第4讲 平行线的判定和性质综合

合集下载

平行线的性质和判定

平行线的性质和判定

平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。

平行线的性质与判定

平行线的性质与判定

平行线的性质与判定平行线是几何学中的一个重要概念,我们都知道平行线永不相交。

在本文中,我们将介绍平行线的性质以及如何判定两条线是否平行。

同时,我们还会探讨平行线与其他图形之间的关系。

一、平行线的性质平行线的性质是几何学中的基础知识,下面我们将讨论几个与平行线相关的重要性质。

1. 对应角相等性质:当一条直线与两条平行线相交时,所形成的对应角相等。

这个性质在解决几何问题中具有重要意义,可以通过对应角的等量关系简化问题的解决过程。

2. 内错角相等性质:当两条平行线被一条截线所切割时,所产生的内错角相等。

这个性质常用于解决与平行线相关的证明问题。

3. 外错角相等性质:当两条平行线被一条截线所切割时,所产生的外错角相等。

这个性质也常用于证明和解决几何问题。

4. 交替内角相等性质:当两条平行线被一条截线所切割时,所形成的交替内角相等。

这个性质在证明平行线的存在性和解决几何问题中经常使用。

以上是平行线的一些重要性质,它们在几何学中被广泛应用,并且有助于解决各种类型的几何问题。

二、平行线的判定在几何学中,判定两条线是否平行是一种常见问题。

下面我们将介绍一些常用的判定方法。

1. 垂直判定:如果两条直线的斜率的乘积为-1,则它们互为垂直线,即相互垂直。

2. 角度判定:当一条直线与另一条直线所形成的内错角或外错角相等时,这两条直线是平行线。

3. 距离判定:如果两条直线上的任意两个点之间的距离在任意位置都相等,那么这两条直线是平行线。

这些判定方法都是基于几何学中的一些基本原理,通过应用这些原理,我们可以快速准确地判断两条线是否平行。

三、平行线与其他图形的关系平行线与其他图形之间存在着一些特殊的关系,下面我们将介绍一些常见的关系。

1. 平行线与平面角:当两条平行线被一条截线所切割时,所形成的平面角相等。

2. 平行线与四边形:在一个平行四边形中,两对相对的边是平行线,且两对相对的角相等。

3. 平行线与三角形:当一条直线平行于三角形的一边时,它将与另外两条边各自形成相似三角形。

平行线的性质与判定综合应用

平行线的性质与判定综合应用

求证:BD//CE.
解: ∵∠A=∠F(已知)
D EF 2
∴ DF∥AC(内错角相等,两直线平行)
3
∴ ∠D=∠ABD
1
(两直线平行,内错角相等)
又∵∠C=∠D (已知)
A
BC
∴ ∠C=∠ABD(等量代换)
∴ BD∥CE(同位角相等,两直线平行)
例2:如图,已知AB∥CD, ∠1=∠2, 求证∠E=∠F.
BC
又∵∠C=∠D (已知)
∴ ∠D=∠ABD (等量代换)
∴ DF∥AC(内错角相等,两直线平行)
思考3:如图,点B、E分别在AC、DF上,BD、CE均
与AF相交,∠1=∠2,∠C=∠D,试问:∠A与
∠F相等吗?请说出你的理由。
解: ∵∠1=∠2 (已知)
D EF 2
∠1=∠3 (对顶角相等)
3
F
BC
∴ AD∥BC (内错角相等,两直线平行)
思考2:如图,点E为DF上的点,点B为AC上的点,
∠1= ∠2, ∠C= ∠D,求证:DF ∥AC
解: ∵∠1=∠2 (已知)
D EF 2
∠1=∠3 (对顶角相等)
3
∴ ∠2=∠3(等量代换)
1
∴ BD∥CE(同位角相等,两直线平行)
A
∴ ∠C=∠ABD(两直线平行,同位角相等)
解: ∵AB∥CD(已知) ∴ ∠BAD=∠ADC (两直线平行,内错角相等) 又∵∠1=∠2 (已知) ∴ ∠3=∠4(等式的性质)
A 1 3 E
C
B
F
4
2D
∴ AF∥DE(内错角相等,两直线平行)
∴ ∠E=∠F(两直线平行,内错角相等)
变式1:如图,已知( 求证 ( ).

