解析几何简化运算的几种方法(含答案)
解析几何中简化运算的方法

P2 FP 一 3
B( , 6 O 一 )和 Q( , ) r 的 三 个 顶 点 . a0 为
—
l . 2
( )求 椭 圆 的 方 程 ; 1
( )在 椭 圆 上 任 取 三 个 不 2
< / 、 、 、
\
已知椭 圆 P , P , 。
使
A
1 n > b > O , ( , ) ( )A 0 6 ,
P 1 一 2 FP
( 1 A) ( B)
) .
( c) ( 2 D)
轴 上 , A, 又 B两点 分别在 抛物 线及椭 圆上 . A 且 B / 轴, △N / 求 AB 的周 长 z的取 值范 围.
分析 圆锥 曲线 上 的点 与焦 点 的 连 线 , 可 以 联 想 运 用 圆 锥 曲
M 横标 一 . 的坐 z 号
而 I N = I D I 1 D I B I — I B B
,
所 以
是 一 B E
=
一
I N — A l
f C f所 以 ANAB 的周 长 , A
√ 1 ( 一 )
题 的捷径 .
3 运 用 三 角 知 识
f l Z 2
一
分析 平 面几 何 知 识 的运 用 常 涉及 长 度 与
角等 知识 , 本题 直线过 焦点 , 可运 用圆锥 曲线 的统 定 义表示 线段 长 度 之 间关 系 , 设 法 通过 图形 再 解 设直 线 z 为椭
/- ~ 一 一 e
、 D \ \
~
一
中线 段长度 来表 示直线 的斜 率.
J l
0
● -~
一
线 的统一 定 义 , 繁 琐 使
浅谈解析几何中减少运算量的几种策略

曰. 在 圆上 , 求B 中点M的轨 迹 方 程. C 试 C
合 理 的 解 题 途 径 是 简 化 运 算 、 速 解 题 迅 的关 键 .下 面介 绍 几 种 解 析 几 何 中减 少 运算量的策略 . 大家学习 、 考. 供 参
3 = 5, 是 M 点 的 轨 迹 方 程 )+ 2 于
3一 = x 8 Q
X+ 2
定 义 来 解 :第 2 题 是 通 过 椭 圆 的 第 一 小
评注 : C 为圆 曰, 都
2 _ 的动 点 , 51 =
定义求解 的. 圆两种定 义在这道题 中 椭
都 得 到 了合 理 地 运 用 . 问 题 的解 决 得 使
解 析 ( ) 圆 的 离 心 率 为 e , 1椭 =
2
8 0 斜 率 分 别 为一 和 .所 以两 条 直 -的 2
2
平行 、 垂直 、 相交 、 点共线 等 ) 数量 三 和
右 准 线 为 f = , 过 M作 MN上门 则 : 4 x N,
线 互 相 垂 直 .三 角 形 为 直 角 三 角 形. 由
I Fl ( M I 4椭圆第一定义)I P+ f - ,M I l _ I P + 一 M I 4一 IFl M I. M I4 I FI : (M , P ) 一1 种 P 当M在 延长线上时,1 FII l M I 取 — 得 最大值 l PI 、 ,此 时 IFI — / = M I—
因为 为B 的 中点 . 以O _B 。 肘2 C 所 M L C0 + M o = 柱 AC A B C B M= M= M=
麓
1
1
高考数学考点归纳之 解析几何计算处理技巧

高考数学考点归纳之 解析几何计算处理技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.考点一 回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B.3C.32D.62[解题观摩] 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. [答案] D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1 C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 解析:选A 由题意可得S △BCF S △ACF =|BC ||AC |=x Bx A=|BF |-p2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22.答案:22考点二 设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 [解题观摩] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;①“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ), 分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka , 由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c, 整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22考点三 巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3.[解题观摩] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1, 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |> 3. 法二:依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔A Q ⊥OP ⇔k A Q ×k =-1. 又A (-a,0),所以k A Q =b sin θ2a +a cos θ,即b sin θ-ak A Q cos θ=2ak A Q . 从而可得|2ak A Q |≤ b 2+a 2k 2A Q <a1+k 2A Q ,解得|k A Q |<33,故|k |=1|k A Q |> 3. [关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点训练]设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,求r 的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l 的方程为x =ty +m ,A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x 并整理得y 2-4ty -4m =0, 则有Δ=16t 2+16m >0,y 1+y 2=4t ,y 1y 2=-4m , 那么x 1+x 2=(ty 1+m )+(ty 2+m )=4t 2+2m , 可得线段AB 的中点M (2t 2+m,2t ), 而由题意可得直线AB 与直线MC 垂直, 即k MC ·k AB =-1,可得2t -02t 2+m -5·1t =-1,整理得m =3-2t 2(当t ≠0时),把m =3-2t 2代入Δ=16t 2+16m >0, 可得3-t 2>0,即0<t 2<3, 又由于圆心到直线的距离等于半径, 即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4. 故r 的取值范围为(2,4).考点四 数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.[典例] 已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.[解题观摩] 设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|, 则△APF 的周长为|P A |+|PF |+|AF |=|P A |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a , 由于|AF |+2a 是定值,要使△APF 的周长最小, 则|P A |+|PF 1|最小,即P ,A ,F 1共线, 由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得 y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26, 所以=12×6×66-12×6×26=12 6. [答案] 126 [关键点拨]要求①APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4 B.5 C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.考点五 妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.[典例] 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b>0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.[解题观摩] 把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则B ⎝⎛⎭⎫-32a ,b 2,C ⎝⎛⎭⎫32a ,b 2, 而F (c,0), 则FB =⎝⎛⎭⎫-32a -c ,b 2,FC =⎝⎛⎭⎫32a -c ,b 2,又∠BFC =90°, 故有FB ·FC =⎝⎛⎭⎫-32a -c ,b 2·⎝⎛⎭⎫32a -c ,b 2=c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.[答案]63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练] 设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为( )A .90° B.60° C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.由⎩⎪⎨⎪⎧x 2-y 22=1,x 0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4.∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 20x 1x 2]=8-2x 203x 20-4+12-x 20⎣⎢⎡⎦⎥⎤4-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°. 考点六 巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] 已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.[解题观摩] (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝⎛⎭⎫-65,45. (2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2), 联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k 21+4k 2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝⎛⎭⎫-65,0. 证明如下:因为k MP =y M x M +65=k ⎝⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可得k PN =5k4-4k 2. 所以直线MN 过x 轴上的一定点P ⎝⎛⎭⎫-65,0. [关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327=1227, 所以12t 2+14+3t 2=1227,解得t 2=1, 因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.[课时跟踪检测]1.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点,O 为坐标原点,若圆上一点C 满足OC ―→=54OA ―→+34OB ―→,则r =( )A .210 B.10 C .25D.5解析:选B 已知OC ―→=54OA ―→+34OB ―→,两边平方化简得OA ―→·OB ―→=-35r 2,所以cos ∠AOB =-35,所以cos ∠AOB 2=55,又圆心O (0,0)到直线的距离为|2|2=2, 所以2r =55,解得r =10. 