全国高中数学联赛试题及答案教程文件

合集下载

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题

历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。

为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。

请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。

解:由题意得,房子在四周建墙,所以共4个墙面。

墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。

因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。

用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。

因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。

当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。

当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。

所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。

因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。

2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。

求$\sum_{k=1}^{2019}s_k$的个位数。

全国高中数学联赛试题及解答

全国高中数学联赛试题及解答

20XX 年全国高中数学联合竞赛 试题参考答案及评分标准说 明:1.评阅试卷时,请依据本评分标准. 选择题只设6分和0分两档,填空题只设9分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准适当划分档次评分,5分为一个档次,不要再增加其他中间档次.一、选择题(本题满分36分,每小题6分)1.已知△ABC ,若对任意t ∈R ,||→BA -t →BC ≥||→AC ,则△ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .答案不确定 答C .解:令∠ABC =α,过A 作AD ⊥BC 于D ,由||→BA -t →BC ≥||→AC ,推出||→BA 2-2t →BA · →BC +t 2||→BC 2≥||→AC 2,令t =→BA · →BC ||→BC2,代入上式,得||→BA 2-2||→BA 2cos 2α+||→BA 2cos 2α≥||→AC 2,即 ||→BA 2sin 2α≥||→AC 2,也即||→BA sin α≥||→AC .从而有||→AD ≥||→AC .由此可得∠ACB =π2.2.设log x (2x 2+x -1)>log x 2-1,则x 的取值范围为A .12<x <1B .x >12且x ≠1 C . x >1 D . 0<x <1答B .解:因为⎩⎨⎧x >0,x ≠12x 2+x -1>0,解得x >12且x ≠1.由log x (2x 2+x -1)>log x 2-1,⇒ log x (2x 3+x 2-x )>log x 2⇒ ⎩⎨⎧0<x <1,2x 3+x 2-x <2或⎩⎨⎧x >1,2x 3+x 2-x >2.解得0<x <1或x >1.所以x 的取值范围为x >12且x ≠1.3.已知集合A ={x |5x -a ≤0},B ={x |6x -b >0},a ,b ∈N ,且A ∩B ∩N ={2,3,4},则整数对(a ,b )的个数为A .20B .25C .30D .42 答C .解:5x -a ≤0⇒x ≤a 5;6x -b >0⇒x >b6.要使A ∩B ∩N ={2,3,4},则⎩⎨⎧1≤b6<2,4≤a 5<5,即⎩⎨⎧6≤b <12,20≤a <25.所以数对(a ,b )共有C 61C 51=30个. 4.在直三棱柱A 1B 1C 1-ABC 中,∠BAC =π2,AB =AC =AA 1=1.已知G 与E 分别为A 1B 1和CC 1的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD ⊥EF ,则线段DF 的长度的取值范围为A .