9、3一元一次不等式组(二)学案
《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
初中八年级数学一元一次不等式(组)同步辅导学案

a
b
每日反省——用: “懂、会、对、好”四个字检查自己当天的数学学习效果! 学数学听课要做到:读得快,写得快、记得快、算得快!
5 x 2 3x 1 例 2 (06 荆门) 解不等式组 1 3 , 并 x 1 7 x 2 2
将它的解集在数轴上表示出来.
y
y kx b
2
2
例 3 (08 乌鲁
0
x
木齐)一次函数 y kx b ( k, b 是常 数, k 0 )的图象如图所示,则不等式
例 1. a 的 3 倍与 2 的差不小于 5,用不等式表示 为 . 例 2.不等式 x 1 0 的解集是 . 例 3.代数式 是 . ) A. a 3 b 3 C. a b 例 5. 不等式组 B. 2a 2b D. a b 0 )
m 1 1 值 为 正 数 , m 的 范 围 3
kx b 0
的解集是( ) A. x 2 B. x 0 C. x 2 D. x 0
每日反省——用: “懂、会、对、好”四个字检查自己当天的数学学习效果! 学数学听课要做到:读得快,写得快、记得快、算得快!
等式组的解集. 两个一元一次不等式组的解集的四种 情况: 两大取大;两小取小。大小小大中间找;小小大 大腹中空。
总序号:
中小学数学立体培训学案 (左点右例背演)
题目
背景点●前瞻点●知识点●操作点●平行点●易错点
姓名
等级
探索-发现-分享—应用●典例●拓展●方法
一. 不等关系 ※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”) 连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关 系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数” 、 “不小 于”等数学术语. 非负数 <===> 大于等于 0(≥0) <===> 0 和正数 <===> 不小于 0 非正数 <===> 小于等于 0(≤0) <===> 0 和负数 <===> 不大于 0 二. 不等式的基本性质 ※1. 掌握不等式的基本性质,并会灵活运用: (1) 不等式的两边加上(或减去)同一个整式,不等号 的方向不变,即: 如果 a>b,那么 a+c>b+c, a-c>b-c. (2) 不等式的两边都乘以(或除以)同一个正数,不等 号的方向不变,即:如果 a>b,并且 c>0,那么 ac>bc, a b . c c (3) 不等式的两边都乘以(或除以)同一个负数,不等 号的方向改变,即: 如果 a>b,并且 c<0,那么 ac<bc, a b c c ※2. 比较大小:(a、b 分别表示两个实数或整式) 一般地: 如果 a>b,那么 a-b 是正数;反过来,如果 a-b 是正数,那么 a>b; 如果 a=b,那么 a-b 等于 0;反过来,如果 a-b 等于 0,那么 a=b; 如果 a<b,那么 a-b 是负数;反过来,如果 a-b 是正数,那么 a<b; 即: a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它 们的差就可以了. 三. 不等式的解集: ※1. 能使不等式成立的未知数的值,叫做不等式的解; 一个不等式的所有解,组成这个不等式的解集;求不等 式的解集的过程,叫做解不等式. ※2. 不等式的解可以有无数多个,一般是在某个范围 内的所有数,与方程的解不同. ¤3. 不等式的解集在数轴上的表示:
第9章 不等式及不等式组 学案

课题:9.1.1不等式及其解集【学习目标】1.了解不等式、一元一次不等式等概念. 2.初步学会在数轴上表示不等式的解集. 【活动方案】活动一 了解不等式、一元一次不等式等概念阅读课本P 121至倒数第二行,画出不等式的概念,并在关键词下做上记号,依照不等式的概念完成下列问题:1.自己举出五个不等式:2.用不等式表示:(1)a 是正数; (2)a 是非负数;(3)a 与4的和不大于2; (4)a 的一半小于4.小组交流:从符号上看,不等式的形式有何特征. 活动二 初步学会在数轴上表示不等式的解集阅读课本P 121-123,画出不等式的解及解集的概念,并完成下列问题: 1.下列哪些数值是不等式x 2<8的解?哪些不是? -1 5 3.9 4.1 -3 4 -22.把不等式x 2<8的解集在数轴上表示出来.小组交流:在(2)中,数轴上表示4的点画空心圈,表示什么意思?【检测反馈】1.下列数值哪些是不等式63>+x 的解?哪些不是? -4 -2.5 0 1 2.5 3 52.用不等式表示:(1)a是负数(2)a与2的差小于-1 (3)a的4倍大于8 (4)a的一半小于33.直接写出下列不等式的解集,并在数轴上表示出来.(1)x+3<5 (2) 2x>8 (3) x-2>0课题:9.1.2不等式的性质⑴【学习目标】1.通过对比等式的基本性质,认识不等式的基本性质; 2.学会初步运用不等式的性质.【活动方案】活动一 回顾等式的基本性质,认识不等式的基本性质阅读课本P 123-124,完成课本中思考的空格,画出不等式的三个基本性质,并在关键词下做上记号.依照不等式的性质完成下列问题: 设m >n 用“>”或“<”填空:(1)5__5m n --; (2)4___4m n ++; (3)6___6m n ; (4)11__33m n --; (5)32___32m n ----.小组交流:先比较性质2与性质3有什么不同,再比较等式的性质与不等式的性质,它们有什么联系?活动二 会用不等式的基本性质解简单的不等式阅读课本P 125-126,完成例题1中,第(2),(4)题的空格.依照例题1的解题方法和格式完成下题:用不等式的性质解下列不等式,并在数轴上表示解集.(1) x +5>-1 (2) 4x <3x -5 (3) 2x -4>0 (4)-31x +2>5小组交流:1.不等式的解集如何在数轴上表示?2.解不等式时,每一步要注意什么?【检测反馈】1.利用不等式的性质,填”>”,<”.(1)若a >b ,则a -1 b -1; (2)若a >b ,则2a +1 2b +1;(3)若a>b,则-2a+8 -2b+8;(4)若-1.25y<10,则y-8;2.用不等式的性质解下列不等式,并在数轴上表示解集.(1) x+2<6 (2) -2x>-6课题:9.1.2不等式的性质⑵【学习目标】1.复习不等式的基本性质.2.会用“移项”,“未知数系数化为1”解简单的不等式. 【活动方案】活动一 复习不等式的基本性质 用不等号填空:若a b >,则1.2___2a b ++;2.___a b --;3.2___2a b -+-+;4.___0a b -. 小组交流:运用了哪些不等式的性质?活动二 会用“移项”,“未知数系数化为1”解简单的不等式再看课本P 125例1中(2)(4)小题的解题,画出含有“移项”,“ 未知数系数化1”方法的语句,并在关键字下做上记号.再利用此方法解下列不等式,并把解集在数轴上表示出来: 1.726x ->; 2.321x x <+; 3.2503x >; 4.43x ->.