2.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( )A.33B.23C.22D .1解析:选C 如图所示,设P (x 0,y 0)(y 0>0), 则y 20=2px 0,即x 0=y 202p.设M (x ′,y ′),由PM ―→=2MF ―→,得⎩⎪⎨⎪⎧x ′-x 0=2⎝⎛⎭⎫p 2-x ′,y ′-y 0=2(0-y ′),化简可得⎩⎨⎧x ′=p +x 03,y ′=y3.∴直线OM 的斜率k =y 03p +x 03=y 0p +y 202p =2p2p 2y 0+y 0≤2p 22p 2=22(当且仅当y 0=2p 时取等号).故直线OM 的斜率的最大值为22. 3.(2019·惠州调研)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且直线l 与圆x 2+y 2=4相交所得的弦长为2,O 为坐标原点,则△AOB 面积的最小值为( )A .5 B.4 C .3D .2解析:选C 由直线与圆相交所得的弦长为2,得圆心到直线的距离d =1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,当且仅当m =n 时等号成立.所以|mn |≤16,又A ⎝⎛⎭⎫1m ,0,B ⎝⎛⎭⎫0,1n ,所以△AOB 的面积S =12|mn |≥3,故△AOB 面积的最小值为3.4.(2019·兰州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 为双曲线右支上一点,若|PF 1|2=8a |PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,3] B.[3,+∞) C .(0,3)D .(0,3]解析:选A 根据双曲线的定义及点P 在双曲线的右支上,得|PF 1|-|PF 2|=2a ,设|PF 1|=m ,|PF 2|=n ,则m -n =2a ,m 2=8an ,∴m 2-4mn +4n 2=0,∴m =2n ,则n =2a ,m =4a ,依题得|F 1F 2|≤|PF 1|+|PF 2|,∴2c ≤4a +2a ,∴e =ca ≤3,又e >1,∴1<e ≤3,即双曲线C的离心率的取值范围为(1,3].5.过抛物线y 2=2px (p >0)的焦点F ,斜率为43的直线交抛物线于A ,B 两点,若AF ―→=λFB ―→(λ>1),则λ的值为( )A .5 B.4 C.43D.52解析:选B 根据题意设A (x 1,y 1),B (x 2,y 2), 由AF ―→=λFB ―→,得⎝⎛⎭⎫p 2-x 1,-y 1=λ⎝⎛⎭⎫x 2-p 2,y 2, 故-y 1=λy 2,即λ=-y 1y 2.设直线AB 的方程为y =43⎝⎛⎭⎫x -p 2, 联立直线与抛物线方程,消去x ,得y 2-32py -p 2=0.故y 1+y 2=32p ,y 1y 2=-p 2,则(y 1+y 2)2y 1y 2=y 1y 2+y 2y 1+2=-94,即-λ-1λ+2=-94.又λ>1,解得λ=4.6.已知椭圆C :x 24+y 2=1,过椭圆上一点A (0,1)作直线l 交椭圆于另一点B ,P 为线段AB 的中点,若直线AB ,OP 的斜率存在且不为零,则k AB k OP =________.解析:法一:(特殊值法)取B ⎝⎛⎭⎫1,32,则P ⎝ ⎛⎭⎪⎫12,2+34,则k AB =3-22,k OP =2+32, 故k AB ·k OP =3-22×2+32=-14. 法二:由题意,设直线l 的方程为y =kx +1, 联立方程⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1,消去y 得,(1+4k 2)x 2+8kx =0, 得x B =-8k 1+4k 2,即B ⎝ ⎛⎭⎪⎫-8k 1+4k 2,1-4k 21+4k 2.则P ⎝⎛⎭⎪⎫-4k 1+4k 2,11+4k 2,∴k AB =k ,k OP =-14k ,∴k AB ·k OP =-14.法三:(点差法)设A (x A ,y A ),B (x B ,y B ),P (x 0,y 0),则⎩⎨⎧x 2A4+y 2A =1,x2B4+y 2B=1,两式相减得x 2A -x 2B 4+y 2A -y 2B =0, 化简得y A +y B x A +x B ·y A -y B x A -x B =-14,即y A -y B x A -x B ·y 0x 0=-14,∴k AB ·k OP =-14.答案:-147.已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A ―→·PB ―→的最小值为________.解析:由题意,设A (cos θ,sin θ),P (x ,x +2), 则B (-cos θ,-sin θ),∴P A ―→=(cos θ-x ,sin θ-x -2), PB ―→=(-cos θ-x ,-sin θ-x -2),∴P A ―→·PB ―→=(cos θ-x )(-cos θ-x )+(sin θ-x -2)·(-sin θ-x -2)=x 2+(x +2)2-cos 2θ-sin 2θ=2x 2+4x +3=2(x +1)2+1,当且仅当x =-1,即P (-1,1)时,P A ―→·PB ―→取最小值1. 答案:18.(2019·武汉调研)已知A ,B 分别为椭圆x 29+y 2b 2=1(0<b <3)的左、右顶点,P ,Q 是椭圆上关于x 轴对称的不同两点,设直线AP ,B Q 的斜率分别为m ,n ,若点A 到直线y =1-mn x 的距离为1,则该椭圆的离心率为________.解析:根据椭圆的标准方程x 29+y 2b2=1(0<b <3)知椭圆的中心在原点,焦点在x 轴上,A (-3,0),B (3,0),设P (x 0,y 0),Q (x 0,-y 0),则x 209+y 20b 2=1,k AP =m =y 0x 0+3,k B Q =n =-y 0x 0-3,∴mn =-y 20x 20-9=b 29,∴1-mn =9-b 23,∴直线y =1-mn x =9-b 23x ,即9-b 2x -3y=0.又点A 到直线y =1-mn x 的距离为1,∴|-39-b 2|9-b 2+9=39-b 218-b 2=1,解得b2=638,∴c 2=a 2-b 2=98,∴e =c 2a 2=18=24. 答案:249.已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B .设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.解:由题意知,A (2,0),B (0,1),设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,所以直线P A 的方程为y =y 0x 0-2(x -2),令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2,直线PB 的方程为y =y 0-1x 0x +1,令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1,所以四边形ABNM 的面积S =12|AN ||BM |=12⎝⎛⎭⎫2+x 0y 0-1⎝⎛⎭⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2,从而四边形ABNM 的面积为定值.10.已知离心率为63的椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F ,过F 且与x 轴垂直的直线与椭圆交于A ,B 两点,|AB |=233. (1)求此椭圆的方程;(2)已知直线y =kx +2与椭圆交于C ,D 两点,若以线段CD 为直径的圆过点E (-1,0),求k 的值.解:(1)设焦距为2c ,∵e =c a =63,a 2=b 2+c 2,∴b a =33.由题意可知b 2a =33,∴b =1,a =3, ∴椭圆的方程为x 23+y 2=1.(2)将y =kx +2代入椭圆方程,得(1+3k 2)x 2+12kx +9=0, 又直线与椭圆有两个交点,所以Δ=(12k )2-36(1+3k 2)>0,解得k 2>1. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2. 若以CD 为直径的圆过E 点, 则EC ―→·ED ―→=0,即(x 1+1)(x 2+1)+y 1y 2=0,而y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4, 所以(x 1+1)(x 2+1)+y 1y 2 =(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5 =9(k 2+1)1+3k 2-12k (2k +1)1+3k 2+5=0, 解得k =76,满足k 2>1,所以k =76.。
解析几何化减技巧

解析几何化减技巧解析几何是数学中一个重要的分支,它研究的是几何对象(如点、线、面)在坐标系中的表示和变换。
在解析几何中,我们经常需要化简一些复杂的表达式或方程,以提高计算的效率和准确性。
以下是一些常用的解析几何化简技巧:1. 代数运算:这是最基本的方法,包括加、减、乘、除、乘方等。
例如,对于两个向量的点积,我们可以使用分配律和结合律进行化简。
2. 坐标变换:如果我们有一个表达式涉及到多个坐标点或向量,我们可以考虑使用坐标变换来简化这个表达式。
例如,如果我们有两个参考系,并且知道它们之间的转换关系,我们就可以将一个坐标点从一种参考系转换到另一种参考系。
3. 向量运算:向量运算(如加法、数乘、点积、叉积等)在解析几何中非常常见。
理解这些运算的性质和规则可以帮助我们更有效地进行化简。
4. 矩阵运算:在解析几何中,矩阵经常被用来表示变换(如旋转、平移、缩放等)。
理解矩阵的运算法则(如乘法、转置、逆等)可以帮助我们更有效地进行化简。
5. 参数方程:对于一些复杂的几何形状(如椭圆、抛物线、双曲线等),我们经常使用参数方程来表示它们。
参数方程可以将一个复杂的几何问题转化为一个简单的代数问题,从而更容易进行化简。
6. 极坐标与直角坐标转换:在解析几何中,极坐标和直角坐标是两种常用的坐标系。
理解这两种坐标系之间的转换关系可以帮助我们更有效地进行化简。
7. 对称性:许多几何形状和表达式都具有对称性。
利用这些对称性可以帮助我们更有效地进行化简。
8. 代数恒等式:一些基本的代数恒等式(如平方差公式、完全平方公式等)在解析几何中非常有用。
掌握这些恒等式可以帮助我们更有效地进行化简。
9. 使用软件工具:现代的数学软件工具(如 MATLAB、Geometer's Sketchpad 等)可以帮助我们更方便地进行解析几何的化简和计算。
以上就是一些常用的解析几何化简技巧。
在实际应用中,我们需要根据具体的问题和情况选择合适的方法进行化简。
“设而不求”在解析几何中的应用