[15,1)B .[15,2)C .[1,2)D .[15,2)答A .解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,AA 1为z 轴,则F (t 1,0,0)(0<t 1<1),E (0,1,12),G (12,0,1),D (0,t 2,0)(0<t 2<1).所以→EF =(t 1,-1,-12),→GD =(-12,t 2,-1).因为GD ⊥EF ,所以t 1+2t 2=1,由此推出0<t 2<12.又→DF =(t 1,-t 2,0),||→DF =t 12+t 22=5t 22-4t 2+1=5(t 2-25)2+15,从而有15≤||→DF <1.5.设f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,a +b ≥0是f (a )+f (b )≥0的A . 充分必要条件B . 充分而不必要条件C . 必要而不充分条件D . 既不充分也不必要条件 答A .解:显然f (x )=x 3+log 2(x +x 2+1)为奇函数,且单调递增.于是若a +b ≥0,则a ≥-b ,有f (a )≥f (-b ),即f (a )≥-f (b ),从而有f (a )+f (b )≥0. 反之,若f (a )+f (b )≥0,则f (a )≥-f (b )=f (-b ),推出a ≥-b ,即a +b ≥0. 6.数码a 1,a 2,a 3,…,a 2006中有奇数个9的2007位十进制数-2a 1a 2…a 2006的个数为A .12(102006+82006)B .12(102006-82006) C .102006+82006 D .102006-82006答B .解:出现奇数个9的十进制数个数有A =C 20061 92005+C 20063 92003+…+C 200620059.又由于(9+1)2006=k =0Σ2006C 2006k 92006-k 以及(9-1)2006=k =0Σ2006C 2006k (-1)k 92006-k从而得A =C 20061 92005+C 20063 92003+…+C 200620059=12(102006-82006). 二、填空题(本题满分54分,每小题9分)7. 设f (x )=sin 4x -sin x cos x +cos 4x ,则f (x )的值域是 .填[0,98].解:f (x )=sin 4x -sin x cos x +cos 4x =1-12sin2x -12sin 22x .令t =sin2x ,则f (x )=g (t )=1-12t -12t 2=98-12(t +12)2.因此-1≤t ≤1min g (t )=g (1)=0,-1≤t ≤1max g (t )=g (-12)=98. 故,f (x )∈[0,98].8. 若对一切θ∈R ,复数z =(a +cos θ)+(2a -sin θ)i 的模不超过2,则实数a 的取值范围为 .填[-55,55].解:依题意,得|z |≤2⇔(a +cos θ)2+(2a -sin θ)2≤4⇔2a (cos θ-2sin θ)≤3-5a 2.⇔-25a sin(θ-φ)≤3-5a 2(φ=arcsin 55)对任意实数θ成立. ⇔25|a |≤3-5a 2⇒|a |≤55,故 a 的取值范围为[-55,55]. 9.已知椭圆x 216+y 24=1的左右焦点分别为F 1与F 2,点P 在直线l :x -3y +8+23=0上. 当∠F 1PF 2取最大值时,比|PF 1||PF 2|的值为 .填3-1..解:由平面几何知,要使∠F 1PF 2最大,则过F 1,F 2,P 三点的圆必定和直线l 相切于点P .直线l 交x 轴于A (-8-23,0),则∠APF 1=∠AF 2P ,即∆APF 1∽∆AF 2P ,即|PF 1||PF 2|=|AP ||AF 2|⑴ 又由圆幂定理,|AP |2=|AF 1|·|AF 2| ⑵而F 1(-23,0),F 2(23,0),A (-8-23,0),从而有|AF 1|=8,|AF 2|=8+43.代入⑴,⑵得,|PF 1||PF 2|=|AF 1||AF 2|=88+43=4-23=3-1.10.底面半径为1cm 的圆柱形容器里放有四个半径为12cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm 3. 填(13+22)π. 解:设四个实心铁球的球心为O 1,O 2,O 3,O 4,其中O 1,O 2为下层两球的球心,A ,B ,C ,D 分别为四个球心在底面的射影.则ABCD 是一个边长为22的正方形。

