七年级数学 学习·探究·诊断(人教版下)--第七章 三角形
第七章三角形探究题及答案

2008年2月·新课程人教版,七年级数学下册第七章探究题新课程标准七年级数学下册探究题第七章三角形一、选择题:精心选一选:你一定能行!(本大题共8个小题,每小题4分,满分32分)1、以下列各组长度的线段为边,能构成三角形的是().A、7cm,5cm,12cmB、6cm,8cm,15cmC、4cm,6cm,5cmD、8cm,4cm,3cm.2、一个多边形的内角和等于它的外角和,这个多边形的边数为().A、4B、5C、6D、73、下列多边形能作为平面镶嵌(无缝不重叠)的是().A、正五边形B、正七边形C、正六边形D、正八边形 .4、若三角形的三个外角度数比为2:3:4,则与之对应的三个内角的度数之比为().A、 4:3:2B、 3:2:4C、 5:3:1D、 3:1:55、如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是().A、DE是△BCD的中线B、BD是△ABC的中线C、AD=DC,BD=ECD、∠C的对边是DE6、不是利用三角形稳定性的是().A、自行车的三角形车架B、矩形门框C、照相机的三角架D、三角形房架条7、满足件2∠A=2∠B=∠C的三角形是().A、直角三角形B、锐角三角形C、钝角三角形D、不能确定8、△ABC的三边长分别为a、b、c,若a=4,b=6,且第三边长c的长为偶数,则△ABC的周长为().A、 14 B 、 16 C、18 D 、14或16或18二、填空题:耐心填一填,你一定很棒!(本大题共8个小题,每空3分,共24分)9、锐角三角形的三条高都在三角形,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的.10、如图,若AB‖CD,∠A=35°,∠C=75°,则∠E=.11、如图,一块四边形玻璃缺了一个角,根据图中所标出的测量结果,则所缺损的∠A的度数为_________.12、如图,AB∥CD,AD、BC相交于O,若∠A=∠COD=66°,则∠C=_________.13、三角形有两条边的长度分别是5和7,则第三条边a的取值范围是___________.14、已知:S、D、C、E成一条直线,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=_____.15、在△ABC中,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,则∠BOC=_______º.16、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影部分的等于三、解答题:用心解一解,你一定是学习中的强者!(满分64分)17、(满分6分)如图,画出△ABC的中线CD,角平分线BE,高AH .DCBA第5题图第10题图A第16题图第11题图BCAOD第12题图第17题图AB C1218、(满分8分)如图,AD 是△ABC 的高,AE 是∠BAC 的角平分线,且∠B=36°,∠C=76°,求∠DAE 的度数.19、(满分10分)如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.20、(满分10分)已知:如图,AD ∥EG ,∠E=∠1求证:AD 平分∠BAC.21、(满分8分)如图,△ABC 中,∠A=70º,外角平分线CE ∥AB.求∠B 和∠ACB 的度数.22、(满分12分)已知:如图,∠B=42°,∠A+10º =∠1,∠ACD=64º, (1) 求∠1的度数;(2)说明:AB ∥CD.23、(满分10分)如图,已知CB ⊥AB ,DA ⊥AB,点E 在AB 上,且CE 平分∠BCD ,DE 平分∠ADC ,请猜想DE 与CE 有怎样的位置关系?并说明你猜想的理由.第18题图第20题图420BAC D6401第22题图AB CDE第23题图第18题图FDC B EA 第21题图ECD BA32008年2月·新课程人教版,七年级数学下册探究题第七章 三角形 参考答案一、精心选一选:你一定能行!(本大题共8个小题,每小题4分,满分32分)二、耐心填一填,你一定很棒!(本大题共8个小题,每空3分,满分24分) 9、内,二,两条直角边;10、40°;11、75°;12、48°; 13、2<a <12;14、250°;15、130;16、1cm 2.三、解答题:用心解一解,你一定是学习中的强者!(满分64分)17、略;18、∠DAE=200; 19、解: ∵∠AFE=90°,∴∠AEF=90°-∠A=90°-35°=55°;∠CED=•∠AEF=55°,∠ACD=180°-∠CED-∠D=180°-55°-42=83°. 20、证明: ∵AD ∥EG,∴∠1=∠2, ∠3=∠E ;又∵∠E=∠1,∴∠2=∠3, ∴AD 平分∠BAC .21、∠B=70º,∠ACB=40º. 22、(1)∠1=74°,(2)由同旁内角互补,两直线平行可得AB ∥CD. 23、答:DE ⊥CE .证明:∵CB ⊥AB ,DA ⊥AB ( 已知 )∴︒=∠=∠90CBA DAB ,即CBA DAB ∠+∠=180°. ∴AD ∥BC∴︒=∠+∠180BCD ADC∵CE 平分∠BCD ,DE 平分∠ADC ,(已知 )∴BCD ECD ADC EDC ∠=∠∠=∠21,21 ∴︒=∠+∠=∠+∠90)(21BCD ADC ECD EDC∵︒=∠+∠+∠180ECD EDC DEC ∴︒=∠+∠-︒=∠90)(180ECD EDC DEC ∴DE ⊥CE .第20题图 AB CDE第23题图。
新人教版七年级下册第七章《三角形》知识点归纳总结及配套练习

第七章《三角形》知识归纳及配套练习题与三角形有关的线段(1)三角形的定义(2)三角形底和腰不相等的三角形①(按边)等腰三角形等边三角形直角三角形三角形锐角三角形②按角斜三角形钝角三角形(3)三角形的主要线段①三角形的中线:顶点与对边中点的连线,三中线交点叫重心②三角形的角平分线: a b c,b c a,c a b②两边之差小于第三边c a b,a b c,b c a(5)三角形的稳定性:三角形的三条边确定后,三角形的形状和大小不变了,这个性质叫做三角形的稳定性.三角形的稳定性在生产和生活中有广泛的应用.本章知识结构图例1:已知BD,CE是ABC的高,直线BD,CE相交,所成的角中有一个角为50°,则BAC等于分析:本题中由于没有图形, ABC的形状不确定,应分两种情况:①ABC是锐角三角形②ABC是钝角三角形解:50或130(过程略)例2:如图,已知ABC中,ABC和ACB的角平分线BD,CE相交于点O,且A60,求BOC的度数例3:三角形的最长边为10,另两边的长分别为x和4,周长为c,求x和c的取值范围.解:已知三角形的两边为10和4.那么第三边x的范围应满足:104x10 4 即6<x<14.10是最长边6x10周长c的范围满足1046c10104,即20c24与三角形有关的角(1)三角形的推论3:三角形的一个外角大于与它不相邻的任何一个分析:可以利用三角形外角的性质及三角形的2(A3) 22∵BPC180(12) A4011∴BPC180A4)A3 22180118040 270例2.如图,求∠A+∠C+∠3+∠F的度数。
分析:由已知∠B=30°,∠G=80°,∠BDF=130°,利用四边形边数n 36即这个多边形的边数为10例4.用正三角形、正方形和正六边形能否进行镶嵌?分析:可以进行镶嵌的条件是:一个顶点处各个内角和为360°解:正三角形的内角为60正方形的内角为90正六边形的内角为120∴可以镶嵌。
(完整版)人教版七年级下数学第七章三角形知识点+考点+典型例题(含答案).doc

第七章三角形【知要点】一.三角形1.关于三角形的概念及其按角的分定:由不在同一直上的三条段首尾次相接所成的形叫做三角形。
2.三角形的分:①三角形按内角的大小分三:角三角形、直角三角形、角三角形。
②三角形按分两:等腰三角形和不等三角形。
2.关于三角形三条的关系(判断三条段能否构成三角形的方法、比段的短)根据公理“ 两点之,段最短”可得:三角形任意两之和大于第三。
三角形任意两之差小于第三。
3.与三角形有关的段:三角形的角平分、中和高..三角形的角平分:三角形的一个角的平分与相交形成的段;三角形的中:接三角形的一个点与中点的段,三角形任意一条中将三角形分成面相等的两个部分;三角形的高:三角形的一个点做的垂,条垂段叫做三角形的高。