“设而不求”在解析几何中的应用“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.一、巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求[典例1] 在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.[解析] 法一:设A (x A ,y A ),B (x B ,y B ),由抛物线定义可得|AF |+|BF |=y A +p 2+y B +p2=4×p2⇒y A +y B =p . 由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py可得a 2y 2-2pb 2y +a 2b 2=0, 所以y A +y B =2pb 2a 2=p ,解得a =2b ,故该双曲线的渐近线方程为y =±22x .法二:(点差法)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p 2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .易知直线AB 的斜率k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p .由⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,得k AB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p ,所以b 2a 2=12⇒b a =22,所以双曲线的渐近线方程为y =±22x . [答案] y =±22x 二、中点弦或对称问题,可以利用“点差法”,此法实质上是“设而不求”的一种方法 [典例2] (1)△ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),△ABC 的重心G 是抛物线E 的焦点,则BC 所在直线的方程为________.(2)抛物线E :y 2=2x 上存在两点关于直线y =k (x -2)对称,则k 的取值范围是________. [解析] (1)设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知G ⎝⎛⎭⎫12,0,则⎩⎨⎧x 1+x 2+23=12,y 1+y 2+23=0,从而⎩⎨⎧x 0=x 1+x 22=-14,y 0=y 1+y22=-1,即M ⎝⎛⎭⎫-14,-1, 又y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC=y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0=-1,故直线BC 的方程为y -(-1)=-⎝⎛⎭⎫x +14,即4x +4y +5=0. (2)当k =0时,显然成立.当k ≠0时,设两对称点为B (x 1,y 1),C (x 2,y 2),BC 的中点为M (x 0,y 0),由y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)·(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC =y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0,由对称性知k BC =-1k,点M 在直线y =k (x -2)上,所以y 0=-k ,y 0=k (x 0-2),所以x 0=1.由点M 在抛物线内,得y 20<2x 0,即(-k )2<2,所以-2<k <2,且k ≠0.综上,k 的取值范围为(-2,2).[答案] (1)x +y +54=0 (2)(-2,2)三、中点弦或对称问题的“点差法”求解 [典例3]已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点?[解] 假设存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,由⎩⎨⎧x 21-y 212=1,x 22-y222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,又x 1+x 22=1,y 1+y 22=1, 所以2(x 1-x 2)-(y 1-y 2)=0, 所以k AB =y 1-y 2x 1-x 2=2, 故直线l 的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1,消去y 得2x 2-4x +3=0, 因为Δ=16-24=-8<0,方程无解,故不存在一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.(说明最后验证Δ>0是十分必要的)四、求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,此法实质上也是设而不求[典例4] 已知F 为抛物线C :y 2=2x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.[解析] 法一:由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝⎛⎭⎫12,0,设l 1:x =ty +12,则直线l 1的斜率为1t,联立方程得⎩⎪⎨⎪⎧y 2=2x ,x =ty +12,消去x 得y 2-2ty -1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-1.所以|AB |=t 2+1|y 1-y 2|=t 2+1·(y 1+y 2)2-4y 1y 2=t 2+14t 2+4=2t 2+2, 同理得,用1t 替换t 可得|DE |=2t 2+2,所以|AB |+|DE |=2⎝⎛⎭⎫t 2+1t 2+4≥4+4=8,当且仅当t 2=1t2,即t =±1时等号成立,故|AB |+|DE |的最小值为8.法二:由题意知,直线l 1,l 2的斜率都存在且不为0,F ()12,0,不妨设l 1的斜率为k ,则l 1:y =k ()x -12,l 2:y =-1k()x -12由⎩⎪⎨⎪⎧y 2=2x ,y =k ⎝⎛⎭⎫x -12,消去y 得k 2x 2-(k 2+2)x +k 24=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1+2k 2.由抛物线的定义知,|AB |=x 1+x 2+1=1+2k 2+1=2+2k2.同理可得,用-1k 替换|AB |中k ,可得|DE |=2+2k 2,所以|AB |+|DE |=2+2k 2+2+2k 2=4+2k 2+2k 2≥4+4=8,当且仅当2k2=2k 2,即k =±1时等号成立,故|AB |+|DE |的最小值为8. [答案] 8。
高考数学解析几何-第13讲 构造同构式方程简化运算

高考数学解析几何第13讲构造同构式方程简化运算知识与方法1.同构式方程“同构式方程”指“结构相同的方程”,是指除了变量不同,其余结构均相同的等式.如11220Ax By C Ax By C ++=⎧⎨++=⎩22(0)A B +≠,两式中除了,x y 的下标不同之外,其余结构完全相同,两式为同构式方程.说明()()1122,,,A x y B x y 两点坐标满足直线方程:0Ax By C ++=,则直线AB 的方程为:0Ax By C ++=.又如21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩(0)a ≠,两式中除了x 的下标不同之外,其余结构完全一致,说明12,x x 为方程20ax bx c ++=的两根,由韦达定理可得:1212b x x a c x x a ⎧+=-⎪⎪⎨⎪+=⎪⎩2.解析几何中同构式的应用同构思想简化运算的基本思路:构造方程,巧用韦达定理.①构造两个直线方程;②构造一个二次方程的两根(坐标,斜率,定比).典型例题【例1】已知椭圆2222Γ:1(0)x y a b a b+=>>内有一点()1,1P ,过P 的两条直线12,l l 分别于椭圆Γ交于,A C 和,B D 两点,且满足,(AP PC BP PD λλ==其中0λ>,且1)λ≠,若λ变化时,AB 的斜率总为14-,则椭圆E 的离心率为______________.【例2】已知拋物线22y px =上三点()2,2,,A B C ,直线AB AC ,是圆22(2)1x y -+=的两条切线,则直线BC 的方程为()A. 2630x y ++= B.3640x y ++= C.2630x y ++= D.320x y ++=【例3】过椭圆22221(0)x y a b a b+=>>的右焦点2F 的直线l 交椭圆于,A B 两点,交y 轴于P ,若12PA AF λ= ,22PB BF λ=,求证:12λλ+为定值.【例4】在平面直角坐标系中,点()00,M x y 在椭圆2222:1(0)x y C a b a b+=>>上,从原点O 向圆()()22200:M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,若直线,OP OQ 的斜率分别为12,k k ,且2122b k k a=-(1)求证:2222||;OP OQ a b +=+(2)求证:22222a b r a b =+.强化训练1.过抛物线21:C y x =上一点()2,4P -作圆222:(2)1C x y +-=的两条切线分别交1C 于点,A B ,求直线AB 的方程.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>过点2⎛⎫ ⎪ ⎪⎝⎭,离心率为32,又椭圆内接四边形ABCD (点,,,A B C D 在椭圆上)的对角线,AC BD 相交于点11,4P ⎛⎫⎪⎝⎭,且2AP PC =,2BP PD= (1)求椭圆的方程;(2)求直线AB 的斜率.3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),离心率为(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.4.过点()1,1P 的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ= .点Q 满足AQ QB λ=-,若O 为坐标原点,则OQ 的最小值为_________________.5.已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于,A B 两点,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.6.设O 为坐标原点,椭圆22221(0)x y a b a b +=>>的离心率32,以椭圆C 的长轴长,短轴长分别为两邻边的矩形的面积为8.(1)求椭圆C 的方程;(2)若,,P Q M 是椭圆上的点,且圆M 与直线,OP OQ 相切,14OP k k ⋅=-,求圆M 的半径.7.已知椭圆C 的中心在原点,离心率为22,其右焦点是圆22:(1)1E x y -+=的圆心.(1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点 M N ,.试推断是否存在点P ,使14||3MN =?若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内两点,A B ,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r的值.9.已知圆22:()()9M x a y b -+-=,圆心M 在抛物线2:2(0)C x py p =>上,圆M 过原点且与C 的准线相切.(1)求抛物线C 的方程;(2)设点(0,)(0)Q t t ->,点P (与Q 不重合)在直线:l y t =-上运动,过点P 作C 的两条切线,切点分别为,A B ,求证:AQO BQO ∠=∠.10.已知抛物线2y x =和C ,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 斜率;(2)求面积ABP ∆的最小值.11.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =存在不同的两点,A B 满足,PA PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.参考答案【例1】已知椭圆2222Γ:1(0)x y a b a b+=>>内有一点()1,1P ,过P 的两条直线12,l l 分别于椭圆Γ交于,A C 和,B D 两点,且满足,(AP PC BP PD λλ==其中0λ>,且1)λ≠,若λ变化时,AB 的斜率总为14-,则椭圆E 的离心率为______________.【答案32e =】【解析】设()11,A x y ,则2211221x y a b +=.由AP PC λ= ,得1111,.x y C λλλλ+-+-⎛⎫⎪⎝⎭代入椭圆方程22221x y a b +=,得()()22112222111x y a b λλλλ+-+-+=.