小组交流:1.在黑板上展示答案2.“移项”,“ 未知数系数化为1”的依据分别是什么?注意点分别是什么?【检测反馈】解下列不等式,并在数轴上表示解集:1.51x +>-; 2.435x x <-;13.-8x>10;4.-x+2>5.3课题:9.1.2不等式的性质⑶【学习目标】1.知道像a ≥b 或a ≤b 或a ≠b 这样的不等式,也常用来表示两个数量的大小关系; 2.会用a ≥b 或a ≤b 这样的不等式表示实际问题中的不等关系; 3.会用不等式的性质变形得出等价的新结论. 【活动方案】活动一 知道像a ≥b 或a ≤b 或a ≠b 这样的不等式,也常用来表示两个数量的大小关系 1.2009年12月18日南通的最低气温是-4℃,最高气温是4℃,若t 表示温度,请你用不等式表示这一天的温度.2.某长方体形状的容器长5cm ,宽3cm ,高10cm ,容器内原有水的高度为3cm ,现准备向它继续注水,用V cm 3表示新注入水的体积,写出V cm 3的取值范围,并且在数轴上表示.小组交流:将不等式的解集在数轴上表示时,空心圆圈与实心圆圈各表示什么意思?活动二 会用不等式的性质变形得出等价的新结论例:三角形中任意两边之差与第三边有怎样的大小关系?小组交流:在三角形ABC 中,边AB 、AC 的长分别是2和5,求边BC 的取值范围?【检测反馈】1.用不等式表示下列语句:(1)x 的3倍大于或等于1 (2)x 与3的和不小于6 (3)y 与1的差不大于0abc(4)y的2倍小于或等于-22.解不等式x+3≤6,并在数轴上表示解集:3.小明就读的学校上午第一节课上课时间是8点开始.小明家距学校有2千米,而他的步行速度为每小时10千米.那么,小明上午几点从家里出发才能保证不迟到?课题:9.2实际问题与一元一次不等式⑴【学习目标】1.能根据具体问题中的数量关系,列一元一次不等式,解决实际问题;2.知道解一元一次不等式的步骤,会解一元一次不等式.【活动方案】活动一会用一元一次不等式描述实际问题中的不等关系甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。
一元一次不等式组(2)全面版

务;如果每个小组每天比原先多生产1件产品,就能
提前完成任务.每个小组原先每天生产多少件产品?
解:设每个小组原先每天生产x件产品,
根据题意,得 310x500 ①
310(x1)500 ②
由不等式①得 x 16 2
3
由不等式②得 x 15 2
3
因此,不等式组的解集为
152 x162
归 纳:课本140页
(1)对于具有多种不等关系的问题,可 通过不等式组解决。 (2)解一元一次不等式组时,一般先求 出其中各个不等式的解集,再求出这些 解集的公共部分。 (3)利用数轴可以直观地表示不等式组 的解集,再结合实际问题求出符合实际 问题的解。
三、巩固训练,熟练技能
1、在方程组2xxyym6中, 已知x 0, y 0,求m的取值范.围
– 解不等式3≤2x-1≤5,你觉得该
怎样思考这个问题,你有解决的
办法吗?
• •
求出不等式组 3x 7 2 的解集中的正整数3x。 7 8
课本140页练习1
2、某工厂工人经过第一次改进工作
方法,每人每天平均加工的零件比原来多 10个,因而,每人在8天内加工的零件超 过200个,第二次又改进工作方法,每人 每天平均又比第一次改进方法后多做27个 零件,这样只做了4天,所做的件数就超 过前8天所做的数量。试问每个工人原来 每人平均做几个零件?
思考: 你觉得列一元一次不等式组解
应用题与列二元一次方程组解应用 题的步骤一样吗?