2024年全国高中数学联赛

2024年全国高中数学联赛

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试试题(A )一、填空题:本大题共8小题,每小题8分,满分64分.1.若实数m >1满足98m log log =2024,则32m log log 的值为.2.设无穷等比数列{a n }的公比q 满足0<q <1.若{a n }的各项和等于{a n }各项的平方和,则a 2的取值范围是.3.设实数a ,b 满足:集合A ={x ∈R |x 2-10x +a ≤0}与B ={x ∈R |bx ≤b 3}的交集为4,9 ,则a +b 的值为.4.在三棱锥P -ABC 中,若PA ⏊底面ABC ,且棱AB ,BP ,BC ,CP 的长分别为1,2,3,4,则该三棱锥的体积为.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a ,b .若事件a +b =7发生的概率为17,则事件“a =b ”发生的概率为.6.设f (x )是定义域为R 、最小正周期为5的函数.若函数g (x )=f (2x )在区间0,5 上的零点个数为25,则g (x )在区间[1,4)上的零点个数为.7.设F 1,F 2为椭圆Ω的焦点,在Ω上取一点P (异于长轴端点),记O 为△PF 1F 2的外心,若PO ∙F 1F 2 =2PF 1 ∙PF 2 ,则Ω的离心率的最小值为.8.若三个正整数a ,b ,c 的位数之和为8,且组成a ,b ,c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(a ,b ,c )为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a <b <c 的幸运数组(a ,b ,c )的个数为.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在ΔABC 中,已知cos C =sinA +cosA 2=B sin +cosB 2,求cos C 的值.10.(本题满分20分)在平面直角坐标系中,双曲线Γ:x 2-y 2=1的右顶点为A .将圆心在y 轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA的所有可能的值.11.(本题满分20分)设复数z ,w 满足z +w =2,求S =z 2-2w +w 2-2z 的最小可能值.2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试试题(A卷)一.(本题满分40分)给定正整数r,求最大的实数C,使得存在一个公比为r的实数等比数列a nn≥1,满足a n≥C对所有正整数n成立.(x 表示实数x到与它最近整数的距离.)二.(本题满分40分)如图,在凸四边形ABCD中,AC平分∠BAD,点E,F分别在边BC,CD上,满足EF||BD,分别延长FA,EA至点P,Q,使得过点A,B,P的圆ω1及过点A,D,Q的圆w2均与直线AC相切.证明:B,P,Q,D四点共圆.(答题时储将图画在答卷纸上)三.(本题满分50分)给定正整数n.在一个3×n的方格表上,由一些方格构成的集合S称为“连通的”,如果对S 中任意两个不同的小方格A,B,存在整数l≥2及S中l个方格A=C1,C2,…,C l=B,满足C i与C i+1有公共边(i=1, 2,⋯,l-1).求具有下述性质的最大整数K:若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S,使得S中的黑格个数与白格个数之差的绝对值不小于K.四.(本题满分50分)设A,B为正整数,S是一些正整数构成的一个集合,具有下述性质:(1)对任意非负整数k,有A K∈S;(2)若正整数n∈S,则n的每个正约数均属于S;(3)若m,n∈S,且m,n互素,则mn∈S;(4)若n∈S,则An+B∈S.证明:与B互素的所有正整数均属于S.。

全国高中数学联赛试题及答案

全国高中数学联赛试题及答案

全国高中数学联赛试题及答案第一题:设函数f(x)在区间[a, b]上连续,(a < b),且在(a, b)内可导。

证明:存在ξ∈(a,b),使得f(b) - f(a) = (b-a)f'(\xi)解答:根据拉格朗日中值定理,存在c∈(a,b),使得f'(c) = (f(b) - f(a))/(b - a)所以,我们只需证明c=ξ即可。

由于f(x)在[a, b]上连续,并且在(a, b)内可导,所以内点可导连续定理告诉我们:f(x)在[a, b]上一致连续。

依据一致连续性,对于任意ε>0,存在δ>0,使得对于所有的x',x''∈[a, b],只要 |x' - x''| < δ,就有 |f(x') - f(x'')| < ε。

考虑到c∈(a, b),且c=ξ是一个特定值,我们可以取一小段(a,b)中的点序列,使得这个点序列的左右界可以趋近c,同时满足 |x' - x''| < δ。

设这个点序列为{x_n},那么对应的有一个序列{f'(x_n)}。

根据极限的性质,我们可以得到∃ n→∞,使得x_n→c时,f'(x_n)→ f'(c)。

而由于f'(x)在(a, b)内可导,所以根据导数的定义,也就是f'(c) = lim(x→c) (f(x) - f(c))/(x - c)结合拉格朗日中值定理中的等式f'(c) = (f(b) - f(a))/(b - a)我们可以得到:f'(c) = (f(b) - f(a))/(b - a)所以,c=ξ成立,证毕。

第二题:设a, b, c为正实数,且满足 abc=1。

证明:a/(a^3 + 1) + b/(b^3 + 1) + c/(c^3 + 1) ≤ 3/2解答:根据条件abc=1,可以设 a = x/y, b = y/z, c = z/x (其中x, y, z为正实数)。

全国高中数学联赛集训试题及参考答案.docx

全国高中数学联赛集训试题及参考答案.docx

全国高中数学联赛集训试题及参考答案一、选择题(本题满分36分,每小题6分)函数f(x)=logi/2(x2-2x-3)的单调递增区间是(若实数x, y 满足(x+5)2+(y-12)2=142,则x?+y2的最小值为(直线x/4+y/3=l 与椭圆x 2/16+y 2/9=l 相交于A, B 两点,该椭圆上点P,使得APAB 面积等于3, 这样的点P 共有(6、由曲线x 2=4y,x 2=-4y,x=4,x=-4围成的图形绕y 轴旋转一周所得旋转体的体积为VI ;满足 x 2+y 2<16,x 2+(y-2)2>4,x 2+(y+2)2>4的点(x,y)组成的图形绕y 轴旋转一周所得旋转体的体积为V?,则(A) Vi= (1/2) V 2 (B)Vi= (2/3) V 2二、填空题(本题满分54分,每小题9分)7、已知复数Zi,Z2满足I Z[ | =2, | Z 2 | =3,若它们所对应向量的夹角为60。