注意:①三角形的角平分、中和高都是段,不是直,也不是射;②任意一个三角形都有三条角平分,三条中和三条高;③任意一个三角形的三条角平分、三条中都在三角形的内部。
但三角形的高却有不同的位置:角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角;角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中交于一点,三条角平分交于一点,三条高所在的直交于一点。
(三角形的三条高(或三条高所在的直)交与一点,角三角形高的交点在三角形的内部,直角三角形高的交点是直角点,角三角形高(所在的直)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和: 180°引申:①直角三角形的两个角互余;②一个三角形中至多有一个直角或一个角;③一个三角中至少有两个内角是角。
(2)三角形的外角和: 360°(3)三角形外角的性:①三角形的一个外角等于与它不相的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相的内角。
——常用来比角的大小5. 多形的内角与外角( 1)多形的内角和:( n-2 ) 180°( 2)多形的外交和:360°引申:( 1)从 n 形的一个点出能作(n-3 )条角;( 2)多形有n(n3)条角。
七年级数学下册_第七章《三角形》综合测试题_

凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。
那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。
新人教版七年级数学下册第七章三角形知识点归纳

七年级数学下册第七章三角形知识点归纳一、知识梳理:二、专项训练:1.一个三角形的三个内角中 ( ) A 、至少有一个钝角 B 、至少有一个直角 C 、至多有一个锐角 D 、 至少有两个锐角2.下列长度的三条线段,不能组成三角形的是 ( )A 、a+1,a+2,a+3(a>0)B 、 3a,5a,2a+1(a>0)C 、三条线段之比为1:2:3D 、 5cm ,6cm ,10cm 3.下列说法中错误的是 ( )A 、一个三角形中至少有一个角不少于60°B 、三角形的中线不可能在三角形的外部C 、直角三角形只有一条高D 、三角形的中线把三角形的面积平均分成相等的两部分4.图中有三角形的个数为 ( )A 、 4个B 、 6个C 、 8个D 、 10个5.如图,点P 有△ABC 内,则下列叙述正确的是( ) A 、︒=︒y x B 、x °>y ° C 、x °<y ° D 、不能确定 6.已知,如图,AB ∥CD ,∠A=700,∠B=400,则∠ACD=( ) A 、 550B 、700C 、 400D 、 1107.下列图形中具有稳定性有 ( )A 、 2个B 、 3个C 、 4个D 、 5个8.一个多边形内角和是10800,则这个多边形的边数为 ( )A 、 6B 、 7C 、 8D 、 99.如图所示,已知△ABC 为直角三角形,∠C=90,若烟图中虚线剪去∠C ,则∠1+∠2 等于( )A 、90°B 、135°C 、270°D 、315°第(4)题E DCBA(1)(2)(3)(4)(5)(6)第(6)题DCBA第(5)题P y 0x 0CBA⎧⎪⎨⎪⎩⎧⎨⎩⎧⎪⎨⎪⎩定义:由不在______三条线段______所组三角形 成的图形表示方法:_________________________三角形两边之和_____第三边三角形三边关系三角形两边之差_____第三边中线________________三角形的三条重要线段高线________________三角形角平分线____________内角和__三角形的内角和与外角和多边形⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎨⎪⎩⎪⎪⎪⎩⎪⎪⎪⎪⎩__________1________外角性质2________外角和____________三角形面积:______________________________三角形具有____性,四边形__________性多边形定义_______________________________多边形n 边形内角和为__________多⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎩边形外角和为____从n 边形一个顶点可作出_____条对角线定义:__________________________________能用一图形镶嵌地面的有_________________平面镶嵌能用两种正多边形镶嵌地面的有_____和___________和_______;_______和_____________⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪第(9)题 第(10)题10. 如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500,则∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°11.用正三角形和正方形能够铺满地面,每个顶点周围有______个正三角形和_____个正方形。
初中数学人教新版七年级下册第7章 三角形配套课时练习附答案

初中数学人教新版七年级下册实用资料第七章三角形第1课时三角形的边1.下列各组线段中,首尾相接不能构成三角形的是()A.3㎝,8㎝,10㎝B.5㎝,5㎝,a㎝(0<a<10)C.a+1,a+2,a+3(a>0)D.三条线段的比为2∶3∶52.有四根木条,长度分别为6cm,5cm,4cm,2cm,选其中三根首尾相接构成三角形,则可选择的种数有()A.4种B.3种C.2种D.1种3.△ABC的三边a,b,c都是正整数,且满足a≤b≤c,且b=4,则这样的三角形的个数有()A.7个B.8个C.9个D.10个4.在△ABC中,AB=9,BC=2,并且AC为整数,那么△ABC的周长为.5.等腰三角形两边长为5和11,则其周长为;若等腰三角形两边长为6和11,则其周长为.6.一个等腰三角形的周长为18㎝,一边长为5㎝,则另两边的长为.7.已知a,b,c是△ABC的三边长,化简∣a—b—c∣+∣b—c—a∣+∣c—a—b∣.8.已知等腰三角形的周长为20,其中两边的差为2,求腰和底边的长.9.在△ABC中,已知AB=30,AC=24.(1)若BC是最大边,求BC的取值范围;(2)若BC是最小边,且末位数字是0时,求BC的取值范围.10.已知一个三角形的三边长分别为x、2x-1、5x-3,其中有两边相等,求此三角形的周长.第2课时 三角形的高、中线与角平分线1. 三角形的角平分线是 ( )A .直线B .射线C .线段D .垂线2. 如图,AC 为BC 的垂线,CD 为AB 的垂线,DE 为BC 的垂线,D ,E 分别在△ABC 的AB 和BC 边上,下列说法:①△ABC 中,AC 是BC 边上的高;②△BCD 中,DE 是BC 边上的高;③△ABE中,DE 是BE 边上的高;④△ACD 中,AD 是CD 边上的高.其中正确的个数有 ( )A .4个B .3个C .2个D .1个3. 能把一个三角形分成面积相等的两个三角形的是( )A .高B .中线和角平分线C .角平分线D .中线4. 下列命题:①直角三角形只有一条高;②钝角三角形只有一条高;③三角形的三条高所在的直线相交于一点,它不在三角形的内部,就在三角形的外部;④三角形的高是一条垂线.其中假命题的个数有 ( ) A .1个 B .2个 C .3个 D .4个5. 如图,BD 、AE 分别为△ABC 的中线、角平分线,已知AC =10cm ,∠BAC =70°,则AD = cm ,∠BAE = °.6. 如图,已知AD ,AE 分别为△ABC 的中线、高,且AB =5cm ,AC =3cm ,则△ABD 与△ACD 的周长之差为 cm ,△ABD 与△ACD 的面积关系为 .7.如图,在△ABC 中,∠C 是钝角, 画出∠C 的两边AC 、BC 边上的高BE 、AD .8.如图,在△ABC 中,AC =6,BC =8,AD ⊥BC 于D ,AD =5,BE ⊥AC 于E ,求BE 的长.A B C DE (第2题) A C (第5题) B E D A B C D E (第6题) A (第8题) DE CB (第7题)A B C1.