整理,得()()()()2211222222121111x y a b a bλλλλλ++++--++=,即112212x y a b λ-+=①设()22,B x y ,同理可得22221.2x y a b λ-+=②由①②可得直线AB 的方程为2212x y a b λ-+=,所以AB 直线斜率为2214b a -=-,即224a b =,易得椭圆E 的离心率为2e =.【例2】已知拋物线22y px =上三点()2,2,,A B C ,直线AB AC ,是圆22(2)1x y -+=的两条切线,则直线BC 的方程为()A. 2630x y ++=B.3640x y ++= C.2630x y ++= D.320x y ++=【答案】B【解析】解法1:同构式1+韦达定理由抛物线22y px =过()2,2A ,得22221p p =⨯⇒=,拋物线方程为22y x =.设22,,,22b c B b C c ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则():20BC x b c y bc -++=,同理():2220AC x c y c -++=,由AB 与圆相切得1=,整理得231280c c ++=.同理有:231280b b ++=,于是,b c 是方程231280x x ++=的两根,所以84,3b c bc +=-=,得:3640.BC x y ++=故选:B.【注】过拋物线任意两点()()1122,,,x y x y 的直线方程为()121220px y y y y y -++=.解法2:同构式2由抛物线22y px =过()2,2A ,得22221p p =⨯⇒=,拋物线方程为22y x =.设()()1122,,,B x y C x y ,则2112y x =,直线()11:2220AB x y y y -++=,由AB 与圆相切得1=,整理得211380y y +=将2112y x =代入,得1161280x y ++=,即113640x y ++=①同理可得223640x y ++=②①②两式说明:直线3640x y ++=经过,B C 两点而过,B C 两点的直线有且只有一条,故直线BC 的方程为3640x y ++=.故选:B.【例3】过椭圆22221(0)x y a b a b+=>>的右焦点2F 的直线l 交椭圆于,A B 两点,交y 轴于P ,若12PA AF λ= ,22PB BF λ=,求证:12λλ+为定值.【答案】见解析.【解析】证明:设()0,P m ,由21PA AF λ= 得,111,11c m A λλλ⎛⎫⎪++⎝⎭,代入椭圆方程得:()()2222222221120b a c a b a b m λλ-++-=,同理可得:()()2222222222220b a c a b a b m λλ-++-=,所以,,λμ是二次方程()()22222222220b a c a b a b m λλ-++-=的两根,故()22212222222a b a b b a c λλ+=-=--为定值.【例4】在平面直角坐标系中,点()00,M x y 在椭圆2222:1(0)x y C a b a b+=>>上,从原点O 向圆()()22200:M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,若直线,OP OQ 的斜率分别为12,k k ,且2122b k k a=-(1)求证:2222||;OP OQ a b +=+(2)求证:22222a b r a b =+.【答案】见解析.【解析】(1)()()2,0,1,0A B ,设()()1122,,,P x y Q x y ,由2122,b k k a=-得212212y y b x x a =-,所以4224221212a y y b x x =.,P Q 在椭圆上,22222222112212122222221,1,1,1x y x y x x y y a b a b a a ∴+=+=∴=-=-,于是22222242212122211x x a b a b b x x a a ⎡⎤⎡⎤⎛⎫⎛⎫-⋅-=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦,即()()2222221212a x a x x x --=,化简得22212x x a +=.所以()22222222222222121212122||2b OP OQ x x y y x x b x x a b a+=+++=++-+=+(2)设直线,OP OQ 的方程分别为1y k x =与2y k x =,过原点O 作圆的切线y kx =,由圆心()00,M x y 到直线0kx y -=的距离等于半径,r =,即()()222001,k r y kx +=-即()22222000020x r k x y k y r --+-=因为12,k k 是方程的两根,所以2220122220y r b k k x r a -==--,所以222220022a yb x r a b +=+因为()00,M x y 在椭圆上,所以2200221x y a b+=,即22222200b x a y a b +=,所以22222a b r a b =+.强化训练1.过抛物线21:C y x =上一点()2,4P -作圆222:(2)1C x y +-=的两条切线分别交1C 于点,A B ,求直线AB 的方程.【答案】4310x y -+=【解析】解法1:()12,4P -,设()()1122,,,A x y B x y 则221212121212AB y y x x k x x x x x x --===+--同理122,2PA Pb k x k x =-=-,直线PA 的方程为()()1422y x x -=-+,即()11220x x y x --+=,由直线PA 与圆相切,1=,即()()22112221x x -=-+,化简得2114310x x -+=,即114310x y -+=.由直线PB 与圆相切,同理可得224310x y -+=.说明()()1122,,,A x y B x y 两点都在直线4310x y -+=上,故直线AB 的方程为4310x y -+=.解法2:由题意知,切线的斜率均存在,设过点()2,4P -且与圆相切的直线方程为()42y k x -=+,即240kx y k -++=,1=,所以22(22)1k k +=+,即23810k k ++=,设12,PA PB k k k k ==,则12,k k 是上面方程的两根,所以12128,13k k k k +=-=,由()242y k x y x ⎧-=+⎨=⎩得2240x kx k ---=,即()()220,2,2x x k x x k +--=≠-∴=+ .设()()1122,,,A x y B x y ,则11222, 2.x k x k =+=+进而1212844433x x k k +=++=-+=()()()1212121216122241533x x k k k k k k =++=+++=-+=-而221212121212ABy y x x k x x x x x x --===+--,直线AB 的方程为()()21121y x x x x x -=+-即()1212y x x x x x =+-,即4133y x =+,即4310x y -+=.解法3:设()()1122,,,A x y B x y ,则()1212:0AB x x x y x x +--=,同理()11:220PA x x y x --+=,由PA 与圆相切得:1=,整理得2113410x x --=,将211y x =代入,得114310x y ++=,同理有:2223410x x --=,于是12,x x 是方程23410x x --=的两根,所以121241, 33x x x x +==-,得:4310AB x y -+=.2.如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>过点2⎛⎫ ⎪ ⎪⎝⎭,离心率为32,又椭圆内接四边形ABCD (点,,,A B C D 在椭圆上)的对角线,AC BD 相交于点11,4P ⎛⎫⎪⎝⎭,且2AP PC =,2BP PD=(1)求椭圆的方程;(2)求直线AB 的斜率.【答案】(1)2214x y +=,(2)1-【解析】(1)依题意,2222221314c aa b c a b ⎧=⎪⎪⎪+=⎨⎪=-⎪⎪⎩,解得2241a b ⎧=⎨=⎩,所求椭圆的方程为22 1.4x y +=(2)设()11,A x y ,则221114x y +=.由2AP PC = ,得11334,.28x y C --⎛⎫ ⎪⎝⎭代入椭圆方程2214x y +=,得21213342 1.48x y -⎛⎫⎪-⎛⎫⎝⎭+= ⎪⎝⎭整理,得()22111131904216x y x y +-+-=,即111.8x y +=-①设()22,B x y ,同理可得221.8x y +=-②由①②可得直线AB 的方程为18x y +=-,所以AB 直线斜率为1-.3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为),离心率为(1)求椭圆C 的标准方程;(2)若动点()00,P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.【答案】(1)221;94x y +=(2)2213x y +=.【解析】(1)222553,9543c c e a b a c a a ====∴=----=,椭圆C 的标准方程为22194x y +=.(2)若两切线斜率都存在,设切线方程为()00y y k x x -=-,代入椭圆方程得:()()()22200009418940k x k y kx x y kx ⎡⎤++-+--=⎣⎦,由判别式为零得:()()()22220000(18)364940k y kx y kx k ⎡⎤----+=⎣⎦,整理得:()2220009240x k x y k y --+-=,所以k 是方程()2220009240x k x y k y --+-=的一个根,同理1k-是方程()2220009240x k x y k y --+-=的另一个根,所以20204119y k k x -⎛⎫⋅-==- ⎪-⎝⎭,即220013x y +=;若两切线中有斜率不存在,则()3,2P ±±,也满足220013;x y +=故点P 的轨迹方程为2213x y +=.4.过点()1,1P 的直线l 与椭圆22143x y +=交于点A 和B ,且AP PB λ= .点Q 满足AQ QB λ=-,若O 为坐标原点,则OQ 的最小值为_________________.【答案】125【解析】设点,,Q A B 的坐标分别为()()()1122,,,,,x y x y x y ,由题设有,,,,PA AQ BQ Q A P B=∣∣四点共线,故可设(),0,1PA AQ PB BQ μμμ==-≠±,于是111111x x y y μμμμ+⎧=⎪+⎪⎨+⎪=⎪+⎩①2211 11x x y y μμμμ-⎧=⎪-⎪⎨-⎪=⎪-⎩②点()11,A x y 在椭圆22143x y +=上,将①代入椭圆方程整理得()()22234122341250x y x y μμ+-++--=③点()22,B x y 在椭圆上,将②代入,同理可得()()22234122341250x y x y μμ+--+--=④由③④知:,μμ-是方程()()22234122341250x y t x y t +--+--=的两根,由韦达定理得34120x y +-=,点Q 的轨迹方程为34120x y +-=,故||OQ 的最小值就是点O 到直线34120x y +-=的距离125d ==.5.已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于,A B 两点,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.【答案】(1)17;4(2)4y =+.【解析】(1)抛物线21:C x y =的准线为14y =-,圆心(0,4)M ,点M 到准线的距离174d =.(2)解法1:设点()()()222001122,,,,,P x x A x x B x x ,由题意知00120,1,x x x x ≠≠±≠.设过点P 的圆2C 的切线方程为:()00y y k x x -=-,由直线与圆2C相切有()()()22200001124410d x k x y k y ==⇒-+-+--=设,PA PB 的斜率为12,k k ,则()00122241x y k k x -+=-.