ,在椭圆上是否存在两点关于直线l 对称,若存在,求出b 的取值范围.【解】设椭圆C :x 216+y 29=1上存在两点P (x 1,y 1),Q (x 2,y 2)关于直线l :y =2x +b 对称,P ,Q 的中点为M (x 0,y 0).因为PQ ⊥l ,所以可设直线PQ 的方程为y =-12x +a ,代入C 化简整理得13x 2-16ax+16a 2-144=0.由根与系数的关系得x 1+x 2=1613a ,y 1+y 2=1813a ,故得M ⎝⎛⎭⎫8a 13,9a 13. 因为Δ>0,所以(-16a )2-4×13(16a 2-144)>0, 解得-13<a <13.又因为M ⎝⎛⎭⎫8a 13,9a 13在直线l :y =2x +b 上, 所以9a 13=16a 13+b ,所以b =-713a ,因此b 的取值范围是⎝⎛⎭⎫-71313,71313.故在椭圆C 上存在两点关于直线l 对称,且b 的取值范围是⎝⎛⎭⎫-71313,71313.圆锥曲线上存在两点,关于某条直线对称,求参数的取值范围,这类问题常见的解法是:设P (x 1,y 1),Q (x 2,y 2)是圆锥曲线上关于直线y =kx +b 对称的两点,则PQ 的方程为y =-1kx +m ,代入圆锥曲线方程,得到关于x (或y )的一元二次方程,其中P ,Q 的横(或纵)坐标即为方程的根,故Δ>0,从而求得k (或b )的取值范围.最值(范围)问题不等式法已知拋物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点.若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.【解】 (1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,p =2,所以抛物线C的方程为x 2=4y .(2)易知直线AB 的斜率存在.设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y消去y ,整理得x 2-4kx -4=0, 所以x 1+x 2=4k ,x 1x 2=-4.从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1,又y 1=x 214,所以x M =2x 1x 1-x 214=84-x 1. 同理,点N 的横坐标x N =84-x 2.所以|MN |=2|x M -x N |=2⎪⎪⎪⎪84-x 1-84-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=82k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2225t 2+6t+1>2 2. 当t <0时,|MN |=22⎝⎛⎭⎫5t +352+1625≥852. 综上所述,当t =-253,即k =-43时,|MN |取得最小值852.解析几何最值(范围)问题,有时需要使用双参数表达直线方程,解决方法:一是根据直线满足的条件,建立双参数之间的关系,把问题化为单参数问题;二是直接使用双参数表达问题,结合求解目标确定解题方案.定点问题参数法已知椭圆C :x 24+y 2=1,过椭圆C 的右顶点A 的两条斜率之积为-14的直线分别与椭圆交于点M ,N ,问:直线MN 是否过定点D ?若过定点D ,求出点D 的坐标;若不过定点,请说明理由.[点拨]法一,以双参数表达直线MN 的方程,求解双参数满足的关系.法二,以直线AM 的斜率为参数表达直线MN 的方程.【解】法一:直线MN 过定点D .当直线MN 的斜率存在时, 设MN :y =kx +m ,代入椭圆方程得(1+4k 2)x 2+8kmx +4m 2-4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.根据已知可知y 1x 1-2·y 2x 2-2=-14,即4y 1y 2+(x 1-2)(x 2-2)=0,即(1+4k 2)x 1x 2+(4km -2)(x 1+x 2)+4m 2+4=0, 所以(1+4k 2)·4m 2-41+4k 2+(4km -2)⎝⎛⎭⎫-8km 1+4k 2+4m 2+4=0, 即(4km -2)(-8km )+8m 2(1+4k 2)=0, 即m 2+2km =0,得m =0或m =-2k . 当m =0时,直线y =kx 经过定点D (0,0).由于AM ,AN 的斜率之积为负值,故点M ,N 在椭圆上位于x 轴两侧,直线MN 与x 轴的交点一定在椭圆内部,而当m =-2k 时,直线y =kx -2k 过定点(2,0),故不可能.当MN 的斜率不存在时,点M ,N 关于x 轴对称,此时AM ,AN 的斜率分别为12,-12,此时M ,N 恰为椭圆的上下顶点,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0). 法二:直线MN 恒过定点D .根据已知直线AM ,AN 的斜率存在且不为零,A (2,0). 