下列图形中具有稳定性的是()A.梯形B.长方形C.三角形D.正方形2.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据.3.生活中的活动铁门是利用平行四边形的.、4.在下列多边形上画一些线段,使之稳定:5.举出生活中利用三角形的稳定性的例子:____________________________________________________________________举出生活中利用四边形的不稳定性的例子:____________________________________________________________________6.如图,在△ABC中,D为BC边上一点,∠1=∠2,G为AD的中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H.下面判断:①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高.其中正确的有()A.1个B.2个C.3个D.4个7.如图,已知△ABC,先画出△ABC的中线AM,再分别画出△ABM、△ACM的高BE、CF,试探究BE与CF的位置关系怎样?大小关系呢?(不妨量量看)能说明为什么吗?ACHF G(第5题)B D1 2EA(第7题)C B1. 在△ABC 中,∠A =2∠B =75°,则∠C 等于 ( )A .30°B .67°30′C .105°D .135°2.如图,∠A +∠B +∠C +∠D +∠E 等于 ( )A .180°B .360°C .220°D .300°3.若是任意三角形,则它的最小内角的最大值是 ( )A .30°B .60°C .90°D .45°4. 在△ABC 中,若∠A =25°18′,∠B =53°46′,则∠C = .5. 在△ABC 中,若∠B =50°,∠A =∠C ,则∠A = .6. 在△ABC 中,∠A 比2∠B 多10°,∠B 比2∠C 少10°,则∠A = °,∠B = °.7. 已知△ABC 中,∠B =∠C ,BD 平分∠ABC ,∠A =36°,则∠BDC = °.8. 如图,∠A =60°,∠B =80°,则∠1+∠2的度数为 °.9.已知:如图,△ABC 中,∠B >∠C ,AD ⊥BC 于D ,AE 平分∠BAC 交BC 于E .(1)求证∠DAE =12(∠B —∠C ); (2)把题中“AD ⊥BC 于D ”换成“F 为AE 上的一点,FG ⊥BC 于G ”,这时∠FEG 是否仍等于12(∠B —∠C )?试证明你的结论.(第2题) E D C B A A (第9题) ED BC D C B A 2 1 (第8题)1. 下列说法中,正确的是 ( )A .三角形的一个外角等于这个三角形的两个内角的和B .三角形的一个外角小于它的一个内角C .三角形的一个外角与它相邻的内角是邻补角D .三角形的一个外角大于这个三角形的任何一个内角2. 三角形的每一个顶点处取一个外角,则三角形的三个外角中,钝角的个数至少有( )A .0个B .2个C .3个D .4个3. △ABC 中,∠ABC 的角平分线与∠ACB 的外角平分线交于点O ,且∠A =α,则∠BOC =( )A .12α B .180°-12α C .90°-12α D .90°+12α 4. 在△ABC 中,∠A =15∠C =13∠B ,则△ABC 的三个外角的度数分别为 . 5. 如图所示,则α= °.6. 如图,在△ABC 中,∠B =60°,∠C =52°,AD 是∠BAC 的平分线,DE 平分∠ADC 交AC 于点E ,则∠BDE = °. 7. 如图,∠A =55°,∠B =30°,∠C =35°,求∠D 的度数.8.如图,AC ⊥DE ,垂足为O ,∠A =27°,∠D =20°,求∠B 与∠ACB 的度数.D B AEO C A B D EC (第6题) A CD B 58°(第5题) 24° 32° α第6课时 多边形1. 下列多边形中,不是凸多边形的是 ( )2. 下列多边形中是正多边形的是 ( )A .直角三角形B .长方形C .等腰三角形D .正方形3. 以线段a =2,b =4,c =6,d =8为边作四边形,则满足条件的四边形有 ( )A .1个B .2个C .3个D .无数个4. 从十边形的一个顶点出发,画所有的对角线,则它将十边形分成 ( )A .6个三角形B .7个三角形C .8个三角形D .9个三角形5. 六边形的对角线有 ( )A .3条B .6条C .9条D .12条6. 从五边形的一个顶点引出的对角线有 条,把这个五边形分成 个三角形,它一共有条对角线.7. 从n 边形的一个顶点引出的对角线有 条,把这个n 边形分成 个三角形,它一共有 条对角线.8. 画出下列多边形的所有对角线.A .B .C .D .第7课时 多边形的内角和1. 一个多边形的内角和是720°,则这个多边形是 ( )A .四边形B .五边形C .六边形D .七边形2. 在多边形的内角中,锐角的个数不能多于 ( )A .2个B .3个C .4个D .5个3. n 边形的边数每增加一倍,它的内角和就增加 ( )A .180°B .360°C .n ·180°D .(n -2)·180°4. 下列角度中,不能成为多边形内角和的是 ( )A .600°B .720°C .900°D .1080°5. 若一个多边形除了一个内角外,其余各内角之和是2570°,则这个角是 ( )A .90°B .150°C .120°D .130°6. 在四边形的四个外角中,最多有 个钝角,最少有 个锐角.7.若n 边形的每个内角都是150°,则n = .8.一个多边形的每个外角都是36°,这个多边形是 边形.9.在四边形ABCD 中,若分别与∠A 、∠B 、∠C 、∠D 相邻的外角的比是1∶2∶3∶4,则∠A = °,∠B = °,∠C = °,∠D = °.10.若一个角的两边与另一个角的两边分别垂直,则这两个角的关系是 .11.已知一个多边形的内角和与外角和之比为9∶2,求边数.12.如图,在四边形ABCD 中,∠A =∠B ,∠C =∠D .求证AB ∥CD .13.一个多边形的最小内角为95°,以后依次每一个内角比前一个内角大10°,且所有内角和与最大内角之比为288∶37,求多边形的边数.C(第18题)第8课时 镶嵌1. 下列图形中能够用来平面镶嵌的是 ( )A .正八边形B .正七边形C .正六边形D .正五边形2. 用下列两种边长相等的图形,能进行平面镶嵌的是 ( )A .正三角形和正八边形B .正方形和正八边形C .正六边形和正八边形D .正十边形和正八边形3. 若限用两种边长相等的正多边形镶嵌,则下列不能进行平面镶嵌的是 ( )A .正三角形和正四边形B .正三角形和正六边形C .正方形和正八边形D .正三角形和正八边形4. 用三种边长相等的正多边形镶嵌成一个平面,其中的两种是正四边形和正五边形,则另一种正多边形的边数是 ( )A .12B .15C .18D .205. 用边长相等的m 个正三角形和n 个正六边形进行平面镶嵌,则m 和n 的满足关系式为( )A .2m +3n =12B .m +n =8C .2m +2n =6D .m +2n =66. 用正n 边形地砖铺地板,则n 的值可能是 .7.用边长相等的正方形和正十二边形以及正 边形可以进行平面镶嵌.8.黑色正三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下:白色正六边形分上下两行,上面一行的正六边形个数比下面一行少一个,正六边形之间的空隙用黑色的正三角形嵌满.按第1,2,3个图案(如图)所示规律依次下去,则第n 个图案中,黑色正三角形和白色正六边形的个数分别是 .9.用边长相等的正三角形和正六边形作平面镶嵌,有几种可能的情况?为什么?试画图说明.10.有一个十一边形,它由若干个边长为1的等边三角形和边长为1的正方形无重叠、无间隙拼成.求此十一边形各内角的大小.第1个 ……第2个 第3个小结与思考一、选择题1.如图,图中三角形的个数是()A.6B.8C.10D.122.有4根木条长度分别为12cm、10cm、8cm、4cm,选择其中三根首尾相接,组成三角形,则选择的种数有()A.1 B.2 C.3 D.43.