由于2210101101010y y x x k x x x x x x --===+--,02201201,4AB PM x k x x k x x k y -=+=+==-.因此()000122002414x y x k k x y -+==--,解得20235x =,即235P ⎛⎫ ⎪ ⎪⎝⎭.所以直线l方程为4y =±.解法2:设()()()2221122,,,,,P t t A x x B x x ,由题意得120,1,t t x x ≠≠≠,可得1212,,AB AP BP k x x k t x k t x =+=+=+,所以直线()()21:AP y t t x x t -=+-化简得()11y t x x tx =+-.因为AP 与圆相切,所以1d =,化简得()221116150t x tx -++=同理可得()222216150t x tx -++=.所以12,x x 是方程()2216150tx tx -++=的两根.所以121222615,11t x x x x t t -+==--.又24MPt k t-=,由,1AB MP MP AB k k ⊥⋅=-,解得2235t =.即点P的坐标为235⎛⎫ ⎪ ⎪⎝⎭,所以直线l 的方程为31154115y x =±+.6.设O 为坐标原点,椭圆22221(0)x y a b a b +=>>以椭圆C 的长轴长,短轴长分别为两邻边的矩形的面积为8.(1)求椭圆C 的方程;(2)若,,P Q M 是椭圆上的点,且圆M 与直线,OP OQ 相切,14OP k k ⋅=-,求圆M 的半径.【答案】(1)2214x y +=;(2)r =【解析】(1)由已知得222228c a a b a b c ⎧=⎪⎪⎪⋅=⎨⎪+=⎪⎪⎩,解得21a b =⎧⎨=⎩,所以椭圆的方程为2214x y +=.(2)过原点O 作圆的切线y kx =,设()00,M x y ,圆半径为(0)r r >,由圆心()00,M x y 到直线0kx y -=的距离等于半径,r =,即()()222001k r y kx +=-,即()22222000020x r k x y k y r --+-=,,OP oQ k k 是方程的两根,2222200022041,45OP oQy r x y k k r x r -+∴==-∴=-,因为()00,M x y 在椭圆上,所以222004251,,455x y r r +=∴=∴=.7.已知椭圆C 的中心在原点,离心率为22,其右焦点是圆22:(1)1E x y -+=的圆心.(1)求椭圆C 的标准方程;(2)如图,过椭圆C 上且位于y 轴左侧的一点P 作圆E 的两条切线,分别交y 轴于点 M N ,.试推断是否存在点P ,使14||3MN =?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)2212x y +=;(2)存在点21,2P ⎛⎫-± ⎪ ⎪⎝⎭满足条件.【解析】(1)设椭圆方程22221(0)x y a b a b+=>>,半焦距为c ,因为椭圆的右焦点是圆E 的圆心,则1c =,又因为22e =,即2a =,从而2221b a c =-=,故椭圆C 的方程为2212x y +=.(2)设点()()000,0,(0,),(0,)P x y x M m N n <,则直线PM 的方程为00y my x m x -=+,即()0000y m x x y mx --+=,因为圆心(1,0)E 到直线PM 的距离为1,即()0022001y m x my m x-+=-+,即()()()222220000002y m x y m x m y m x m -+=-+-+,即()2000220x m y m x -+-=,同理()2000220x n y n x -+-=.由此可知,,m n 为方程()2000220x x y x x -+-=的两个实根,所以00002,22y xm n mn x x +=-=---,()()22220000220004444||||()4222y x x y x MN m n m n mn x x x +-=-=+-=+=---因为点()00,P x y 在椭圆C 上,则220012x y +=,220012x y =-则||MN ===,143,则()2029x -=,因为00x <,则01x =-,22001122xy =-=,即0y =故存在点21,2P ⎛-± ⎪⎝⎭满足条件.8.如图,已知抛物线2:4C y x =,直线l 过点4,05P ⎛⎫- ⎪⎝⎭与抛物线C 交于第一象限内两点,A B ,设,OA OB 的斜率分别为12,k k .(1)求12k k +的取值范围;(2)若直线,OA OB 恰好与圆222:(1)(2)(0)Q x y r r -+-=>相切,求r 的值.【答案】(1));+∞(2)12r =【解析】(1)设4:,(0)5l x ty t =->,代入24y x =,得22166440,16055y ty t -+=∆=->,得t >设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1212164,5y y t y y +==()121212124445y y k k t y y y y ++=+==>,所以12k k +的取值范围是)+∞.(2)由(1)知1211165k k y y ==,设过原点且与圆相切的直线为y kx =,r =,整理得()2221440r k k r --+-=2122451r k k r -==-,得214r =,所以12r =.9.已知圆22:()()9M x a y b -+-=,圆心M 在抛物线2:2(0)C x py p =>上,圆M 过原点且与C 的准线相切.(1)求抛物线C 的方程;(2)设点(0,)(0)Q t t ->,点P (与Q 不重合)在直线:l y t =-上运动,过点P 作C 的两条切线,切点分别为,A B ,求证:AQO BQO ∠=∠.【答案】(1)28x y =;(2)见解析【解析】(1)∵圆M 与抛物线准线相切,∴32p b =-.又圆过0,2p ⎛⎫⎪⎝⎭和原点,∴4p b =.∴324p p-=,解得4p =.∴抛物线C 的方程为28x y =.(2)设()()1122,,,,(,1),A x y B x y P m C -方程为211.84y x y x =∴'=,∴抛物线在点A 处的切线的斜率114k x =,∴切线PA 的方程为()11114y y x x x -=-,即()21111184y x x x x -=-,化简得:2111184y x x x =-+,又因过点(,1)P m -,故可得21111184x x m -=-+,即211280x x m --=.同理可得:222280x x m --=.∴12,x x 为方程2280x mx --=的两根,∴12122,8x x m x x +==-.∴()()221212121212121211882208888AQ BQx x x x y y x x m m k k x x x x x x ++++++-+=+=+=+==∴AQO BQO ∠=∠.10.已知抛物线2y x =和C ,过抛物线上的一点()()000,1P x y y ≥,作C 的两条切线,与y 轴分别相交于,A B 两点.(1)若切线PB 过抛物线的焦点,求直线PB 斜率;(2)求面积ABP ∆的最小值.【答案】(1)4;3k =(2)23.【解析】(1)抛物线的焦点为1,04F ⎛⎫⎪⎝⎭,设切线PB 的斜率为k ,则切线PB 的方程为:14y k x ⎛⎫=- ⎪⎝⎭,即104kx y k --=.1(1)1041k k⋅--⋅-=,解得:43k =±.∵()()0004,1,3P x y y k ∴=(2)设切线方程为y kx m =+,由点P 在直线上得:00y m k x -=圆心C1=,整理得:2210m km --=将(1)代入(2)得:()2000220x m y m x +--=设方程的两个根分别为12,m m ,所以001212002,22y xm m m m x x +==-++,从而12||AB m m =-==,)001||12ABPS AB x x x ∆==≥记函数()2223()(1)(2)x x x g x x x +=≥+,则()22321118()0(2)x x x g x x ++'=>+,()min 2,3PAB ABP S S ∆∆==的最小值为23,当01x =取得等号.11.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线2:4C y x =存在不同的两点,A B 满足,PA PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆221(0)4y x x +=<上的动点,求PAB ∆面积的取值范围.【答案】(1)见解析;(2)4⎡⎢⎣⎦.【解析】(1)设()22120012,,,,,44y y P x y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则PA 中点为20011,282x y y y ⎛⎫++ ⎪⎝⎭,由AP 中点在抛物线上,可得2201014228y y x y ⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,化简得2210100280y y y x y -+-=,显然21y y ≠,且对2y 也有2220200280y y y x y -+-=,所以12,y y 是二次方程22000280y y y x y -+-=的两不等实根,所以1212002,2M P y y y y y y y y ++====,即PM 垂直于x 轴.(2)()()()120121122M P M M M S x x y y y y x x y y =--+-=--,由(1)可得()()()()222212012000000122,8,248840y y y y y x y x y y x y y +==-∆=--=->≠,此时()00,P x y 在半椭圆221(0)4y x x +=<上,∴()()()222000000848414321y x x x x x ⎡⎤∆=-=--=--⎣⎦,∵01210,0,||x y y a -<∴∆>∴-===()()()22222200001212120000428644238888M P y x y x y y y y y y x x x x x x ---+-+-=-=-==()20031x x =--,所以()2301200112M S x x y y x x =--=--=,51,2t ⎡=⎢⎣⎦,所以315104S ⎡=∈⎢⎣⎦,即PAB∆的面积的取值范围是4⎡⎢⎣⎦.21。
高中数学解析几何优化计算6大技巧