设
列 解(结果) 答
一元一次 不等式组
二元一次 方程组
一个未知 数
两个未知 数
找 一个范围 不等关系
找
一组数
等量关系
根据题意 写出答案
教学设计4:9.2一元一次不等式(2)

9.2 一元一次不等式(2)教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程2002年北京空气质量良好(二级以上)的天数与全年天数比达55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。
这些问题能培养学生思维的深刻性和灵活性,优化学生的思维品质.引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题.问题2:在一次知识竞赛中,有10道抢答题,答对一题得10分,答错一题扣5分,不答得0分,小玲一道题没有答,成绩仍然不低于60分,她至少答对几道题?分析:答对题得的分数-答错题扣的分数≥60分解:设小玲答对的题数是x,则答错的题数是9-x,根据题意,得10x-5(9-x) ≥60解这个不等式,得x ≥7答:她至少答对7道题提问:小玲有几种答题可能?总结归纳由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.让学生在积极愉快的气氛中温习本节课学到的知识和技能,体会收获的喜悦。
小结与作业布置作业习题9.2第5、6、7题。
一元二次不等式及其解法教案

一元二次不等式及其解法教案教学目标1.知识与技能:二次不等式与会解一元二次不等式及含参数的一元二次不等式。
2.过程与方法:通过学案让学生有目的复习,自主预习。
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系,进而探究一元二次不等式和含参数不等式的解法;以函数为载体,突破一元二次不等式恒成立问题。
3.情感态度与价值观:培养探究合作的能力和推证能力及解决问题的能力。
2学情分析本节课内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合、函数等知识的巩固和运用具有重要作用,也与后面的线形规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法。
因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
我班中等程度的学生占大多数,程度较高与程度较差的学生占少数。
学生数学基础差异不大,但进一步钻研的精神相差较大。
学生已经学习了一元一次不等式(组)的解法和二次函数的零点,会画一元二次函数的图象,也会通过图象去研究理解函数的性质,初步的数形结合知识可以使学生写出一元二次不等式的解集,因此从学生熟悉的二次函数的图象入手介绍一元二次不等式的解法,从认知规律上讲,应该是容易理解的。
在教学中加强师生互动,尽多的给学生动手的机会,让学生让学生观察、讨论,在实践中体验三者的联系,从而直观地归纳、总结、分析出三者的联系成为可能。
3重点难点1.重点:会解一元二次不等式及含参数不等式。
2.难点:一元二次不等式恒成立应用问题。
4教学过程4.1复习课教学活动活动1【活动】一元二次不等式及其解法引入:以高考考点及类型复习引入学生复习学案上的高考考点明确高考考点教学过程:一快速起跑——学案总结明确学习目标,总结学生学案的完成情况题。
二完善学案——自主学习总结1、一元二次不等式与相应的二次函数、一元二次方程的联系。
2020-2021学年七年级数学人教版下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)

2021年度人教版七年级数学下册《9.3一元一次不等式组的整数解》专题突破训练(附答案)1.已知关于x的不等式组的整数解共有3个,且(a+2)x<1的解集为x>,则a可取()个整数.A.3B.2C.1D.02.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3 B.4C.6D.13.若关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b 组成的有序数对(a,b)共()个.A.3B.4C.5D.64.不等式组的最小整数解是()A.5B.0C.﹣1D.﹣25.已知关于x的不等式组的整数解共有6个,则a的取值范围是()A.﹣5<a<﹣4B.a<﹣4C.﹣5≤a<﹣4D.﹣5<a<6.求不等式组的最大整数解为()A.0B.﹣1C.1D.﹣27.当3≤5﹣3x<9时,不等式组的非负整数解为()A.3B.2C.1D.08.若关于x的不等式仅有四个整数解,则a的取值范围是()A.1≤a≤2B.1≤a<2C.1<a<2D.a<29.