一个三角形三条高(或延长线)的交点恰好是该三角形的某个顶点,该三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能4.三角形一边上的中线将原三角形分成两个()A.周长相等的三角形B.面积相等的三角形C.形状相同的三角形D.直角三角形5.△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.125°B.100°C.75°D.50°6.下列度数中,不可能是某多边形的内角和的是( ) A.180°B.400°C.1080°D.1800°7.某人到瓷砖商店去购买一种正多边形的瓷砖,镶嵌无缝地板,他购买的瓷砖形状不可以是( )A.正三角形B.正四边形C.正六边形D.正八边形8.把一个正方形切去一个角后,余下的多边形的内角和为( ) A.540°B.360°C.540°或360°或180°D.180°二、填空题9.等腰三角形的两边长为5和11,则此三角形的周长为__________.10.△ABC中,∠A∶∠B∶∠C=4∶5∶6,则∠C=_____.11.n边形的每个内角是144°,则边数n=_________.12.若一个多边形的内角和是这个多边形外角和的5倍,则这个多边形是____边形.13.过四边形一个顶点的对角线,把四边形分成两个三角形;过五边形的一个顶点的对角线,把五边形分成3个三角形;过六边形的一个顶点的对角线,把六边形分成______个三角形;……;过n边形的一个顶点的对角线,把n边形分成______个三角形.14.有三条线段,其中两条线段长5和8,第三条线段长为2x-1,如果这以三条线段为边能构成三角形,则x的取值范围是_____________.三、解答题15.如图,已知∠CBE=95°,∠A=28°,∠C=30°,求∠ADE的度数.ABDFE(第15题)(第1题)A BCFDE16.已知一个多边形的内角和与外角和共2160°,求这个多边形的边数.17.等腰三角形中,一腰上的中线把三角形的周长分为12cm 和15cm 两部分,求此三角形的底边长.18.如图,AD ,CE 为△ABC 的两条高,已知AD =10,CE =9,AB =12,求BC 的长.19.如图,已知E 是△ABC 内一点,试说明∠AEB =∠1+∠2+∠C 成立的原因.20.一个同学在进行多边形内角和计算时,求得的内角和为1125°;当发现错了之后,重新检查发现少了一个内角,问这个内角是多少度?他求的是几边形的内角和?A B C E D (第18题) E A B C 2 1 (第19题)21.阅读下面材料:“在三角形中相等的边所对的角相等,简称等边对等角”.如图1,△ABC 中,如果AB =AC ,那么∠B =∠C .试根据材料内容解答下列各题:(1)△ABC 中,AB =AC ,∠A =50°,则∠C =_________.(2)如图2,△ABC 中,CD 平分∠ACB ,且AD =CD =BC ,求∠A 的度数.22.在△ABC 中,∠A =30°.(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ分别经过点B ,C ,则∠ABC +∠ACB = °,∠XBC +∠XCB = °.(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY ,XZ 仍然分别经过点B ,C ,则∠ABX +∠ACX 的大小是否发生变化?若发生变化,举例说明;若不发生变化,求出∠ABX +∠ACX 的大小.参考答案与提示第七章 三角形第1课时 三角形的边C D A B 图2 C A B 图1(第21题) (第22题)Y 图11.D 2.B 3.D 4.19或20或21 5.27,23或28 6.5㎝、8㎝或6.5㎝、6.5㎝7.a+b+c8.腰223、底163或腰6、底8 9.(1)30≤BC<54;(2)BC=10或20 10.2第2课时与三角形有关的线段1.C 2.B 3.D 4.D 5.5,35 6.2,相等7.略8.20 3第3课时三角形的稳定性1.C 2.三角形的稳定性 3.不稳定性 4.略5.略6.B7.平行,相等第4课时三角形的内角1.B 2.A 3.B 4.100°56′ 5.65°6.7307,33077.72 8.140 9.(1)∠DAE=12∠A—=12∠A—(90°—∠B)=12(180°—∠B—∠C)—(90°—∠B)=12(180°—∠B—∠C)—(90°—∠B)=12(∠B—∠C);(2)是,因为FG∥BC,所以∠FEG=∠DAE第5课时三角形的外角1.C 2.B 3.A 4.160°,120°,80°5.114°7.123 6.提示:连接AD并延长,求得∠D的度数为120°7.43°,110°第6课时多边形1.A 2.D 3.D 4.C 5.C 6.2,3,5 7.n-3,n-2,(3)2n n8.画图略第7课时多边形的内角和1.C.2.B 3.C 4.A 5.D 6.3,0 7.十二8.十9.144,108,72,36 10.相等或互补11.7 12.略13.多边形的边数为10第8课时镶嵌1.C 2.B 3.D 4.D 5.D 6.3或4或6 7.六8.4n,2n+1 9.两种10.由于正三角形每个内角为60°,正方形每个内角为90°,所以无重叠、无间隙只可拼成60°、90°、120°、150°四种角度.又十一边形的内角和为(11-2)×180°=1620°,且120°×11<1620°<150°×11.所以这个十一边形内角只有120°和150°两种.可设120°的角有x个,150°的角有y个,则有120°x+150°y=1620°.此方程有惟一正整数解为x=1,y=10.所以这个十一边形内角中有1个角为120°,另10个角均为150°。
人教版七年级数学下 第七章 三角形归类总结
第七章三角形【基础知识梳理】一、三角形中有关概念1.三角形:由不在同一条直线上的三条线段所组成的图形,叫做三角形.2.三角形的高:从三角形的一个顶点向它的对边画垂线,叫做三角形的高.3.三角形的中线:在三角形中,连结一个顶点和它的对边的线段叫三角形的中线.4.三角形的角平分线:三角形一个与这个角的对边相交,这个角的顶点和交点之间的线段叫三角形的角平分线.5.三角形的外角:三角形的一边与另一边的所组成的角叫做三角形的外角;二、有关定理及性质1. 三角形的内角和:任意一个三角形的内角和等于 .温馨提示:(1)在三角形中已知两个角的度数可以求出第三个内角的度数;(2)已知三个内角的关系,可以求出内角的度数;(3)已知一个角的度数,可以求一个三角形中各角之间的关系;(4)在直角三角形中,已知一个锐角的度数,可求另一个锐角的度数.2. 三角形的一个外角等于与它 .3.三角形的一个外角大于与它.4. 三角形的三边关系:三角形的任两边之和第三边.三角形的任两边之差第三边.5.三角形的稳定性:取三根长度适当的木条,用钉子把它们钉成一个三角形框架,所得到的框架形状和大小就固定了,三角形的这个性质叫三角形的稳定性.三、多边形有关概念1.多边形的定义:,由一些线段首尾顺次相接组成的图形叫做多边形.2.多边形相关的角:(1)内角:多边形相邻两边所组成的角叫做它的内角;(2)外角:多边形的边与所组成的角叫做多边形的外角.3.多边形的对角线:连接多边形的两个顶点的线段,叫做多边形的对角线.4.正多边形:都相等,都相等的多边形叫做正多边形.5.多边形内角和的性质:多边形的内角和为.6.多边形的外角和性质:多边形的外角和为度.(每一个顶点处取一个外角相加的和为多边形的外角和).四、平面镶嵌1.平面镶嵌:用形状相同或不同的平面图形,把平面的一部分既又地全部覆盖,称为平面镶嵌.2.平面镶嵌的条件:围绕在某一点拼在一起的几个多边形的内角加在一起等于,就拼成一个没有空隙且不重叠的图案.3.正n边形能铺满地面的条件:正n边形的内角为,因此当3600÷(n-2)×1800n为正整数,即2nn-2为正整数时,正n边形可以铺满地面.4.多种正n边形铺满地面的条件:从几种正多边形中取出几个,如果它们的内角和为,则称这几种正多边形能进行平面镶嵌.【考点例析】一、考查三角形的稳定性例1. 如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A. 两点之间线段最短B. 矩形的对称性C. 矩形的四个角都是直角D. 三角形的稳定性分析:本题利用了“三角形的稳定性”,用木条EF固定门框ABCD,使其不变形。
新人教版七年级数学下册第七章全部教案