解析几何优化计算6大技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间内,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技巧一回归定义,以逸待劳回归定义的实质是重新审视概念,并用相应的概念解决问题,是一种朴素而又重要的策略和思想方法.圆锥曲线的定义既是有关圆锥曲线问题的出发点,又是新知识、新思维的生长点.对于相关的圆锥曲线中的数学问题,若能根据已知条件,巧妙灵活应用定义,往往能达到化难为易、化繁为简、事半功倍的效果.【例题】如图,F 1,F 2是椭圆C 1:x 24y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是()A.2B.3C.32D.62【解析】由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知,1|+|AF 2|=4,2|-|AF 1|=2a ,1|2+|AF 2|2=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62.【答案】D [关键点拨]本题巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点训练]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是()A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由题意可得S△BCFS △ACF =|BC ||AC |=x B x A =|BF |-p 2|AF |-p 2=|BF |-1|AF |-1.2.抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|PA |2=(x P +m )2+y 2P=(x P +m )2+4mx P ,则=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||PA |≥22,所以|PF ||PA |的最小值为22.答案:22技巧二设而不求,金蝉脱壳设而不求是解析几何解题的基本手段,是比较特殊的一种思想方法,其实质是整体结构意义上的变式和整体思想的应用.设而不求的灵魂是通过科学的手段使运算量最大限度地减少,通过设出相应的参数,利用题设条件加以巧妙转化,以参数为过渡,设而不求.【例题】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为()A.x 245+y 236=1 B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1【解析】设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2,y 1+y 2=-2,+y 21b 2=1,+y 22b2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.【答案】D [关键点拨](1)本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.(2)在运用圆锥曲线问题中的设而不求方法技巧时,需要做到:①凡是不必直接计算就能更简洁地解决问题的,都尽可能实施“设而不求”;②“设而不求”不可避免地要设参、消参,而设参的原则是宜少不宜多.[对点训练]1.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,若直线BM 经过OE 的中点,则C 的离心率为()A.13B.12C.23D.34解析:选A 设OE 的中点为G ,由题意设直线l 的方程为y =k (x +a ),分别令x =-c 与x =0得|FM |=k (a -c ),|OE |=ka ,由△OBG ∽△FBM ,得|OG ||FM |=|OB ||FB |,即12ka k (a -c )=a a +c,整理得c a =13,所以椭圆C 的离心率e =13.2.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2)+y 21b2=1,+y 22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22.答案:22技巧三巧设参数,变换主元换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值范围或改变原题条件.【例题】设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |>3.【解析】法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).kx 0,+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b2.①由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0.而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k2,代入②,得(1+k2)·4a2(1+k2)2<a2,解得k2>3,所以|k|> 3.法三:设P(a cosθ,b sinθ)(0≤θ<2π),则线段OP的中点Qθ,b2sin|AP|=|OA|⇔A Q⊥OP⇔k A Q×k=-1.又A(-a,0),所以k A Q=b sinθ2a+a cosθ,即b sinθ-ak A Q cosθ=2ak A Q.从而可得|2ak A Q|≤b2+a2k2A Q<a1+k2A Q,解得|k A Q|<33,故|k|=1|k A Q|> 3.[关键点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量.[对点训练]设直线l与抛物线y2=4x相交于A,B两点,与圆C:(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,求r的取值范围.解:当斜率不存在时,有两条,当斜率存在时,不妨设直线l的方程为x=ty+m,A(x1,y1),B(x2,y2),代入抛物线y2=4x并整理得y2-4ty-4m=0,则有Δ=16t2+16m>0,y1+y2=4t,y1y2=-4m,那么x1+x2=(ty1+m)+(ty2+m)=4t2+2m,可得线段AB的中点M(2t2+m,2t),而由题意可得直线AB与直线MC垂直,即k MC·k AB=-1,可得2t-02t2+m-5·1t=-1,整理得m=3-2t2(当t≠0时),把m=3-2t2代入Δ=16t2+16m>0,可得3-t2>0,即0<t2<3,又由于圆心到直线的距离等于半径,即d =|5-m |1+t 2=2+2t 21+t 2=21+t 2=r ,而由0<t 2<3可得2<r <4.故r 的取值范围为(2,4).技巧四数形结合,偷梁换柱著名数学家华罗庚说过:“数与形本是两相倚,焉能分作两边飞.数缺形时少直观,形少数时难入微.”在圆锥曲线的一些问题中,许多对应的长度、数式等都具有一定的几何意义,挖掘题目中隐含的几何意义,采用数形结合的思想方法,可解决一些相应问题.【例题】已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.【解析】设双曲线的左焦点为F 1,根据双曲线的定义可知|PF |=2a +|PF 1|,则△APF 的周长为|PA |+|PF |+|AF |=|PA |+2a +|PF 1|+|AF |=|P A |+|PF 1|+|AF |+2a ,由于|AF |+2a 是定值,要使△APF 的周长最小,则|PA |+|PF 1|最小,即P ,A ,F 1共线,由于A (0,66),F 1(-3,0),则直线AF 1的方程为x -3+y 66=1,即x =y26-3,代入双曲线方程整理可得y 2+66y -96=0,解得y =26或y =-86(舍去),所以点P 的纵坐标为26,所以=12×6×66-12×6×26=12 6.【答案】126[关键点拨]要求△APF 的周长的最小值,其实就是转化为求解三角形三边长之和,根据已知条件与双曲线定义加以转化为已知边的长度问题与已知量的等价条件来分析,根据直线与双曲线的位置关系,通过数形结合确定点P 的位置,通过求解点P 的坐标进而利用三角形的面积公式来处理.[对点训练]1.椭圆x 25+y 24=1的左焦点为F ,直线x =m 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是()A.55B.655C.855D.455解析:选C 如图所示,设椭圆的右焦点为F ′,连接MF ′,NF ′.因为|MF |+|NF |+|MF ′|+|NF ′|≥|MF |+|NF |+|MN |,所以当直线x =m 过椭圆的右焦点时,△FMN 的周长最大.此时|MN |=2b 2a =855,又c =a 2-b 2=5-4=1,所以此时△FMN 的面积S =12×2×855=855.故选C.2.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x-4)2+y 2=1上的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=()A .4 B.5C .6D .7解析:选C 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C.技巧五妙借向量,无中生有平面向量是衔接代数与几何的纽带,沟通“数”与“形”,融数、形于一体,是数形结合的典范,具有几何形式与代数形式的双重身份,是数学知识的一个交汇点和联系多项知识的媒介.妙借向量,可以有效提升圆锥曲线的解题方向与运算效率,达到良好效果.【例题】如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.【解析】把y =b 2代入椭圆x 2a 2+y 2b 2=1,可得x =±32a ,则-32a 而F (c,0),则FB -32a -c FC -c 又∠BFC =90°,故有FB ·FC -32a -c -c c 2-34a 2+14b 2=c 2-34a 2+14(a 2-c 2)=34c 2-12a 2=0,则有3c 2=2a 2,所以该椭圆的离心率e =c a =63.【答案】63[关键点拨]本题通过相关向量坐标的确定,结合∠BFC =90°,巧妙借助平面向量的坐标运算来转化圆锥曲线中的相关问题,从形入手转化为相应数的形式,简化运算.[对点训练]设直线l 是圆O :x 2+y 2=2上动点P (x 0,y 0)(x 0y 0≠0)处的切线,l 与双曲线x 2-y 22=1交于不同的两点A ,B ,则∠AOB 为()A .90° B.60°C .45°D .30°解析:选A ∵点P (x 0,y 0)(x 0y 0≠0)在圆O :x 2+y 2=2上,∴x 20+y 20=2,圆在点P (x 0,y 0)处的切线方程为x 0x +y 0y =2.2-y 22=1,0x +y 0y =2及x 20+y 20=2得(3x 20-4)x 2-4x 0x +8-2x 20=0.∵切线l 与双曲线交于不同的两点A ,B ,且0<x 20<2,∴3x 20-4≠0,且Δ=16x 20-4(3x 20-4)·(8-2x 20)>0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4x 03x 20-4,x 1x 2=8-2x 203x 20-4∵OA ·OB =x 1x 2+y 1y 2=x 1x 2+1y 20(2-x 0x 1)(2-x 0x 2)=x 1x 2+12-x 20[4-2x 0(x 1+x 2)+x 2x 1x 2]=8-2x 203x 20-4+12-x 204-8x 203x 20-4+x 20(8-2x 20)3x 20-4=0,∴∠AOB =90°.技巧六巧用“根与系数的关系”某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.【例题】已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆于M ,N 两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解析】(1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以-65,(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),k (x +2),y 2=1,化简得(1+4k 2)x 2+16k 2x +16k 2-4=0.则x A +x M =-16k 21+4k2,x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k 21+4k2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为-65,证明如下:因为k MP =y M x M +65=2-8k 21+4k 2+65=5k 4-4k 2,同理可得k PN =5k 4-4k2.所以直线MN 过x 轴上的一定点-65,[关键点拨]本例在第(2)问中可应用根与系数的关系求出x M =2-8k 21+4k2这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点训练]已知椭圆C :x2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的内切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c2,b 2=3c 2,将点P c 2=1,故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1,代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0,显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的内切圆半径为r 0,则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2,r 0=327,=12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|)=12r 0·4a =12×8×327=1227所以12t 2+14+3t2=1227,解得t 2=1,因为所求圆与直线l 相切,所以半径r =2t 2+1=2,所以所求圆的方程为(x -1)2+y 2=2.。