,则I (Z 1+Z 2)/(Z 1+Z 2) 8、将二项式(Wx+1/ (2^x)) 11的展开式按x 的降'最排列,若前三项系数成等差数列,则该展开式 1、 (A) ( —co, —1)(B) (—8,1)(C) (1, + co) (D) (3, +s) 2、 (A) 2 (B) 1 (C)山 (D)也 3、 函数 f(x)=x/l-2%x/2 ( (A)是偶函数但不是奇函数 (B) 是奇函数但不是偶函数 (C)既是偶函数乂是奇函数(D)既不是偶函数也不是奇函数 (A) 1 个 (B) 2 个 (C) 3 个 (D) 4 个5、已知两个实数集合 A= {ai,a2,...,aioo )与 B= {bib,...bo}, 若从A 到B 的映射f 使得B 中每个元素都有原象,且f(ai )<f(a 2)<.. <f(a 1O o)MS 样的映射共有( )。

历年全国高中数学竞赛试卷及答案(77套)

历年全国高中数学竞赛试卷及答案(77套)
8.设 ,其中 是虚数单位,若 成等比数列,则实数a的值是___________.
9.若 是双曲线 上的点,则 的最小值是_________.
10. 如图,设正方体 的棱长为1,α为过直线 的平面,则α截该正方体的截面面积的取值范围是_________.
11.已知实数 满足: 的最大值是____.
12.设集合 则集合A中元素的个数是___________
二.填空题(本大题共4小题,每小题10分):
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
解:a2-a1= (y-x),b4-b3= (y-x), = .
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
解:( +2)2n+1-( -2)2n+1=2(C 2xn22n+1).
1.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么 =.
2.( +2)2n+1的展开式中,x的整数次幂的各项系数之和为.
3.在△ABC中,已知∠A=α,CD、BE分别是AB、AC上的高,则 =.
4.甲乙两队各出7名队员,按事先排好顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者再与负方2号队员比赛,……直至一方队员全部淘汰为止,另一方获得胜利,形成一种比赛过程.那么所有可能出现的比赛过程的种数为.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
⑵kn+1=an-bn,其中kn+1是ln+1的斜率,an和bn分别是ln在x轴和y轴上的截距,(n=1,2,3,……);
⑶knkn+1≥0,(n=1,2,3,……).

全国高中数学联赛试题及答案.pdf

全国高中数学联赛试题及答案.pdf

5. 方程
x2
+
sin 2 − sin 3 cos
A. 焦点在 x 轴上的椭圆
C. 焦点在 y 轴上的椭圆
y2 2 − cos
= 1 表示的曲线是 3
B. 焦点在 x 轴上的双曲线 D. 焦点在 y 轴上的双曲线
6.
记集合 T
=0,1,2,3,4,5,6}, M
=
a1 7
+
a2 72
+
a3 73
1.使关于 x 的不等式 x − 3 + 6 − x k 有解的实数 k 的最大值是( )
A. 6 − 3
B. 3
C. 6 + 3
D. 6
解:令 y = x − 3 + 6 − x,3 x 6, 则 y2 = (x − 3) + (6 − x) + 2 (x − 3)(6 − x) 2[(x − 3)
一寸光阴不可轻
一、选择题
二〇〇五年高中数学联赛试卷
1. 使关于 x 的不等式 x − 3 + 6 − x k 有解的实数 k 的最大值是
A. 6 − 3
B. 3
C. 6 + 3
D. 6
2. 空间四点 A、B、C、D,满足| AB |= 3、| BC |= 4 、| CD |= 11、| DA |= 9 ,则 AC BD 的取值
2
一寸光阴不可轻
BC) (BC + CD), 即 2AC BD = AD2 + BC 2 − AB2 − CD2 = 0, AC BD 只有一个值得 0,故选
A。
3. ABC 内接于单位圆,三个内角 A、B、C 的平分线延长后分别交此圆