七年级数学(下册)第 1 课课题7.2.1 三角形的内角180;自主探究结论的证明问题1.动手操作,发现结论:在准备的纸片上任意画ΔABC (注意:把表示三角形三个顶点的字母标在三角形的内部),动手操作剪下内角拼一拼,你能得到什么结论?探究结论:三角形内角和等于180度。
问题2.数学证明,验证结论交流讨论说明结论为什么成立。
还有其他的方法吗? 教师展示点评问题3. 例题如图,如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A 、B 岛的视角∠ACB 是多少度?动手操作,各小组按要求亲自动手实验,你能得到什么结论?剪下内角,动手拼拼看,三个内角是否为180度。
一名学生动手实验,并将自己的做法展示给大家。
可以选择:一名学生亲自演示,一名与师进行师生合作。
将图画在黑板上,教师板书但这只是实验,而观察与实验得到的结论不一定正确、可靠,这样就需要通过数学证明来验正结论是否正确,交流讨论。
学生经小组为单位总结汇报,说明结论成立的理由。
书写规范的过程,证明:延长BC ,过点C 做CD ∥AB 。
有:∠1=∠A ∠B=∠2 因为:∠1+∠2+∠ACB=1800所以:∠A+∠B+∠ACB=1800根据辅助线的作法不同,让学生书写证明过程。
学生明确 “三角形内角和为1800”掌握已经非常牢固了,下面结合所学知识,按照自学指导完成例题的自学任务,比一比,谁理解的最好。
15分钟12AB B归纳总结三角形内角和等于180度。
依据自学指导独立完成学习。
板书解题过程解:∠CAB =∠BAD−∠CAD = 80º−50º = 30º由AD//BE,可得∠BAD+∠ABE = 180º、所以∠ABE = 180º−∠BAD = 180º−80º = 100º,∠ABC =∠ABE−∠EBC = 100º−40º = 60º在△ABC中,∠ACB = 180º−∠ACB−∠CAB= 180º−60º−30º= 90º答:从C岛看A、B两岛的视角∠ACB 是90º.合作探究展示提高1.填空:(1) 在△ABC中,∠A=300,∠B=500,则∠C=____。
人教版七年级数学下册第七章三角形全套配套练习集
7.1与三角形有关的线段7.1.1 三角形的边基础过关作业1.下图中有几个三角形?用符号表示这些三角形.2.下列说法:(1)等边三角形是等腰三角形;(2)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形的两边之差大于第三边;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.1个 B.2个 C.3个 D.4个3.现有两根木棒,它们的长分别为40cm和50cm,若要钉成一个三角形木架(•不计接头),则在下列四根木棒中应选取()A.10cm长的木棒 B.40cm长的木棒 C.90cm长的木棒 D.100cm长的木棒4.下列长度的各组线段中,能组成三角形的是()A.3cm,12cm,8cm B.6cm,8cm,15cmC.2.5cm,3cm,5cm D.6.3cm,6.3cm,12.6cm5.如图,在△ABC中,AB=AC,D为AC上一点,试说明AC>12(BD+CD).6.已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围是____.•若x是奇数,则x的值是______;这样的三角形有______个;•若x•是偶数,•则x•的值是______;这样的三角形又有________个.7.已知等腰三角形的两边长分别是3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.已知三角形三边的长均为整数,其中某两条边长之差为5,•若此三角形周长为奇数,则第三边长的最小值为多少?综合创新作业9.(综合题)已知a、b、c为△ABC的三边长,b、c满足(b-2)2+│c-3│=0,且a为方程│x-4│=2的解,求△ABC的周长,判断△ABC的形状.10.(应用题)某海军在南海某海域进行实弹演习,岛礁A的周围方圆10•千米内的区域为危险区域,有一艘渔船误入离A岛4千米的B处(如图),为了尽快驶离危险区域,该船应沿什么方向航行?为什么?11.(创新题)已知等腰三角形的周长为8,边长为整数,求这个三角形的腰长.12.(2005年,怀化)等腰三角形两边长分别是2cm和5cm,则这个三角形周长为( •) A.9cm B.12cm C.9cm或12cm D.14cm13.(易错题)已知等腰三角形的一边长等于4,另一边长等于9,则周长为_____.名优培优作业14.(探究题)在农村电网改造中,四个自然村分别位于图中的A、B、C、D处.现计划安装一台变压器,使变压器到四个自然村的输电线路的电线总长最短,那么这个变压器应安装在AC、BD的交点E处,你知道这是为什么吗?15.用21根火柴组成一条金鱼的形状(如图),在整个鱼的图案中,有许多大大小小的三角形,如果拿去其中的一根火柴,最多能减少几个三角形?数学世界三角形的边三角形鸡圈一位农夫建了一个三角形的鸡圈.•鸡圈是用铁丝网绑在插入地里的桩子而围成的.(1)沿鸡圈各边的桩子间距相等.(2)等宽的铁丝网绑在等高的桩子上.(3)这位农民在笔记本上作了如下的记录:面对仓库那一边的铁丝网的价钱:10美元;面对水池那一边的铁丝网的价钱:20美元;面对住宅那一边的铁丝网的价钱:30美元;(4)他买铁丝网时用的全是10美元面额的钞票,而且不用找零.(5)他为鸡圈各边的铁丝网所付的10美元钞票的数目各不相同.(6)在他记录的三个价钱中,有一个记错了.这三个价钱中哪一个记错了?(提示:鸡圈各边铁丝网的价钱之比一定等于它们的长度之比.•各边铁丝要有怎样的相对长度才能构成一个三角形的鸡圈呢?)答案:1.解:图中共有8个三角形,分别是:△BCA、△BCD、△BCE、△BCO、△BOD、•△COE、△BEA、△CDA.点拨:数三角形的个数,一定要按一定的次序去数.如按图形的形成过程数,按三角形的大小顺序数等,切忌盲目,造成重复和遗漏.2.B 点拨:说法(1)、(4)正确,故选B.3.B 4.C5.解:在△ABD中,AB+AD>BD,因AB=AC,故AC+AC-CD>BD,即2AC>BD+CD.从而可知AC>12(BD+CD).6.1cm<x<7cm;3cm,5cm;2;2cm,4cm,6cm;3 点拨:∵(4-3)cm<x<(4+3)cm,∴1cm<x<7cm.∵若x是奇数,则x的值是3cm,5cm;∴这样的三角形有2个.∵若x是偶数,则x的值是2cm,4cm,6cm;∴这样的三角形有3个.7.C 点拨:由题设知,等腰三角形的三边长可能为3,3,6或6,6,3.但3+3=6,说明以3,3,6为边长构不成三角形.∴这个等腰三角形的周长为15,故选C.8.解:设第三条边长为c,其余两条边长分别为a和b,且a>b,则有a+b+c为奇数,a-b=5,所以2b+5+c为奇数,故c为偶数.又a-b<c,故c>5,c的最小值为6.9.解:∵(b-2)2≥0,│c-3│≥0,且(b-2)2+│c-3│=0,∴b-2=0,c-3=0.即b=2,c=3.∵a为方程│x-4│=2的解,∴a=2或6.经检验,当a=6时,不满足三角形三边关系定理,故舍去.∴a=2,b=2,c=3.∴△ABC的周长为7,△ABC为等腰三角形.10.解:该船应沿射线AB方向航行.理由:如答图,设射线AB与圆交于点C,再在圆上另取一点D,连接AD、•BD,在△ABD中,有AB+BD>AD(三角形两边的和大于第三边).但半径AD=AC=AB+BC,∴AB+BD>AB+BC.∴BD>BC.11.解:设这个等腰三角形的腰长为x,底边长为y,则y=8-2x.∵边长为整数,∴x可取1,2,3.当x=1时,y=6;当x=2时,y=4;当x=3时,y=2.∴三边长可能为1,1,6或2,2,4或3,3,2.但以2,2,4或1,1,6为边长均构不成三角形,所以三边长只能为3,3,2.故这个三角形的腰长为3.12.B 点拨:如果2cm是腰,则2+2<5,不能组成三角形,这一情形要舍去.那么2cm只能是底边,则周长为2+5+5=12(cm).13.22 点拨:解答本题易错误地填入17或22两个答案.14.解:如答图,另取点E′,连接AE′、BE′、CE′、DE′.在△BDE′中,DE′+BE′>DB.在△ACE′中,AE′+CE′>AC.∴AE′+BE′+CE′+DE′>AC+BD.即AE+BE+CE+DE最短.15.解:如答图所示,最多能减少3个三角形.数学世界答案:答:面对仓库的那一边铁丝网的价钱是40美元而不是10美元.点拨:根据(1)沿鸡圈各边的桩子间距相等.(2)等宽的铁丝网绑在等高的桩子上.(3)这位农民在笔记本上作了如下的记录:面对仓库那一边的铁丝网的价钱:10美元;面对水池那一边的铁丝网的价钱:20美元;面对住宅那一边的铁丝网的价钱:30美元;和(6)在他记录的三个价钱中,有一个记错了.三角形鸡圈三条边的长度之比为1:2:3,但是其中有一个数字是错误的.根据(4)他买铁丝网时用的全是10美元面额的钞票,•而且不用找零.错误的数字代之以一个整数.根据(5)•他为鸡圈各边的铁丝网所付的10美元钞票的数目各不相同.错误的数字必须代之以大于3的整数.如果以大于3的整数取代2或3,则不可能构成一个三角形,因为三角形任何两边之和一定大于第三边.•因此1是错误的数字,也就是说,面对仓库的那一边铁丝网的价钱10美元记错了.如果用大于4的整数取代1,仍然不可能构成鸡圈.但是,如果用4取代1,则可以构成一个鸡圈.因此,面对仓库的那一边铁丝网的价钱是40美元而不是10美元.7.1.2三角形的高、中线、角平分线练习题1、分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高。