平行线的性质定理和判定定理课件

平行线的性质定理和判定定理课件

简单说成:同旁内角互补,两直线平行. ∵ ∠1+ ∠2=180°, ∴ a∥b.
证明一个命题的一般步骤: (1)弄清题设和结论;
a1 b2
c
(2)根据题意画出相应的图形;
(3)根据题设和结论写出已知,求证;
(4)分析证明思路,写出证明过程.
【议一议】 据说,人类知识的75%是在操作中学到的.
小明用下面的方法作出平行线,你认为他的作法对吗?为 什么? 通过这个操作活动,得 到了什么结论?
每一个命题都有逆命题,只要将原命题的条件改成 结论,并将结论改成条件,便可得到原命题的逆命题.
但是原命题正确,它的逆命题未必正确.例如真命 题“对顶角相等”的逆命题为“相等的角是对顶角”, 此命题就是假命题.
【跟踪训练】
1.举例说明下列命题的逆命题是假命题. (1)如果一个整数的个位数字是5 ,那么这个整数能被 5整除. 逆命题:如果一个整数能被5整除,那么这个整数的个位 数字是5. 例如,10能被5整除,但它的个位数字是0. (2)如果两个角都是直角,那么这两个角相等. 逆命题:如果两个角相等,那么这两个角是直角. 例如,60°= 60°,但这两个角不是直角.
4.到一个角的两边距离相等的点,在这个角的平分线上.
条件:到一个角的两边距离相等的点. 结论:它在这个角的平分线上. 逆命题:角平分线上的点到角两边的距离相等. 5.线段的垂直平分线上的点到这条线段的两个端点的距离相等. 条件:线段垂直平分线上的点. 结论:它到这条线段的两个端点的距离相等. 逆命题:到一条线段的两个端点的距离相等的点在这条线段 的垂直平分线上.
a
∵∠1+∠2=180°, ∴ a∥b.
b
c
1
2
c

4-平行线的判定和性质综合提高(1)

4-平行线的判定和性质综合提高(1)