设AM :y =k (x -2),代入椭圆方程,得(1+4k 2)x 2-16k 2x +16k 2-4=0, 设M (x 1,y 1),则2x 1=16k 2-41+4k 2,即x 1=8k 2-21+4k 2,y 1=k (x 1-2)=-4k1+4k 2, 即M ⎝ ⎛⎭⎪⎫8k 2-21+4k 2,-4k 1+4k 2.设直线AN 的斜率为k ′,则kk ′=-14,即k ′=-14k ,把点M 坐标中的k 替换为-14k ,得N ⎝ ⎛⎭⎪⎫2-8k 24k 2+1,4k 4k 2+1. 当M ,N 的横坐标不相等,即k ≠±12时,k MN =2k 1-4k 2,直线MN 的方程为y -4k 4k 2+1=2k1-4k 2⎝ ⎛⎭⎪⎫x -2-8k 24k 2+1,即y =2k 1-4k 2x ,该直线恒过定点(0,0).当k =±12时,M ,N 的横坐标为零,直线MN 也过定点(0,0).综上可知,直线MN 过定点D (0,0).证明直线过定点的基本思想是使用一个参数表示直线方程,根据方程的成立与参数值无关得出x ,y 的方程组,以方程组的解为坐标的点就是直线所过的定点.定值问题变量无关法已知点M 是椭圆C :x 2a 2+y 2b2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且|F 1F 2|=4,∠F 1MF 2=60°,△F 1MF 2的面积为433.(1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.【解】 (1)在△F 1MF 2中,由12|MF 1||MF 2|sin 60°=433,得|MF 1||MF 2|=163.由余弦定理,得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1|·|MF 2|·cos 60°=(|MF 1|+|MF 2|)2-2|MF 1|·|MF 2|(1+cos 60°),解得|MF 1|+|MF 2|=4 2.从而2a =|MF 1|+|MF 2|=42,即a =2 2. 由|F 1F 2|=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1.(2)证明:当直线l 的斜率存在时,设斜率为k ,则其方程为y +2=k (x +1), 由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k 1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)·4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,可得A (-1,142), B (-1,-142),得k 1+k 2=4. 综上,k 1+k 2为定值.定值问题就是证明一个量与其中的变化因素无关,这些变化的因素可能是直线的斜率、截距,也可能是动点的坐标等,这类问题的一般解法是使用变化的量表达求证目标,通过运算求证目标的取值与变化的量无关.探索问题直推法已知曲线T :x 22+y 2=1(y ≠0),点M (2,0),N (0,1),是否存在经过点(0,2)且斜率为k 的直线l 与曲线T 有两个不同的交点P 和Q ,使得向量OP →+OQ →与MN →共线?若存在,求出k 值;若不存在,请说明理由.【解】 假设存在,则l :y =kx +2,代入椭圆方程得 (1+2k 2)x 2+42kx +2=0. 因为l 与椭圆有两个不同的交点, 所以Δ=(42k )2-8(1+2k 2)>0, 解得k 2>12,由题意知直线l 不经过椭圆的左、右顶点, 即k ≠±1, 亦即k 2>12且k 2≠1.设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=-42k1+2k 2.得y 1+y 2=k (x 1+x 2)+22=-42k 21+2k 2+22=221+2k 2. 所以OP →+OQ →=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫-42k 1+2k 2,221+2k 2, 又MN →=(-2,1),向量OP →+OQ →与MN →共线等价于x 1+x 2=-2(y 1+y 2),所以-42k 1+2k 2=(-2)·221+2k 2,解得k =22,不符合题意,所以不存在这样的直线.解决此类问题,首先假设所探求的问题结论成立或存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答;如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1 (2012 年高考重庆卷第 20 题) 如图 1 所示,
设椭圆的中心为原点 O,长轴在 x 轴上,上顶点为 A,
左、右焦点分别为 F1,F2,线段 OF1,OF2 的中点分别为 B1,B2,且 △AB1B2 是面积为 4 的直角三角形.