人教版数学七年级下学期第7章《三角形》全章精品ppt
❖ A,两点之间线段最短 ❖ B矩形的对称性
❖F
❖ C矩形的四个角都是直 角
❖ D三角形的稳定性
❖B
❖C
4、下列图中具有稳定性有( C )
A 1个 B 2个 C 3个 D 4个
• 5.如图,桥梁的斜拉钢索是三角形的结构,主要 是为了( )
• A.节省材料,节约成本 • B保持对称 • C.利用三角形的稳定性 • D美观漂亮
扭一扭:你们手中的模型告诉 我你的发现
三角形具有稳定性 四边形没有稳定性
你能举出一些现实生活中的应用了三 角形稳定性的例子吗?
四边形的不稳定性也有很多广泛的应 用你能举出一些例子吗?
图中伸缩门为什么要做成四边形?
四边形的不稳定性有广泛的应用
你有没有办法将四边形变成稳定?
范例
例1、盖房子时,在窗框未安装好之前, 木工师傅常常先在窗框上斜钉一根木条。 为什么要这样做呢?
木条实际上把四边形分 成两个三角形。
1、下列图形中具有稳定性的是( C)
(A)正方形
(B)长方形
(C)直角三角形 (D)平行四边形
2、要使下列木架稳定各至少需要多少根木棍?
❖ 3.如图,工人师傅砌门时,常用木条EF
❖ 固定门框ABCD,使其不变形,这种做法的根据 是( )来自❖ A ❖ E ❖❖DE
牧民阿其木家用于圈羊的木 栅门,由于年久失修已经变 成如图甲,为什么会变?
为了恢复成原样图乙,而且要保 持形状不变,他该怎么做呢?
(甲)
(乙)
祝同学们学习进步!
再见
人教版数学七年级下学期 多媒体教学课件
第7章第3节
7.1.3 三角形的稳定性
引入:
盖房子时,在窗框未安装好之前,木 工师傅常常先在窗框上斜钉一根木条。 为什么要这样做呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章三角形测试1 三角形的边学习要求1.理解三角形及与三角形有关的概念,掌握它们的文字表述、符号语言表述及图形表述方法.2.掌握三角形三边关系的一个重要性质.课堂学习检测一、填空题1.由__________________三条线段_______所组成的图形叫做三角形.组成三角形的线段叫做______;相邻两边的公共端点叫做______;相邻两边所组成的角叫做______,简称______.2.如图所示,顶点是A,B,C的三角形,记作______,读作____________.其中,顶点A 所对的边______还可用______表示;顶点B所对的边______还可用_______表示;顶点C 所对的边______还可用______表示.3.由“连接两点的线中,线段最短”这一性质可以得到三角形的三边有这样的性质:______________________________.由它还可推出:三角形两边的差_____________ __________________.4.对于△ABC,若a≥b,则a+b_______c,同时a-b______c;又可写成________<c<________.5.若一个三角形的两边长分别为4cm和5cm,则第三边x的长度的取值范围是_________ ______,其中x可以取的整数值为__________________.综合、运用、诊断一、填空题6.已知:如图,试回答下列问题:(1)图中有______个三角形,它们分别是____________________________________.(2)以线段AD为公共边的三角形是________________________________________.(3)线段CE所在的三角形是______,CE边所对的角是______.(4)△ABC,△ACD,△ADE这三个三角形的面积之比等于______∶______∶______.二、选择题7.下列各组线段能组成三角形的是( ).(A)3cm,3cm,6cm (B)2cm,3cm,6cm(C)5cm,8cm,12cm (D)4cm,7cm,11cm8.现有两根木条,它们的长分别为50cm,35cm,如果要钉一个三角形木架,那么下列四根木条中应选取( ).(A)0.85m长的木条(B)0.15m长的木条(C)1m长的木条(D)0.5m长的木条9.从长度分别为10cm,20cm,30cm,40cm的四根木条中,任取三根可组成三角形的个数是( ).(A)1个(B)2个(C)3个(D)4个10.若三角形的两边长分别为3和5,则其周长l的取值范围是( ).(A)6<l<15 (B)6<l<16(C)11<l<13 (D)10<l<16三、解答题11.(1)一个等腰三角形的周长为18,若腰长的3倍比底边的2倍多6,求各边长.(2)若等腰三角形的两边长分别为3cm和8cm,则它的周长是多少?(3)一个等腰三角形的周长为30cm,一边长为6cm,求其他两边的长.(4)有两边相等的三角形的周长为12cm,一边与另一边的差是3cm,求三边的长.拓展、探究、思考12.(1)若三角形三边分别为2,x-1,3,求x的范围.(2)若三角形两边长为7和10,求最长边x的范围.(3)等腰三角形腰长为2,求周长l的范围.13.如图,△ABC中,AB=AC,D是AB边上一点.(1)通过度量AB ,CD ,DB 的长度,确定AB 与)(21DB CD 的大小关系. (2)试用你所学的知识来说明这个不等关系是成立的.14.小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木椁的长度可以是多少?15.如图,P 是△ABC 内一点,请想一个办法说明AB +AC >PB +PC .16.如图,D ,E 是△ABC 内的两点,求证:AB +AC >BD +DE +EC .测试2 三角形的高、中线与角平分线学习要求1.理解三角形的高、中线和角平分线的概念,学会它们的画法. 2.对三角形的稳定性有所认识,知道这个性质有广泛的应用.课堂学习检测一、填空题1.从三角形一个顶点向它的对边画______,以______和______为端点的线段叫做三角形这边上的高.如图,若CD 是△ABC 中AB 边上的高,则∠ADC ______∠BDC =______,C 点到对边AB 的距离是______的长.2.连接三角形的一个顶点和它__________________的______叫做三角形这边上的中线.如图,若BE 是△ABC 中AC 边上的中线,则AE ______EC =21______. 3.三角形一个角的_______与这个角的对边相交,以这个角的______和______为端点的线段叫做三角形的角平分线.一个角的平分线与三角形的角平分线的区别是______________ ___________________________.如图,若AD 是△ABC 的角平分线,则∠BAD ______ ∠CAD =21______或∠BAC =2______=2______.二、画图题4.分别画出△GEF 的高GH ,中线EM ,角平分线FN .综合、运用、诊断一、画图,并回答问题5.(1)分别画出△ABC 的三条高AD ,BE ,CF .(∠A 为锐角) (∠A 为直角) (∠A 为钝角)(2)这三条高AD ,BE ,CF 所在的直线有怎样的位置关系?6.(1)分别画出△ABC的三条中线AD,BE,CF.(2)这三条中线AD,BE,CF有怎样的位置关系?(3)设中线AD与BE相交于M点,分别量一量线段BM和ME、线段AM和MD的长,从中你能发现什么结论?7.