知识总结归纳一. 同位角、内错角、同旁内角(1) 这三种角讲的只是位置关系,而不是大小关系(2) 这三种角都是两条直线被第三条直线所截的情况下,不共点的成对出现的两个角之间的位置关系,并不是任何情况下都可以提及它们(3) 三线八角:两条直线被第三条直线所截形成的八个角中有4对同位角,2对内错角,2对同旁内角. 二. 平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 三. 平行公理的推论如果两条直线都与第三条直线平行,那么这两条直线也互相平行 四. 两直线平行的性质和判定(1) 同位角相等两直线平行 (2) 内错角相等两直线平行 (3) 两直线平行 五. 其它判定方法:垂直于同一条直线的两直线平行典型例题一. 基本概念【例1】 如图,试判断1∠与2∠,1∠与7∠,1∠与BAD ∠,2∠与9∠,2∠与6∠,5∠与8∠各对角的位置关系.【例2】 如图,已知//////AB CD EF GH ,//AE DG ,点C 在AE 上,点F 在DG 上,设与α∠相等的角的个CEA DF12 3456 7 8 9BA HGFD EB C【例3】 如图,////AD EG BC ,//AC EF ,则图中与1∠相等的角(不含1∠)有多少个?若150∠=o ,求A H G∠的度数.【例4】 如图,FAD ∠,DAC ∠,CAB ∠,BCA ∠,ACE ∠和B ∠中,同位角有____________,内错角有______________,同旁内角有______________.二. 基础训练【例5】 如图,已知//AB CD ,且40B ∠=o ,70D ∠=o ,求DEB ∠的度数.【例6】 如图所示,//AE BD ,132∠=∠,225∠=o ,求C ∠.BCADFEA CEDB2 1AEDCB1HGED CB A F【例7】 如图,已知//AE BD ,1130∠=o ,230∠=o ,求C ∠的度数.【例8】 如图,长方形ABCD 的顶点B 在直线m 上,求α∠的度数.【例9】 如图,已知////FC AB DE ,::2:3:4D B α∠∠=,求α、D ∠、B ∠的度数.【例10】 如图,已知12BFM ∠=∠+∠,求证://AB CD .DCB EA21 lmCBDADBCC FEC DBA GME 1 2 F【例11】 如图,直线AB 与CD 平行,EF 平分BFG ∠,EG 平分DGF ∠,求证:90E ∠=o .【例12】 如图,已知CB AB ⊥,CE 平分BCD ∠,DE 平分CDA ∠,90EDC ECD ∠+∠=o ,求证:DA AB ⊥.三. 探索与证明【例13】 (1)如图所示,若12//AA BA ,求证:121A A B ∠+∠=∠.(2)如图所示,若121A A B ∠+∠=∠,求证:12//AA BA .【例14】 已知:如图,////AB EF CD ,EG 平分BEF ∠,192B BED D ∠∠+∠=o +,24B D ∠-∠=o ,求GEF∠的度数.ABA B EC DGFGDCB AEFEDCBA【例16】 如图,//AB EF ,90C ∠=o ,试探究B D E ∠∠∠、、之间的数量关系.【例17】 如图,直线//l m ,将含有45o 角的三角板ABC 的直角顶点C 放在直线m 上,若125∠=o ,求2∠的度数.【例18】 如图,已知CD AB //,BF 平分ABE ∠,且//BF DE ,则ABE ∠和D ∠有什么关系?【例19】 已知:如图,//AB CD ,求证:B D F E G ∠+∠+∠=∠+∠.AGFEBCBA12A BC DFEADBCEFA EDCB【例20】 如图,两直线AB ,CD 平行,求123456∠+∠+∠+∠+∠+∠的度数.思维飞跃【例21】 如图所示.已知CD 平分ACB ∠,且//DE AC ,//CD EF .求证:EF 平分DEB ∠.【例22】 如图,E 是DF 上一点,B 是AC 上一点,12∠=∠,C D ∠=∠,求证:A F ∠=∠【例23】 如图,180ABE DEB ∠+∠=o ,12∠=∠,求证:F G ∠=∠E FGHABCD123 4 56ACBF23 DE 1GABC 1 2DEFOAFDECB【例24】 如图,已知//AB CD ,14EAF EAB ∠=∠,14ECF ECD ∠=∠.求证:34AFC AEC ∠=∠.【例25】 如图,直线//AB CD ,30EFA ∠=o ,ο90=∠FGH ,30HMN ∠=o ,50CNP ∠=o ,求GNM ∠的大小.作业ABCD 是长方形,且174∠=o ,求2∠的度数.2. 如图,D 、G 是ABC ∆边上的任意两点,//DE BC ,//GH DC ,则图中相等的角共有多少对?ABHGEDCA BC DFEHP ABCDEFGMN2 13. 如图,直线AB 与CD 平行,1(370)x ∠=+o ,2(522)x ∠=+o ,求3∠.4. 如图,已知//AB CD ,求A C AEC ∠+∠+∠的度数.5. 如图,//AB CD ,120ABE ∠=o ,35DCE ∠=o ,求BEC ∠的度数.6. 已知:如图,//DE AB ,求证:AED A B ∠=∠+∠7. 如图,//CD BE ,则231∠+∠-∠的度数等于多少?DCEB A1 32DCBADCEBA AC BD E EB DCA 2 13图1FE DC BA1、如图, AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF。

