微积分上册综合练习1答案

合集下载

大一微积分练习题(附答案)

大一微积分练习题(附答案)

《微积分(1)》练习题一.单项选择题1.设存在,则下列等式成立的有( )()0x f 'A . B .()()()0000limx f x x f x x f x '=∆-∆-→∆()()()0000lim x f xx f x x f x '-=∆-∆-→∆C .D .()()()00002limx f h x f h x f h '=-+→()()()0000212limx f h x f h x f h '=-+→2.下列极限不存在的有( )A .B .201sin lim xx x →12lim2+-+∞→x xx x C .D .xx e 1lim →()xx xx +-∞→632213lim3.设的一个原函数是,则( ))(x f x e 2-=)(x f A .B .C .D . x e 22--x e 2-x e 24-xxe 22--4.函数在上的间断点为( )间断点。

⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f [)+∞,01=x A .跳跃间断点;B .无穷间断点;C .可去间断点;D .振荡间断点5. 设函数在上有定义,在内可导,则下列结论成立的有( )()x f []b a ,()b a ,A .当时,至少存在一点,使;()()0<b f a f ()b a ,∈ξ()0=ξf B .对任何,有;()b a ,∈ξ()()[]0lim =-→ξξf x f x C .当时,至少存在一点,使;()()b f a f =()b a ,∈ξ()0='ξf D .至少存在一点,使;()b a ,∈ξ()()()()a b f a f b f -'=-ξ6. 已知的导数在处连续,若,则下列结论成立的有( )()x f a x =()1lim-=-'→ax x f ax A .是的极小值点; B .是的极大值点;a x =()x f a x =()x fC .是曲线的拐点;()()a f a ,()x f y =D .不是的极值点,也不是曲线的拐点; a x =()x f ()()a f a ,()x f y =二.填空:1.设,可微,则 ⎪⎭⎫⎝⎛=x f y 1arcsinf ()='x y 2.若,则32325-+-=x x x y ()=6y 3.过原点作曲线的切线,则切线方程为()1,0x e y 2=4.曲线的水平渐近线方程为 ()2142-+=x x y 铅垂渐近线方程为5.设,则x x f +='1)(ln ()='x f ()=x f 三.计算题:(1)(2)321lim 221-+-→x x x x 32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)(4) 求xx x x 3sin )1ln(lim 20+→()[]221ln x y -=dy(5) 求053=-+x y exy=x dxdy 四.试确定,,使函数在处连续且可导。

微积分1答案

微积分1答案



0
xde x 2 lim
x
x 2 e x dx x 0 x e
= 2 lim e
x
22
! 解法 2:原式= 3 2 2
第4页 共5 页
---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------
2

1 x , 且 f 0 2 ,则 lim f ( x) 2. 设 f (0) lim 2 。 x 0 x0 sin x x 1 2 3. 设 f ( x)dx x ln x C ,则 f x 在区间 1 0 (0,1) 内单调增 , 2 x 2 sin
1 x sin x 2 解:原式= lim =1 x0 x2 2
第2页
共5 页
---------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------
2
y2
dy = dy e y dx
0 0

2
0
ye y dy
2
=
1 y2 e 2
2 0

1 (1 e 4 ) 2

马军主编第三版微积分练习册答案(第1-5单元)

马军主编第三版微积分练习册答案(第1-5单元)