(1)分别画出△ABC的三条角平分线AD,BE,CF.(2)这三条角平分线AD,BE,CF有怎样的位置关系?(3)设△ABC的角平分线BE,CF交于N点,请量一量点N到△ABC三边的距离,从中你能发现什么结论?二、填空题8.等腰三角形的底边长为10cm,一腰上的中线将这个三角形分成两部分,这两部分的周长之差为2cm,则这个等腰三角形的腰长为_______.9.要使六边形木架不变形,至少要再钉上_______根木条.拓展、探究、思考10.将一个三角形剖分成若干个面积相等的小三角形,称为该三角形的等积三角形的剖分(以下两问要求各画三个示意图).(1)已知一个任意三角形,将其剖分成3个等积的三角形.(2)已知一个任意三角形,将其剖分成4个等积的三角形.11.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.测试3 与三角形有关的角学习要求1.理解三角形的内角、外角的概念.2.掌握三角形的内角和及外角的性质,并能运用这些性质进行简单的推理和计算.课堂学习检测一、填空题1.三角形的内角和性质是______________________________.2.三角形的内角和性质是利用平行线的______与______的定义,通过推理得到的.它的推理过程如下:已知:△ABC.求证:∠BAC+∠ABC+∠ACB=______.证明:过A点作______∥______,则∠EAB=______,∠F AC=______.(____________,____________)∵∠EAF是平角,∴∠EAB+______+______=180°.( )∴∠ABC+∠BAC+∠ACB=∠EAB+∠______+∠______.( )即∠ABC+∠BAC+∠ACB=______.3.三角形的一边与____________________________________叫做三角形的外角.因此,三角形的任意一个外角与和它相邻的三角形的一个内角互为______.4.利用“三角形内角和”性质,可以得到三角形的外角性质.如图,∵∠ACD是△ABC的外角,∴∠ACD与∠ACB互为______,即∠ACD=180°-∠ACB.①又∵∠A+∠B+∠ACB=______,∴∠A+∠B=___________.②由①、②,得∠ACD=______+______.∴∠ACD>∠A,∠ACD>∠B.由上述说理,可以得到三角形外角的性质如下:三角形的一个外角等于______________________________________________________.三角形的一个外角大于______________________________________________________.二、解答题5.如图,在△ABC中,∠A=70°,BO,CO分别平分∠ABC和∠ACB,求∠BOC的度数.6.如图,BE与CF相交于A点,试确定∠B+∠C与∠E+∠F之间的大小关系,并说明你的理由.7.已知:如图,CE⊥AB于E,AD⊥BC于D,∠A=30°.求∠C的度数.8.依据题设,写出结论,想一想,为什么?如图,△ABC中,∠ACB=90°.则(1)∠A+∠B=______,即∠A与∠B互为______;(2)若作CD⊥AB于点D,可得∠BCD=∠______,∠ACD=∠______.综合、运用、诊断一、填空题9.△ABC中,若∠A+∠C=2∠B,则∠B=______.10.△ABC中,若∠A∶∠B∶∠C=2∶3∶5,则∠A=______,∠B=______,∠C=______.11.如图,直线a∥b,则∠A=______.12.如图,∠DAC=∠B,∠ADC=115°,则∠BAC=______.13.如图,△ABC中,∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A=______.14.在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠A=______,∠B=______,∠C=______.二、解答题15.如图,一轮船在海上往东行驶,在A处测得灯塔C位于北偏东60°,在B处测得灯塔C位于北偏东25°,求∠ACB.16.如图,△ABC中,已知∠ABC=60°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE,∠ACF和∠BHC的度数.17.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,求∠DAE的度数.(2)试问∠DAE与∠C-∠B有怎样的数量关系?说明理由.拓展、探究、思考18.如图,O是△ABC外一点,OB,OC分别平分△ABC的外角∠CBE,∠BCF.若∠A=n°,试用含n的代数式表示∠BOC.19.如图,△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAC及∠BOA.20.如图,已知线段AD,BC相交于点Q,DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.测试4 多边形及其内角和学习要求1.理解多边形的有关概念,掌握多边形的内角和及其外角和的计算公式.2.理解正多边形的概念.课堂学习检测一、填空题1.平面内,由__________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______________.多边形_____________________叫做它的内角,多边形的边与它的邻边的_______组成的角叫做多边形的外角.连接多边形______________的线段叫做多边形的对角线.2.画出多边形的任何一条边所在直线,如果整个多边形都在_____________,那么这个多边形称作凸多边形.3.各个角_______,各条边_________的_________叫做正多边形.4.n边形的内角和等于_______________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为_______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.5.请按下面给出的思路,进行推理填空.如图,在n边形A1A2A3…A n-1A n内任取一点O,依次连接______、_______、______、…、______、_______,则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×_______-( )=( )×180°.6.一个多边形的内角和是1980°,则它的边数是______,共有______条对角线,它的外角和是______.7.正n边形的每一个内角等于______,每一个外角等于______.8.若一个正多边形的内角和为2340°,则边数为______,它的外角等于______.9.若一个多边形的每一个外角都等于40°,则它的内角和等于______.10.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.11.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______.综合、运用、诊断一、选择题12.一个多边形的内角和等于它的外角和,这个多边形是( ).(A)三角形(B)四边形(C)五边形(D)六边形13.一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).(A)随着增加(B)随着减少(C)保持不变(D)无法确定14.若一个多边形从一个顶点,只可以引三条对角线,则它是( ).(A)五边形(B)六边形(C)七边形(D)八边形15.如果一个多边形的边数增加1,那么它的内角和增加( ).(A)0°(B)90°(C)180°(D)360°16.如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).(A)只有一个直角(B)只有一个锐角(C)有两个直角(D)有两个钝角二、解答题17.如图,四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB 于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.