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线是几何学中常见的重要概念之一。

在我们的日常生活中,平行线也有着广泛的应用。

本文将介绍平行线的判定方法以及它们的性质。

一、平行线判定方法在几何学中,有三种常见的方法可以判定两条线是否平行:1. 共线性判定法如果两条直线上的某个点与另两个不同的点的连线分别平行,那么这两条直线就是平行线。

2. 夹角判定法如果两条直线上的两个夹角相等(不等于 180 度),那么这两条直线是平行线。

3. 斜率判定法如果两条直线的斜率相等,那么这两条直线是平行线。

二、平行线的性质平行线具有许多有趣的性质,下面我们逐一介绍。

1. 对应角性质如果两条平行线被一条截线所交,那么交线两边所成的对应角是相等的。

2. 内错角性质如果两条平行线被一条截线所交,那么交线两边所成的内错角互补,即它们的和等于 180 度。

3. 外错角性质如果两条平行线被一条截线所交,那么交线两边所成的外错角是相等的。

4. 平行线之间的距离性质如果一条直线与一组平行线相交,那么从这条直线到任意平行线的距离都相等。

5. 平行线与平行线之间的距离性质如果有两组平行线相交,那么它们之间的距离是恒定的。

三、平行线的应用案例平行线在我们的日常生活中有许多应用。

以下是几个实际案例:1. 铁路与公路铁路中的两条平行线代表了两条不同方向的铁轨,保持平行关系确保了火车行驶的稳定性。

与之类似,公路中的车道也是平行的,使车辆能够有序行驶。

2. 建筑设计在建筑设计中,平行线常用于规划建筑物的布局。

比如,设计师可能会使用平行线来确定房间的大小和形状,从而达到美观和实用的目的。

3. 数学问题平行线也经常出现在数学问题中。

例如,计算几何中的一些证明和问题解决,会涉及到平行线的性质和判定方法。

四、总结平行线是几何学中的重要概念,具有多种判定方法和性质。

了解平行线的判定方法和性质有助于我们更好地理解几何学和应用它们于实际问题中。

无论是在日常生活还是学习中,平行线都有其重要的作用。

平行线的判定和性质

平行线的判定和性质

平行线的判定和性质平行线是几何中一个非常基本的概念,它在数学的研究和应用中具有重要的地位。

通过判定两条直线是否平行,我们可以深入了解平行线的性质和特点。

本文将介绍平行线的判定方法和相关性质。

一、平行线的判定1. 直线与直线的判定给定两条直线L₁和L₂,要判定它们是否平行,有以下几种方法:a) 角度判定法:如果两条直线的锐角、直角或钝角相等,那么它们是平行线。

b) 垂直判定法:如果一条直线与第二条直线的所有垂线都相等或成比例,那么它们是平行线。

c) 斜率判定法:如果两条直线的斜率相等且不为无穷大,则它们是平行线。

2. 直线与平面的判定给定一条直线L和一个平面P,要判定直线和平面是否平行,有以下几种方法:a) 垂直判定法:如果直线L和平面P的所有垂线都相等或成比例,那么它们是平行的。