(1) 求 该 椭 圆 的 离 心
率和标准方程;
(2) 过 B1 作直线 l 交椭
x2 + 5x + 6,且 S = {0,1,2,…,1994} ,a ∈ S,f( a) 能被
6 整除,具有这样性质的 a 的个数是 . 解 ① 估计:f(a) = a2 + 5a + 6 = a(a + 5) + 6.
设 a ∈ S,f(a) 被 6 整除,即 a(a + 5) 被 6 整除的数,
20 = 0 与(2 - x1 ) (2 - x2 ) + k2( x1 + 2) ( x2 + 2) = 0,
因为 x1 ,x2 是方程 x2 + 5k2 ( x + 2 ) 2 - 20 = 0 的两根,
所以 x2 + 5k2 ( x + 2 ) 2 - 20 = (1 + 5k2 ) ( x - x1 ) ( x -
在
C2
上,得 3
2
+
b
2 1
+
2 b21
= 1,解得 b21
=
3.因此
C2
的方程为 x2 6
+
y2 3
= 1.
显然 l 的斜率不为 0,故可设 l 的方程为 x = my +
3 .点 A (x1 ,y1 ) ,B (x2 ,y2 ) ,
ìïïx = my +
由 íx2 îïï 6
+
y2 3
=
3, 得 ( m2
(x
+
2) ,即
x
+
2y
+
2
= 0 或 x - 2y + 2 = 0.
点评 此法虽然思路清晰,但运算极为繁琐.特别
是在紧张的考试中,学生能算出最后结果的微乎其微. 本题中, 如何化简 (2 - x1)(2 - x2) + k2(x1 +
2)(x2 + 2) = 0 是运算的难点.上述的解法虽然可行, 但效率却不够高,且极容易出错. 事实上, 我们只要能
= 1 过点 P 且
图2
31
ZHONGXUESHUXUEZAZHI 中学数学杂志 2015 年第 9 期
离心率为 3 .
(1) 求 C1 的方程; (2) 椭圆 C2 过点 P 且与 C1 有相同的焦点,直线 l 过 C2 的右焦点且与 C2 交于 A,B 两点.若以线段 AB 为 直径的圆过点 P,求 l 的方程.
传统解法
(1)
该椭圆的离心率
e
=
25 5
,标准方
程为 x2 + y2 = 1;( 略) 20 4
(2) 由(1) 知 B1 ( - 2,0 ) ,B2 (2,0 ) .当直线 l 垂直 于 x 轴时,显然不成立.
当直线 l 不 垂 直 于 x 轴 时, 可 设 其 方 程 为 y =
k (x + 2 ) .P (x1,y1 ) ,Q (x2,y2 ) .
(1) 若 △F1B1B2 为等边三角形, 求椭圆 C 的方 程;
(2) 若椭圆 C 的短轴长为 2,过点 F2 的直线 l 与椭 圆 C 相交于 P,Q 两点,且F1→P ⊥ F1→Q,求直线 l 的方程.
( 答案:(1)
3x2 4
+
3y2
=
1;(2)
直线 l 的方程为 x
+
7 y - 1 = 0 或 x - 7 y - 1 = 0)
数列;{ bn} :2,8,14,…,200 是从数列{ n} 中,自第 2 项 起,以间隔为 6,依次取出各数,按原序排列而成的数
列;现从数列{ n} 中,自第 2 项起,以间隔为 12,依次取
出各数,按原序排列构成一数列{cn}. 显然{cn} 是等 差数列,且 cn = 2 + 12( n - 1) 同时出现在{ an } 、{ bn } 中,设其项数为 n.
+ 4k2 = 0,
化简得(1 + k2)x1x2 + (2k2 - 2)(x1 + x2) + 4k2 +
4 = 0.
所以(1
+
k2)
×
20k2 1+
- 20 5k2
+
(2k2
-
2)
×
- 1
20k2 + 5k2
+
4k2
+
4
=
0,(1
+
k2)
×
5k2 1+
-5 5k2
+
(2k2
-
2)
×
- 5k2 1 + 5k2
1,
+
2)
y2
+2
3 my
实际上,数列{cn} 是从数列{n} 中,自第 5 项起, 以间隔为 12,依次取出各数,按原序排列构成的一个
等差数列.故取数列{ n} 的前 12 项为“ 样本” ,其中仅
1 有 1 项( 即 5) 同在{ an } 与{ bn } 中,为样本容量的12.