拓展、探究、思考18.(1)已知:如图a,求∠1+∠2+∠3+∠4+∠5+∠6=______.(2)已知:如图b,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=______.图a 图b19.如图,在图a中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______°.请说明你猜想的理由.图a 图b如果把图a称为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图b称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H,则2环四边形的内角和为______°;2环五边形的内角和为______°;2环n边形的内角和为______°.20.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.21.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.测试5 镶嵌学习要求通过镶嵌这一课题的学习,体验角的知识(特别是多边形内角和)在生活、生产实际中的应用;在解决问题的探究实践活动过程中,培养自己学数学、用数学的意识,提高分析问题和解决问题的能力.课堂学习检测一、问答题1.我们常常见到如下图那样图案的地板,它们分别是用正方形、正三角形的材料铺成的.为什么用这样形状的材料能铺成平整(不互相重叠),又无空隙的地板呢?2.工人师傅把一批形状、大小完全相同,但不规则的四边形边脚余料用来铺地板,按照下面给出的拼接四边形木块的方法,就可以不留下任何空隙而铺成一大片.(1)请你说出工人师傅之所以能这样拼接的道理.(2)如果工人师傅手里还有一批形状、大小完全相同,但不规则的三角形边脚余料,那么工人师傅能否用它们拼成平整且无空隙的地板呢?如果可以,请说出你的理由,并将你剪好的一些形状、大小完全相同、但不规则的三角形纸片,贴在下面的空白处(不互相重叠且无空隙),镶嵌成地板模型.综合、运用、诊断3.在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成一个平面图形.(1)请根据下列图形,填写表中空格:(2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)不能用正五边形形状的材料铺满地面的理由是什么?正五边形的地砖会留有不少缝隙(4)某家庭准备用正三角形与正六边形两种瓷砖结合在一起镶嵌地面,请你帮助设计镶嵌图案,你能设计几种不同的镶嵌方案?(5)正三角形和正方形组合呢?(画图说明)(6)边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ).(A)正方形与正三角形(B)正五边形与正三角形(C)正六边形与正三角形(D)正八边形与正方形参考答案第七章 三角形测试11.不在同-直线上的,首尾顺次相接,三角形的边,三角形的顶点,三角形的内角,三角形的角.2.△ABC ,三角形ABC ,BC ,a ;AC ,b ;AB ,c . 3.三角形两边之和大于第三边,小于第三边. 4.>,<,a -b ,a +b .5.1cm <x <9cm ,2cm 、3cm 、4cm 、5cm 、6cm 、7cm 、8cm . 6.(1)六,△ABC 、△ABD 、△ABE 、△ACD 、△ACE 、△ADE . (2)△ABD 、△ACD 、△ADE . (3)△ACE ,∠CAE . (4)BC ∶CD ∶DE .7.C .8.D .9.A .10.D .11.(1)6,6,6;(2)19cm ;(3)12cm ,12cm ;(4)5cm ,5cm ,2cm . 12.(1)2<x <6;(2)10≤x <17;(3)4<l <8. 13.(1)).(21DB CD AB +>(2)提示:对于△ADC ,∵AD +AC >DC , ∴(AD +DB )+AC >CD +DB , 即AB +AC >CD +DB .又∵AB =AC ,∴2AB >CD +DB . 从而).(21DB CD AB +>14.小颖有9种选法.第三根木棒的长度可以是4 cm ,5 cm ,6 cm ,7cm ,8 cm ,9 cm ,10 cm ,11 cm ,12 cm . 15.提示:延长BP 交AC 于D .∵在△ABD 中,AB +AD >BD =BP +PD ,① 在△DPC 中,DP +DC >PC ,② 由①、②,∴AB +(AD +DC )+DP >BP +PC +DP . 即AB +AC >PB +PC .16.证明:延长BD 交AC 于P ,延长CE 交BP 于F .在△ABP中,AB+AP>BP.①在△FPC中,FP+PC>FC.②在△DEF中,DF+FE>DE.③①+②+③得AB+AP+FP+PC+DF+FE>BP+FC+DE,即:AB+AC+DF+FP+FE>BD+DF+FP+FF+EC+DE,所以AB+AC>BD+DE+EC.测试21.垂线,顶点、垂足,=,90°,高CD.2.所对的边的中点、线段,=,AC.3.平分线,顶点、交点,一个角的平分线是射线,而三角形的角平分线是线段.=,∠BAC,∠BAD,∠DAC.4.略.5.(1)略,(2)三条高所在直线交于一点.6.(1)略,(2)三条中线交于一点,(3)BM=2ME.7.(1)略,(2)三条角平分线交于一点,(3)点N到△ABC三边的距离相等.8.12 cm或8 cm.9.310.(1)(2)下列各图是答案的一部分:11.它的长为5或4.提示:设S△ABC=S,第三条高为h,则△ABC的三边长可表示为:42S 、122S 、h S 2,列不等式得:12242212242S S h S S S +<<- ∴3<h <6.测试31.三角形的内角和等于180°,2.性质、平角,说理过程(略). 3~4.略.5..1252190=∠+A 6.∠B +∠C =∠E +∠F .(此图中的结论为常用结论) 7.30°. 8.(1)90°,余角;(2)∠A ,∠B .9.60°. 10.36°,54°,90°. 11.39°. 12.115°. 13.36°. 14.30°, 45°,105°. 15.35°. 16.24°,24°,114°. 17.(1)10°;(2)).(21B C DAE ∠-∠=∠ 18.)(21180)32(180FCB EBC BOC ∠+∠-=∠+∠-=∠)]()[(21180ABC A ACB A ∠+∠+∠+∠-=.21902190)180(21180o o n A A -=∠-=∠+-=19.∠DAC =90°-∠C =30°;CAB ABC BOA ∠-∠-=∠2121180=180°-35°-25°=120°.20.39°.由本练习中第4题结论可知: ∠C +∠CDM =∠M +∠MBC ,即.2121ABC M ADC C ∠+∠=∠+∠①同理,.2121ABC A ADC M ∠+∠=∠+∠②由①、②得)(21C A M ∠+∠=∠,因此∠C =39°. 测试41~3.略.4.(n -2)×180°,n -3,n -2,n -2.5.OA 1,OA 2,OA 3,OA n -1,OA n ,n ,n ,360°,(n -2).6.十三,65,360°. 7.⋅⨯-n nn360,180)2( 8.十五,24°. 9.1260° 10.十二,54. 11.65°或115°. 12.B . 13.C .14.B .15.C .16.A . 17.68°. 18.(1)360°;(2)360°.19.360;720;1080;2(n -2)×180.20.九.提示:设多边形的边数为n ,某-个外角为α.则(n -2)×180+α=1350.从而⋅-+=-=-1809071801350)2(ααn 因为边数n 为正整数,所以α=90,n =9.21.可以走回到A 点,共走100米.测试51.这是因为它们的每一个内角分别为90°和60°,用它们可以拼成周角(360°). 2.(1)这是因为任意四边形的内角和都是360°. (2)可以.因为三角形的内角和为180°,拼图略. 3(2)正三角形、正方形、正六边形.(3)因为正五边形的每一个内角是108°,它不是360°的约数,所以不行.同理,因为正七边形、正八边形等的每一个内角,也分别不是360°的约数,所以也都不行. (4)参考图案:(5)参考图案:(6)B .。