b) 法线判定法:如果一条直线与平面的法线平行,那么它们是平行的。

二、平行线的性质平行线具有以下重要性质:1. 平行线的定义平行线是在同一个平面上不相交且不同于的两条直线。

2. 平行线与平移平行线之间可以进行平移变换,即将一条平行线沿着与之平行的方向平移,得到的仍然是一条平行线。

3. 平行线的夹角平行线之间的夹角为0度,即平行线之间没有交点。

4. 平行线的性质a) 平行线具有传递性:如果直线L₁与直线L₂平行,直线L₂与直线L₃平行,则直线L₁与直线L₃也平行。

b) 平行线与截线:如果一条直线与两条平行线相交,那么这两条直线所截线段的比例相等。

c) 平行线与转角:如果两条直线与平行线相交,它们所成转角相等。

d) 平行线与干涉线:如果两组平行线相互交错,即一组平行线与另一组平行线交叉相交,所交干涉线与平行线相交产生的内、外交角相等。

5. 平行线与平行四边形平行线所围成的四边形称为平行四边形。

平行四边形具有以下性质:a) 对边平行:平行四边形的对边都是平行线。

b) 对角线平分:平行四边形的对角线互相平分。

c) 同底角对顶角相等:平行四边形的同底角对顶角相等。

平行线的判定与性质

平行线的判定与性质

平行线的判定与性质平行线是几何学中一个重要的概念,它在许多数学问题中起着重要的作用。

本文将介绍平行线的判定方法以及平行线的一些性质。

一、平行线的判定判定两条直线是否平行,可以通过以下几种方法进行判断:1. 两线的斜率相等:设有两条直线L1和L2,它们的斜率分别为k1和k2。

如果k1=k2,那么L1和L2是平行线。

2. 两线的倾斜角相等:直线的倾斜角是指与x轴夹角的大小。

如果两条直线L1和L2的倾斜角相等,那么它们是平行线。

3. 两线的截距比相等:设有两条直线L1和L2,它们的截距分别为b1和b2。

如果b1/b2=k,k为常数,那么L1和L2是平行线。

二、平行线的性质平行线有以下几个重要的性质:1. 平行线上的任意一对对应角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 平行线上的内角和为180度:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠CAB+∠CBA=180度。

3. 平行线上的外角相等:设有两条平行线L1和L2,它们被一条横切线交于点A和点B,那么∠ADB=∠EBC。

4. 平行线与直角线的关系:如果两条直线L1和L2相互垂直,而且L1和L2中的任意一条与第三条直线L3(横切线)平行,那么L1和L2也是平行线。

5. 平行线与三角形的性质:如果一条直线与一个三角形的两边分别平行,那么这条直线与第三边也平行。

三、实例分析举个例子来说明平行线的判定和性质。

设有两条直线L1:y=2x+1和L2:y=2x+5。

首先,我们可以通过比较两条直线的斜率,发现它们的斜率相等,即k1=k2=2,因此L1和L2是平行线。

根据平行线的性质,我们可以得到一系列结论:1. 如果L1和L2是平行线,那么它们上的对应角必定相等,即∠CAB=∠CBA,∠CDA=∠CDB,∠EAF=∠FAG等。

2. 如果L1和L2是平行线,那么它们上的内角和为180度,即∠CAB+∠CBA=180度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 平行线的判定与性质
【知识要点】
一、两直线平行的判定方法:
1.平行线的判定公理:同位角相等,两直线平行。

2.平行线的判定定理1:内错角相等,两直线平行。

3.平行线的判定定理2:同旁内角互补,两直线平行。

4.平行公理的推论:平行于同一直线的两条直线平行。

5.在同一平面内,垂直于同一直线的两条直线平行 二、平行线的性质:
1.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补.
4.垂直于两平行线之一的直线,必垂直于另一直线.
【经典例题】
例1.如图,B ∠=∠︒=∠+∠3,18021,证明DE ∥BC .
例2.如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a 与c 平行吗?•为什么?
d e
c
b a 34
12
例3 如图所示,已知AB ∥EF ,求证:∠BCF=∠B+∠F 。