2020年全国高中数学联赛试题及详细解析(1)

2020年全国高中数学联赛试题及详细解析(1)

2
4
2
2
【解析】 a =b , c =d ,设 a=x , b=x ; c=y , d=y ,x - y =9. ( x+y )( x- y ) =9.
∴ x+y2=9, x- y2=1, x=5, y2=4. b- d=53-25=125- 32=9 3.
11.将八个半径都为 1 的球分放两层放置在一个圆柱内,并使得每
n=q2+q+1,l

1 q(
q+1)
2+1,
2
q≥ 2,q∈ N.已知此图中任四点不共面, 每点至少有一条连线段, 存在一点至少有 q+2 条连
线段.证明:图中必存在一个空间四边形 ( 即由四点 A、B、 C、 D和四条连线段 AB、BC、CD、
DA组成的图形 ) .
2020 年全国高中数学联赛解答
BD DQ 本题成立.而要证 BDQ∽ DAQ,只要证 AD=AQ即可.
二、(本题 50 分)
设三角形的三边长分别是正整数 l ,m, n.且 l >m>n>0.
l
m
n
已知
3 10 4
=
3 10 4
=
3 10 4
,其中
{ x} =x- [ x] ,而 [ x] 表示不超过
x 的最大整数.求这种三角
形周长的最小值.
2
y=- (cot
u+tan u)+cos
u=- sin2
u+cosu.在
u∈ [ - ,- ] 46
时, sin2
u与
cos u 都单调递
11 增,从而 y 单调递增.于是 u=- 6时, y 取得最大值 6 3,故选 C.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年全国高中数学联赛试题及答案
全国高中数学联赛
全国高中数学联赛一试命题范围不超出教育部《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。

全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。

全卷包括4道大题,其中一道平面几何题.
一 试
一、填空(每小题7分,共56分)
1. 若函数(
)f x =
()()()n n
f x f f f f x ⎡⎤=⎡⎤⎣⎦⎣⎦,则()
()991f = .
2. 已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L
上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横
坐标范围为 .
3. 在坐标平面上有两个区域M 和N ,M 为02y y x y x ⎧⎪
⎨⎪-⎩
≥≤≤,N 是随t 变化的区
域,它由不等式1t x t +≤≤所确定,t 的取值范围是01t ≤≤,则M 和N 的公共面积是函数()f t = .
4. 使不等式
1111
200712
213
a n n n +++
<-+++对一切正整数n 都成立的最小正整数a 的值为 .
5. 椭圆22
221x y a b
+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积
OP OQ ⋅的最小值为 .
6. 若方程()lg 2lg 1kx x =+仅有一个实根,那么k 的取值范围是 . 7. 一个由若干行数字组成的数表,从第二行起每一行中的数字均等于其肩
上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排成的行,则最后一行的数是 (可以用指数表示)
8. 某车站每天800~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时
一旅客820∶到车站,则它候车时间的数学期望为 (精确到分). 二、解答题
1. (14分)设直线:l y kx m =+(其中k ,m 为整数)与椭圆22
11612
x y +=交于
不同两点A ,B ,与双曲线22
1412
x y -=交于不同两点C ,D ,问是否存在直线l ,
使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明
理由.
2. (15分)已知p ,()0q q ≠是实数,方程20x px q -+=有两个实根α,β,数列{}n a 满足1a p =,22a p q =-,()1234n n n a pa qa n --=-=,

(Ⅰ)求数列{}n a 的通项公式(用α,β表示); (Ⅱ)若1p =,14
q =,求{}n a 的前n 项和.
3. (15分)求函数y
加试
一、填空(共4小题,每小题50分,共200分)
9. 如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC 、AC 的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .
⑴求证:MP MT NP NT ⋅=⋅;
⑵在弧AB (不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I ,
B
求证:Q ,1I ,2I ,T 四点共圆.
10.
求证不等式:
2111ln 12n k k n k =⎛⎫
-<- ⎪+⎝⎭
∑≤,1n =,2,…
11.
设k ,l 是给定的两个正整数.证明:有无穷多个正整数m k ≥,
使得C k m 与l 互素.
\。

相关文档
最新文档