不等式组的整数解的个数为()A.2B.3C.4D.510.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.11.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是.12.不等式组的正整数解为.13.不等式组的最小整数解是.14.不等式组的负整数解是.15.不等式组的所有整数解的和是.16.把一批书分给小朋友,每人3本,则余8本;每人5本,则最后一个小朋友得到书且不足3本,这批书有本.17.已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.18.不等式组的非负整数解的个数是.19.已知关于x的不等式组的整数解共有3个,则a的取值范围是.20.对于任意实数p、q,定义一种运算p※q=p﹣q+pq﹣2,等式的右边是通常的加减和乘法运算,例如:4※5=4﹣5+4×5﹣2=17.请根据上述定义解决问题:若关于x的不等式组有5个整数解,则m的取值范围是.21.若关于x的不等式组的所有整数解的和是15,则m的取值范围是.22.求关于x的不等式组的所有整数解之和.23.解不等式组:把解集在数轴上表示出来,并写出所有整数解.24.解不等式组:,并求出最小整数解与最大整数解的和.25.已知关于x的不等式组.(1)如果这个不等式组无解,求k的取值范围;(2)如果这个不等式组有解,求k的取值范围;(3)如果这个不等式组恰好有2021个整数解,求k的取值范围.26.解不等式组,并写出其所有的整数解.27.若关于x的不等式组有且只有四个整数解,求实数a的取值范围.参考答案1.解:解不等式组,解不等式①得x≥a+2,解不等式②得x<3,∵原不等式只有3个整数解∴这3个整数解分别为2,1,0﹣1<a+2≤0∴﹣3<a≤﹣2,∵(a+2)x<1的解集为x>,∴a+2<0,∴a<﹣2,∴满足所有条件的a的取值范围是﹣3<a<﹣2,∴a一个整数也取不到,故选:D.2.解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得到﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.3.解:,由①得:x≥,由②得:x≤,不等式组的解集为:≤x≤,∵整数解仅有1,2,,∴0<≤1,2≤<3,解得:0<a≤3,4≤b<6,∴a=1,2,3,b=4,5,∴整数a,b组成的有序数对(a,b)有(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)共6个,故选:D.4.解:解不等式x+3>1,得:x>﹣2,解不等式x﹣1≤4,得:x≤5,故不等式组的解集为:﹣2<x≤5,则该不等式组的最小整数解为:﹣1,故选:C.5.解:不等式组整理得:,解得:a<x<,由不等式组的整数解共有6个,得到整数解为﹣4,﹣3,﹣2,﹣1,0,1,则a的范围为﹣5≤a<﹣4.故选:C.6.解:,解不等式①得:x<1,解不等式②得:x<﹣,∴不等式组的解集为x<﹣,则其最大整数解为﹣2,故选:D.7.解:由3≤5﹣3x<9解得,﹣<x≤,方程组,解①得:x<2,解②得x<4.则不等式组的解集是x<2.故非负整数解是0,故选:D.8.解:,解①得:x>a﹣1,解②得:x≤4,则不等式组的解集是:a﹣1<x≤4.不等式组有四个整数解,则是1,2,3,4.则0≤a﹣1<1.解得:1≤a<2.故选:B.9.解:,由①得:x>﹣1,由②得:x≤4,故不等式组的解集为:﹣1<x≤4,则不等式组的整数解为:0,1,2,3,4共5个,故选:D.10.解:解不等式2x﹣1>3x+2,得:x<﹣3,∵不等式组的解集是x<﹣3,∴m≥﹣3.故答案为m≥﹣3.11.解:由2x﹣1<4得x<,由x﹣m>0得x>m,则不等式组的解集是m<x<.不等式组有2个整数解,则整数解是1,2.则0≤m<1.故答案是:0≤m<1.12.解:,解①得x<2,解②得x≥﹣1,故不等式组的解集为﹣1≤x<2,故不等式组的正整数解为1.故答案为1.13.解:,解①得x>2,解②得x≥﹣1,则不等式的解集是x>2.则最小整数解是3.故答案为3.14.解:解不等式3x≤x+2得,x≤1,解不等式x+7>﹣4x﹣3得,x>﹣2,∴不等式组的解集为﹣2<x≤1,∴负整数解为﹣1,故答案为﹣1.15.解:,由①得:x≤3,由②得:x>1,∴1<x≤3,则所有整数解为2,3,之和为5,故答案为5.16.解:设共有x名小朋友,则共有(3x+8)本书,依题意得:,解得:5<x<6,又∵x为正整数,∴x=6,∴3x+8=26.故答案为:26.17.