A
B C
D
E
F
1 2
例4 如图,已知AB ∥CD ,∠B=140°,∠D=150°,求∠BED 的度数。

例5.如图,已知DE AB DA ,⊥平分CE ADC ,∠平分︒=∠+∠∠9021,BCD ,求证:AB BC ⊥.
例6.如图,已知∠ADE=∠B ,∠1=∠2,GF ⊥AB ,求证:CD ⊥AB
【课堂测验】
1.如图1所示,已知∠1=∠2,∠3=∠4, 由∠1=∠2,可判定_______∥_______; 由∠3=∠4,可判定_______∥________. 2.如图2所示,填空:
①∵∠1=∠2,(已知)∴_____∥_____.( ) ②∵∠2=∠3,(已知)∴_____∥_____.( ) ③∵∠4=∠7,(已知)∴_______∥________.( ) ④由②③可得_______∥________∥________.( ) ⑤∵∠3=∠BOC ,∠6=∠FOE ,(已知)
又∵∠_______=∠_______.( ) ∴∠_______=∠_______. ( ) ∴_______∥_______.( ) ⑥∵∠4+∠ABC=180°,(已知)∴_______∥_______.( )
A B
C
D E
F 图1
A B
C
D 1
2
4
3 图2
A
B
E
D
C 1
2
F
l
m
3
2
1
3.如图3,填空:
①∵∠1=∠C ,(已知)∴ED ∥______.( ) ②∵∠2=∠BED ,(已知)∴DF ∥______.( ) ③∵∠2+∠AFD=180°,(已知)
∴_______∥_______.( ) ④∵∠3=∠B ,(已知)
∴____________.( ) ⑤∵∠DFC=∠_______,(已知)
∴ED ∥AC .( ) 4.给下列证明过程填写理由.
已知:如图4所示,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2,求证:BE ∥CF . 证明:∵AB ⊥BC 于B ,CD ⊥BC 于C,( ) ∴∠1+∠3=90°,∠2+∠4=90°( ) ∴∠1与∠3互余,∠2与∠4互余.( ) 又∵∠1=∠2,( )
∴_______=_______.( )
∴BE ∥CF .( )
5.如图,//,1115,295l m ∠=∠= ,则3∠= ( )
()120A ()130B ()140C ()150D
6.将一直角三角板与两边平行的纸条如图所示放置,下列结论:
(1)12;(2)34;(3)2490(4)45180∠=∠∠=∠∠+∠=∠+∠= 其中正确的个数( )
(A)1 (B)2 (C)3 (D)4
7.如图,直线12//,,134l l AB CD ⊥∠= ,那么2∠的度数是
A
B
E
F C
1 2 3 D 图3
A
B
E 1 3 C
D
F 2
4 图4木舒
8.如图,//,34,105AB CD A DFB ∠=∠= ,求C ∠的度数.
9.已知:如图,1C ∠=∠,2∠和D ∠互余,BE FD ⊥于G 。

求证://AB CD
10.如图,已知//,,,AB CD AFE ECD αβ∠=∠=求E ∠(结果用βα、表示).若︒=48α,︒=152β,求E ∠的度数。

【课后作业】
一、选择题
1.下列条件不能使两直线平行的是( ) A .内错角相等 B .同旁内角互补 C .对顶角相等 D .同位角相等
2.若两条平行线被第三条直线所截,则下列说法错误的是( )
A .一对同位角的平分线互相平行
B .一对内错角的平分线互相平行
C .一对同旁内角的平分线互相垂直
D .一对同旁内角的平分线互相平行
A
F
B
C
D
E
α
β
C
3.如图1所示,下列推理所注的理由正确的是( ) A .∵AB ∥CD ,∴∠1=∠D (两直线平行,内错角相等) B .∵∠3=∠4,∴AB ∥CD (同位角相等,两直线平行) C .∵AB ∥CD ,∴∠3=∠4(两直线平行,内错角相等)
D .∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行)
4.如图2所示,已知∠1=∠2,要使∠3=∠4,则需( ) A .∠1=∠3 B .∠2=∠4
C .∠1=∠4
D .AB ∥CD
5.如图3,由A 测B 的方向是_____ ____,由B 测A 的方向是____ _____. 6.如图4,DE ∥BC ,∠DBE=40°,∠EBC=25°,则∠BED=____ _____. 7.如图5,已知∠1=∠2, ∠D=85°,则∠BCD=___________.
8. 如图6所示,若AB ∥DC ,则∠1+∠2+∠3的值是多少?
9. (广州、武汉、重庆、福州、洛阳数学联赛试题)如图,直线//a b ,那么x 的度数是多少?
图1
A
B
C
D
1 3 4 2
图2
A
B C
D
1
2 3
图6
b
C
B
A a
1200 300
480 300
x。

相关文档
最新文档