简化解析几何运算技巧专题

专题:简化解析几何运算的5个技巧中学解析几何是将几何图形置于直角坐标系中,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.特别是高考过程中,在规定的时间,保质保量完成解题的任务,计算能力是一个重要的方面.为此,从以下几个方面探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程.技法一巧用定义,揭示本质以数形结合思想为指导,把定量的分析有机结合起来,则可使解题计算量大为简化,使解题构筑在较高的水平上.[典例] 如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .2B . 3C .32D .62[解析] 由已知,得F 1(-3,0),F 2(3,0),设双曲线C 2的实半轴长为a ,由椭圆及双曲线的定义和已知, 可得⎩⎪⎨⎪⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a =2.所以双曲线C 2的离心率e =32=62. [答案] D [方法点拨]本题可巧妙运用椭圆和双曲线的定义建立|AF 1|,|AF 2|的等量关系,从而快速求出双曲线实半轴长a 的值,进而求出双曲线的离心率,大大降低了运算量.[对点演练]抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则|PF ||P A |的最小值为________.解析:设点P 的坐标为(x P ,y P ),由抛物线的定义,知|PF |=x P +m ,又|P A |2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则⎝⎛⎭⎫|PF ||P A |2=(x P +m )2(x P +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号),所以|PF ||P A |≥22,所以|PF ||P A |的最小值为22. 答案:22对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用代点法求解.[典例] 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1[解析] 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,①②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2, 解得b 2=9,a 2=18,所以椭圆E 的方程为x 218+y 29=1.[答案] D [方法点拨]本题设出A ,B 两点的坐标,却不需求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.[对点演练]过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,∴(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0,∴y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵y 1-y 2x 1-x 2=-12,x 1+x 2=2,y 1+y 2=2,∴-b 2a 2=-12,∴a 2=2b 2.又∵b 2=a 2-c 2,∴a 2=2(a 2-c 2),∴a 2=2c 2,∴c a =22.即椭圆C 的离心率e =22. 答案:22某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.[典例] (2016·全国甲卷)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值围. [解] 设M (x 1,y 1),则由题意知y 1>0. (1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1,得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意知t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1,得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0. 由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |,得23+tk 2=k3k 2+t, 即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 因此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 故k 的取值围是(32,2). [方法点拨]本例在第(2)问中可应用根与系数的关系求出x 1=t (3-tk 2)3+tk 2,这体现了整体思路.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.[对点演练](2016·实战考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,左、右焦点分别为F 1,F 2.(1)求椭圆C 的方程;(2)过F 1的直线l 与椭圆C 相交于A ,B 两点,若△AF 2B 的切圆半径为327,求以F 2为圆心且与直线l 相切的圆的方程.解:(1)由c a =12,得a =2c ,所以a 2=4c 2,b 2=3c 2,将点P ⎝⎛⎭⎫1,32的坐标代入椭圆方程得c 2=1, 故所求椭圆方程为x 24+y 23=1.(2)由(1)可知F 1(-1,0),设直线l 的方程为x =ty -1, 代入椭圆方程,整理得(4+3t 2)y 2-6ty -9=0, 显然判别式大于0恒成立,设A (x 1,y 1),B (x 2,y 2),△AF 2B 的切圆半径为r 0, 则有y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t 2,r 0=327,所以S △AF 2B =S △AF 1F 2+S △BF 1F 2=12|F 1F 2|·|y 1-y 2|=12|F 1F 2|·(y 1+y 2)2-4y 1y 2=12t 2+14+3t 2.而S △AF 2B =12|AB |r 0+12|BF 2|r 0+12|AF 2|r 0=12r 0(|AB |+|BF 2|+|AF 2|) =12r 0(|AF 1|+|BF 1|+|BF 2|+|AF 2|) =12r 0·4a =12×8×327 =1227, 所以12t 2+14+3t 2=1227,解得t 2=1,因为所求圆与直线l 相切,所以半径r =2t 2+1=2, 所以所求圆的方程为(x -1)2+y 2=2.利用曲线系解题,往往简捷明快,事半功倍,所以灵活运用曲线是解析几何中重要的解题方法和技巧之一.[典例] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A .x 236-y 2108=1B .x 29-y 227=1C .x 2108-y 236=1D .x 227-y 29=1[解析] 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,可设双曲线的方程为x 2-y 23=λ(λ>0). 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点在抛物线y 2=24x 的准线上,所以F (-6,0)是双曲线的左焦点,即λ+3λ=36,λ=9,所以双曲线的方程为x 29-y 227=1.[答案] B [方法点拨]本题利用共渐近线系双曲线方程,可使问题马上得到解决.避免了复杂的判断、可能的分类讨论、繁杂的解方程组,事半功倍.[对点演练]圆心在直线x -y -4=0上,且经过两圆x 2+y 2+6x -4=0和x 2+y 2+6y -28=0的交点的圆的方程为( )A .x 2+y 2-x +7y -32=0B .x 2+y 2-x +7y -16=0C .x 2+y 2-4x +4y +9=0D .x 2+y 2-4x +4y -8=0解析:选A 设经过两圆的交点的圆的方程为 x 2+y 2+6x -4+λ(x 2+y 2+6y -28)=0, 即x 2+y 2+61+λx +6λ1+λy -4+28λ1+λ=0,其圆心坐标为⎝⎛⎭⎫-31+λ,-3λ1+λ,又圆心在直线x -y -4=0上,所以-31+λ+3λ1+λ-4=0,解得λ=-7,故所求圆的方程为x 2+y 2-x +7y -32=0.换元引参是一种重要的数学方法,特别是解析几何中的最值问题、不等式问题等,利用换元引参使一些关系能够相互联系起来,激活了解题的方法,往往能化难为易,达到事半功倍.常见的参数可以选择点的坐标、直线的斜率、直线的倾斜角等.在换元过程中,还要注意代换的等价性,防止扩大或缩小原来变量的取值围或改变原题条件.[典例] 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |>3.[解] 法一:依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0). 由条件,得⎩⎪⎨⎪⎧y 0=kx 0,x 20a 2+y 20b 2=1. 消去y 0并整理,得x 20=a 2b 2k 2a 2+b2.① 由|AP |=|OA |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝⎛⎭⎫a b 2+4. 又a >b >0,故(1+k 2)2>4k 2+4, 即k 2+1>4,因此k 2>3,所以|k |>3.法二:依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a 2<1,即(1+k 2)x 20<a 2.②由|AP |=|OA |及A (-a,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0,于是x 0=-2a 1+k 2, 代入②,得(1+k 2)·4a 2(1+k 2)2<a 2, 解得k 2>3,所以|k |>3.法三:设P (a cos θ,b sin θ)(0≤θ<2π), 则线段OP 的中点Q 的坐标为⎝⎛⎭⎫a 2cos θ,b2sin θ. |AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1.又A (-a,0),所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ .从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33.故|k |=1|k AQ |>3. [方法点拨]求解本题利用椭圆的参数方程,可快速建立各点之间的联系,降低运算量. [对点演练](2016·市质量检测)椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且离心率为12,点P 为椭圆上一动点,△F 1PF 2面积的最大值为3.(1)求椭圆的方程;(2)设椭圆的左顶点为A 1,过右焦点F 2的直线l 与椭圆相交于A ,B 两点,连接A 1A ,A 1B 并延长分别交直线x =4于R ,Q 两点,问RF 2―→·QF 2―→是否为定值?若是,求出此定值;若不是,请说明理由.解:(1)已知椭圆的离心率为12,不妨设c =t ,a =2t ,则b =3t ,其中t >0,当△F 1PF 2面积取最大值时,点P 为短轴端点, 因此12·2t ·3t =3,解得t =1,则椭圆的方程为x 24+y 23=1.(2)由(1)可知F 2(1,0),A 1(-2,0).设直线AB 的方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,可得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 4+3m 2,①y 1y 2=-94+3m 2,②直线AA 1的方程为y =y 1x 1+2(x +2),直线BA 1的方程为y =y 2x 2+2(x +2),则R⎝⎛⎭⎫4,6y 1x 1+2,Q ⎝⎛⎭⎫4,6y 2x 2+2,F 2R ―→=⎝⎛⎭⎫3,6y 1x 1+2,F 2Q ―→=⎝⎛⎭⎫3,6y 2x 2+2,则F 2R ―→·F 2Q ―→=9+6y 1x 1+2·6y 2x 2+2=6y 1my 1+3·6y 2my 2+3+9=36y 1y 2m 2y 1y 2+3m (y 1+y 2)+9+9将①②两式代入上式,整理得F 2R ―→·F 2Q ―→=0, 即F 2R ―→·F 2Q ―→为定值0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博文教育讲义课题:简化解析几何运算方法教学目标:提高学生简化运算的意识,注意探索简捷运算的技巧,并适时进行有关的规律总结 教学重点:简化运算方法归纳 教学难点:有关的规律总结与运用 教学过程:解析几何的本质特征是几何问题代数化,就是将抽象的几何问题转化为易于计算的代数问题,这提供了许多便利;但也不可避免地造成许多计算的繁琐,同时对运算能力提出较高要求。