解:解不等式3x+m<0,得:x<﹣,∵x>﹣5,∴不等式组的解集为﹣5<x<﹣,∵不等式的所有整数解的和为﹣9,∴不等式组的整数解为﹣4、﹣3、﹣2或﹣4、﹣3、﹣2,﹣1,0,1,则﹣2<﹣≤﹣1或1<﹣≤2,解得3≤m<6或﹣6≤m<﹣3,故答案为:3≤m<6或﹣6≤m<﹣3.18.解:,解不等式①得:x>﹣2,解不等式②得x≤3,∴不等式组的解集为﹣2<x≤3,非负整数解为0,1,2,3共4个,故答案为4.19.解:不等式组整理得:,解得:a≤x≤2,由不等式组的整数解共有3个,得到整数解为0,1,2,则a的范围为﹣1<a≤0.故答案为:﹣1<a≤0.20.解:∵,∴,解不等式①得:x<4,解不等式②得:x≥,∴不等式组的解集是≤x<4,∵不等式组有5个整数解,∴﹣2<≤﹣1,解得:﹣6.5<m≤﹣4.5,故答案为:﹣6.5<m≤﹣4.5.21.解:解不等式组得:m<x≤6,∵所有整数解的和是15,15=6+5+4,∴x=6,5,4,因此不等式组的整数解为①6,5,4,或②6,5,4,3,2,1,0,﹣1,﹣2,﹣3,∴3≤m<4或﹣4≤m<﹣3;故答案为:3≤m<4或﹣4≤m<﹣3.22.解:,解不等式①得,x<3,解不等式②得,x≥1,所以,不等式组的解集是1≤x<3,所以,不等式组的整数解有1、2,它们的和为1+2=3.23.解:,解不等式①得x<3,解不等式②得x>﹣1,∴不等式组的解集为﹣1<x<3,数轴表示为:整数解为:0,1,2.24.解:,由①得:x≤8,由②得:x>﹣3,∴不等式组的解集为﹣3<x≤8,∴x的最小整数为﹣2,最大整数为8,∴x的最小整数解与最大整数解的和为6.25.解:(1)根据题意得:﹣1≥1﹣k,解得:k≥2.(2)根据题意得:﹣1<1﹣k,解得:k<2.(3)∵不等式恰好有2021个整数解,∴﹣1<x<2021,∴2020≤1﹣k<2021,解得:﹣2020<k≤﹣2019.26.解:,解不等式①得:x>﹣4,解不等式②得:x≤﹣1,所以不等式组的解集为:﹣4<x≤﹣1.∴不等式组的整数解有﹣3,﹣2,﹣1.27.解:,由不等式①,得x>2,由不等式②,得x<,∴该不等式组的解集是2<x<,∵关于x的不等式组有且只有四个整数解,∴6<≤7,解得,18<a≤21。
数学人教版七年级下册9.3.2一元一次不等式组第二课时同步测试题

9.3.2一元一次不等式组的运用同步测试题一、选择题1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69. 小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A. 3×4+2x<4 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥2410. 小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买几支笔()A.1 B.2 C.3 D.411. 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打()A.六折B.七折C.八折D.九折12 现用甲、乙两种运输车将46吨抗震物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排()A.4辆B.5辆C.6辆D.7辆二、填空题13、如果不等式组的解集是,那么的值为.14、若不等式组无解.则m的取值范围是______.15、已知关于x的不等式3x-a>x+1的解集如图所示,则 a的值为_________.16、某次数学测验中共有16道题目,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对___12___道题,成绩才能在60分以上.17、若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、3一元一次不等式组(二)
一、自学范围:p139例2-p140。
二、自学目标:
1、一元一次不等式的解法;
2、能根据实际问题中的数量关系列出一元一次不等式组
三、自学重点:
列一元一次不等式组。
四、自学过程
1、自学例2
读题,分析完成课本填空。
解:设每个小组原先每天生产x件产品,根据题意得:
3×10x<50
3×10(x+1)>50(不看课本解方程组)
五、学效测试
1、某商品的售价是150元,商家售出一间这样的商品可获利润是进价的10%-20%,进价的范围是什么(精确到1元)?
2、用每分时间可抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果用B型抽水机,估计20分到22分可以抽完。
B型抽水机比A型抽水机每分约多抽多少吨水?
3、现有住宿生若干人,分住若干间宿舍,若每间住4人,还有19人无宿舍住;若每间住6人,则有一间不空也不满,求住宿人数与宿舍间数。