则90n2
=
1 12,由此估计
n
≈
75.
验证:因 c75 = 5 + (75 - 1) × 12 = 893 在{ an } 、 { bn } 中,但 893 + 12 = 905 > a300 ,即不在{ an } 中.故所 求的 n = 75.
圆于 P,Q 两 点, 使 PB2 ⊥
QB2,求直线 l 的方程.
分析 本题是一道典
图1
型的直 线 与 圆 锥 曲 线 的 综
中学数学杂志 2015 年第 9 期 ZHONGXUESHUXUEZAZHI
合解答题, 通 常 的 做 法 是 联 立 直 线 与 圆 锥 曲 线 的 方 程,利用韦达定理消元解决. 结合本题,问题的关键是 解决 PB2 ⊥ QB2 这个条件转换为向量的数量积为零 之后的复杂运算,思路虽然清晰,但运算比较复杂.
ìïïy = k (x
由íx2 îï20
+
y2 4
+ 2) , 得 x2
= 1,
+
5k2 (x
+
2)
2
-
20
= 0.即
(1 + 5k2 ) x2 + 20k2 x + 20k2 - 20 = 0,
所以 x1
+
x2
=
- 1
20k2 + 5k2
,x
1
x2
=
20k2 1+
- 20 5k2 .
因 为 PB2 ⊥ QB2 , 所 以 PB→2 · QB→2 =
按从小到大排成一列, 构成数列 { an } , 需求数列 { an } 的项数 n.
考虑 a 在“ 样本” :0,1,2,3,4,5 中取值,易知 a =
0,1,3,4 时满足要求,此时 a 的取值个数与样本容量
的比值为
2 3
,S
的容量为
1995.则
n 1995
=
2 3 ⇒n
=
1330.
② 验证:因 1995 = 332 × 6 + 3,当 a = 6k + i( i =
仿例
3
的求法,有19n0
=
1 12,估计
n
=
15
或
16.因
c16
= 2 + 12 × 15 = 182 < 190,c17 = 194 不在数列{ an } 中. 所以 n = 16.
所以{ cn }
前 16
项之和为
S16
=
16( 2
+ 182) 2
=
1472.
例 5 (江苏第三届高二数学通讯赛题) 设 f(x) =
把(2 - x1)(2 - x2) 和(x1 + 2)(x2 + 2) 用 k 来表示,
问题便能得到解决.如若注意到 x1,x2 是方程的两根, 可把 x2 + 5k2 (x + 2 ) 2 - 20 = 0 左端的式子用双根法
表示,然后进行合理赋值,就能轻而易举得到结果.
优化解法 同传统解法可得 x2 + 5k2 (x + 2) 2 -
我们现在再来看更为复杂的例 2,若用传统解法解
决,几乎不能算出来,而双根法则显示出巨大的威力.
例 2 (2014 年高考辽
宁理科数学第 20 题) 圆 x2
+ y2 = 4 的切线与 x 轴正半
轴,y 轴正半轴围成一个三
角形,当该三角形面积最小
时,切点为 P(如图 2).双曲
线
C1
:
x2 a2
-
y2 b2
0,1,3,4) 时,a( a + 5) 能被 6 整除.故将 S 中的元素按
从小到大,每连续 6 个数分为一组,可分为 332 组,余
下三数:1992,1993,1994,每组有 4 项及 1992,1993 均
在数列{ an} 中,但 1994 不在此数列中. 所以数列{ an} 中共有 4 × 332 + 2 = 1330 项.
所以( x1
+
2) ( x2
+
2)
=
1
- +
16 5k2
பைடு நூலகம்
,
所以(2 - x1)(2 - x2) + k2(x1 + 2)(x2 + 2) =
80k2 1+
- 16 5k2
+
k2
×
- 16 1 + 5k2
=
64k2 1+
- 16 5k2
=
0.
所以 64k2 - 16 = 0,即 k = ± 1 .下同传统解法. 2
( 2 - x1 ) (2 - x2 ) + y1y2 = 0.
因为点 P,Q 在直线 y = k( x + 2) 上,所以 y1 = k( x1