其实,只要有简化运算的意识,注意探索简捷运算的技巧,并适时进行有关的规律总结,许多较为繁琐的计算过程是可以简化甚至避免的。
1.回归定义圆锥曲线的定义是圆锥曲线的本质属性。
许多美妙而有趣的性质和结论都是在其定义的基础上展开的,在分析求解时若考虑回归定义,可以使许多问题化繁为简。
例1 过椭圆左焦点倾斜角为60的直线交椭圆于点B A ,且FB FA 2=,则此椭圆离心率为._____解析 本题的常规解法是:联立⎪⎩⎪⎨⎧+==+)(3,12222c x y b y a x 再结合条件FB FA 2=求解,运算量大,作为填空题,不划算!如图1,考虑使用椭圆的定义和有关平面几何性质来求解:)2(31)(31B B A A B B A A B B FM '+'='-'+'=(31e AF +=另一方面,在F C B Rt '∆中C F BF C BF '=⇒='∠260, 故.2BFe BF M C C F FM +='+'=于是 =+)2(31e BF e AF 2BF e BF FM +=, 又FB FA 2=,所以可得.32=e练习:设12F F ,是双曲线()222210,0x y a b a b-=>>的左,右两个焦点,若双曲线右支上存在一点P ,使()220.OP OF F P +⋅=(O 为坐标原点),且123PF PF =,则双曲线的离心率是( ) 21A C D【分析】根据向量加法的平行四边形法则,2=,OP OF OQ +2OQ F P ∴⊥2OQ F P 且必过的中点.可知12PF F ∆为直角三角形.这就为用定义法求离心率创造了条件.【解析】不妨设双曲线的半焦距c=1,.令)21=,3,21PF r PF r a r =∴=则,1290,F PF ∠=︒但是x yP OF 1F 2QM)222221212,4 1.PF PF F F r r∴+=+==即,得于是1ca ea====,选D2.活用几何性质解决解析几何的运算问题,往往需要求解涉及含多个参数的两个以上方程组成的方程组,运算较为复杂,运算能力稍差的同学难以准确迅速求解,甚至半途而废;若能联想题目所涉及图形的几何性质,并利用有关几何性质来解决问题,常常可以峰回路转,收简捷巧妙解题之效果.例2 已知点P到两定点)0,1(),0,1(NM-的距离比为2,点N到直线PM的距离为1,求直线PN的方程。
解析本题若按常规做法为:设),(baP,则PM的方程为)1(1++=xaby,即0)1(=++-byabx,于是.31)1(2122baabbNH±=+⇒++==①又8)3()1()1(2222222=+-⇒+-++==bababaPNPM②将①代入②可得2a=±1).b=±于是.11±=-=abkPN因此直线PN的方程为).1(-±=xy若能进一步观察题设条件:如图3,在MNHRt∆中斜边2=MN,直角边1=NH 可得30=∠HMN,在PMN∆中由正弦定理得PMNPNPNMPM∠=∠sinsin.135452230sinsin或=∠⇒==∠⇒PNMPNPMPNM于是.1tan±=∠=PNMkPN因此直线PN的方程为).1(-±=xy评注:本题为02年全国高考文科第21题,分值为14分,重点考查学生通过联立①②消参解方程组的运算能力,对文科学生的运算能力提出了较高的要求;通过上述通法与巧法对比,读者容易看出:运用平面图形的有关几何性质来分析解决一些解析几何的问题,可以有效地避免复杂的解几运算,以达简捷解题之目的。
练习:过圆C:22200(,)x y R M x y+=内一定点作一动直线交圆C于两点P、R,过坐标原点O作直线ON ⊥PM于点N,过点P的切线交直线ON于点Q,则OM OQ⋅= 。
【分析】与圆有关的问题可以优先利用平面几何知识.题设条件中既有垂线又有切线,容易构成直角三角形,故求两向量的数量积容易想到直角三角形中成比例的线段.【解析】如图4,连OP,则OP⊥PQ.但是OQ ⊥PR于N,根据直角三角形的射影性质有:22OQ ON OP R⋅==∴2cosOM OQ OQ OM OQ ON Rα⋅=⋅⋅=⋅=即2OM OQ R⋅=.3图图3xyORQNα3.数形结合对于某些几何特征比较明显的问题,常可从分析图形本身所固有的几何特征入手,或从运动变化的观点来分析考察图形中某些量的变化规律,往往可简捷获解。
例3、 B ,A 是已知椭圆()012222>>=+b a by a x 上的两点,线段AB 垂直平分线与x 轴交于点()00,x P ,求证:ab a x a b a 22022-<<--简析 着眼于寻求“线段AB()2220r y x x =+-()PA r =(如图10)①,它与椭圆12222=+b y a x ②有四个不同交点(或3个, 当B A 、之一为长轴端点时),由①②消去y 得()xx a x b a022222--22b a +-020222=+x a r a ③,方程③有两个不同实根,则2202212ba x a x x -=+,即2212220x x a b a x +⋅-=。
a x x a <+<-221,又0>>b a ,∴a b a x a b a 22022-<<--.练习: 设点)29,0(P ,动点B A ,在椭圆191822=+y x 上且满足PB PA λ=,试求λ的取值范围。
解析 本题简捷的解法是从数形结合的角度用运动变化的观点进行考察:如图11所示,三点B A P ,,共线,当)3,0(),3,0(-B A 时51=λ为最小;将直线PA 绕点P 逆时针旋转至相切(B A ,重合)有1=λ;回转至)3,0(),3,0(B A -有5=λ为最大,故有5,51[∈λ4.巧设参数例题4:过抛物线x y =2上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值. 证明:(参数法)∵两点B, C 均在抛物线y²=x 上。
∴可设其坐标为:B(b²,b) C(c²,c)∴可得两条直线的斜率为Kab=1/(b+2). Kac=1/(c+2) 由题设可知:直线AB 与直线AC 的斜率是互为相反数 ∴[1/(b+2)]+[1/(c+2)]=0通分,整理可得:[(b+c)+4]/[(b+2)(c+2)]=0 ∴必有(b+c)=-4又直线BC 的斜率Kbc=1/(b+c)=-1/4 ∴直线BC 的斜率为定值-1/4 例5、已知),(y x P 是椭圆12514422=+y x 上的点,试求y x +的取值范围?解:设椭圆的参数方程[))20(sin 5cos 12πθθθθ,,y x ∈⎩⎨⎧==且是参数 )sin 135cos 1312(13sin 5cos 12θθθθ+=+=+∴y x )(其中135cos ,1312sin )sin cos cos (sin 13==+=ααθαθα)sin(13θα+=1)sin(1≤+≤-θα y x +∴的取值范围为)13,13(-5.利用设而不求,整体代换例6:B ,A 是已知椭圆()012222>>=+b a by a x 上的两点,线段AB 垂直平分线与x 轴交于点()00,x P ,求证:ab a x a b a 22022-<<--解设),(11y x A ,),(22y x B ,AB 的中点为),(y x M '',则1221221=+b ya x ,1222222=+by a x ,二式相减得 ⇒=-+-02222122221b y y a x x =l k 2121y y x x ---)()(212212x x b y y a ++-=x b y a ''-=22, 则直线L 的方程为='-y y ).(22x x x b y a '-''-令0=y 得.2220x a b a x '-=又a x a <'<-,所以a b a x a b a 22022-<<--。
例7、椭圆141622=+y x 上有两点P 、Q ,O 是原点,若OP 、OQ 斜率之积为41-。
(1)求证:|OP|2+|OQ|2为定值。
(2)求PQ 的中点M 的轨迹方程。
解:(1)设P 、Q 的两点坐标分别为()11,y x P 、Q ()22,y x ,P 、Q 分别在椭圆上,且41-=⋅OQ OP K K ,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⋅=+=+∴.41,1416,1416221122222121x y x y y x y x ()()()⎪⎪⎩⎪⎪⎨⎧------=------=------=⇒3.42,1641,164212122222121x x y y x y x y ()()21⨯得()()4,1616162221222122221-----++-=x x x x y y(3)代入(4)得162221=+x x ,(1)+(2)得()441822212221=+-=+x x y y 22OQ OP +∴2022222121=+++=y x y x 。
(2)设P 、Q 的中点M 的坐标为M ()y x ,,则有x x x 221=+,y y y 221=+, (1)+(2)+(3)2⨯得()221222124y y y y ++()212221232x x x x ++-=,()()221221324x x y y +-=+∴。
3216422=+∴y x 即:12822=+y x ,PQ ∴中点M 的轨迹方程为12822=+y x 练习1:已知直线l 交椭圆4x 2+5y 2=80于M 、N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是 ( )A.6x -5y -28=0B.6x +5y -28=0C.5x +6y -28=0D.5x -6y -28=0【分析】如图,椭圆的右焦点既是△BMN 的重心,容易求出边MN 的中点 坐标,那么求直线l 的方程,关键在求该直线的斜率.若用常规方法,须设直线的点斜式方程,代入椭圆方程,而后利用韦达定 理及线段的中点公式求之.显然这个计算量是不菲的.更好的方法是:【解析】由2222458012016x y x y +=⇒+=.∴椭圆上顶点 B (0,4),右焦点F (2,0).为△BMN 的重心,故线段MN 的中点为C (3,-2).设直线l 的斜率为k.,点()()1122,,,M x y N x y 在椭圆上,∴2211222245804580x y x y ⎧+=⇒⎨+=⎩ ()()()()121212121212121244664505545y y x x x x x x y y y y k x x y y -+-++-+=⇒==-⋅=-⋅=-+-所求直线方程为()623652805y x x y +=-⇒--=,选A. 练习2、 已知直线y ax --=10与双曲线3122x y -=相交于A 、B 两点,问a 取何值时,以AB 为直径的圆经过原点。