《微积分》练习册参考答案练习1-1一、DDAD 无,二、1、2arcsin(1)2x k π-+;[,2、(5,2)-,3、21,0x x +≠,4、1,0,1x x x-≠;,0,1x x ≠,5、3log (1),1y x x =+>-四、20,)2(2lx x x l V <<-= 五、⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤≤--≤≤=a t a at a a t t a t t S 2,2,)(210212222, 六、(1)⎪⎩⎪⎨⎧>≤<--≤≤=1600751600100,01.0)10090100090x x x x P ,(, (2)[]⎪⎩⎪⎨⎧>≤<--≤≤=-=1600751600100,01.0)10030100030)60(x x x x x x x P x L ,(,(3)210001000==x L(元)练习1-2一、DDDBCD ,二、1、1/2,2、0;6,3、4/3,4、4,5、0,三、1、1/2,2、0,3、-1,4、1/2,5、1,6、1,7、-1/2,8、2,四、因为00lim ()lim 11;lim ()lim 11;x x x x f x x f x x --++→→→→=-=-=+=所以0lim ()lim ()x x f x f x -+→→≠,所以0lim ()x f x →不存在五、0000||||lim lim 1;lim lim 1;x x x x x x x x x x x x --++→→→→-==-==00||||lim lim ;x x x x x x -+→→≠所以0||lim x x x→不存在 七、111,0,1,lim 1x x x x e e x→+∞→+∞→∴→=当时即;0,x →当时分左右讨论,1110,,;10,,0x x x e x x e x+-→→+∞→+∞→→-∞→当时当时因此1lim xx e →不存在练习1-3一、,,,,,,,,⨯⨯⨯∨⨯⨯∨⨯二、CBCBDD 三、∞,2,0,1,532503020,四、6,41,2,-2,43,31,∞,32,0,32,31,1,五、1,1-==b a ,六、1 练习1-4 一、DCCAC 二、53,2,21-,21,21, x ,21,21-,21,32, 2,-1,3e,2-e,1-e,1-e ,3e ,e ,3-e,1练习1-5一、CCDAD 二、一;2,1,0=x ;0=b ;1,1;2十、⎪⎪⎩⎪⎪⎨⎧==<+>=1 x 1-1 x 01|| ,11||,0)(,,x x x x f ,1=x 为跳跃间断点,1-=x 不为间断点练习2-1一、,,,,,,⨯⨯⨯∨⨯⨯⨯二、B,C,B,C,D,C,C 三、1、1221y x x-'=+,2、33221522y x x -'=--,3、11ln n n y nxx x --'=+,4、22cos sin sin cos sin x x x x x xy x x--'=+,5、sin ln cos ln sin y x x x x x x'=++6、22(1ln )y x x '=-四、0lim ()lim ln(1)0,(0)0,lim ()0x x x x f x x f f x --++→→→→=+====因此f 在0x =处连续0()(0)ln(1)0(0)lim lim 100x x f x f x f x x ---→→-+-'===--,00()(0)0(0)lim lim 100x x f x f f x x +++→→-'===--,因此f 在0x =处可导练习2-2 一、1、222x y a x -'=-,2、23cos sin 222x x y '=-,3、1sin cos cos sin sin n ny n x x nx n x nx -'=- 4、csc y x '=,5、112sin cos y x x x '=-,6、1ln y x x '=,7、221y x '=+,8121x y e x-'=9、23ln33(1ln )xxy x x x '=+++,10、2sin ln(12)12y x x'=-++11、1113[]112(3)2(3)x y x x x x x '=-+-++-+,12、arctan x xy e e -'=- 二、1、122y x y y x +-'=-,2、ln 1y y x y '=-,3、1y ye y xe '=-,4、1x yx y e y e++'=- 三、1、()()()()()x x f x x f x y f e e e f e e f x '''=+,2、211(arcsin )y f xx''=-3、1()()x e x e y f e x e ex -''=++,4、22sin 2((sin )(cos ))y x f x f x '''=-四、1、50km/h 2、()()(1) 1.4/s t s t s km h ''===练习2-3一、DCDBC,DBDBC二、1、22222(1)x y x -''=+,2、1y x ''=,3、222arctan 1x y x x ''=++,4、23(64)x y e x x ''=+ 三、1、232dy bt dx at=,2、cos sin 1sin cos dy dx θθθθθθ-=-- 四、1、x y x y e y dy dx x e ++-=-,2、1()(1)(1)!(1)n n nn y x ---=+,3、()2312ln ln n y x x x x -=+练习3-1一、ABBBA 二、∞,0,0,0,1,1,6,-1/2,32()ab练习3-2 一、⨯,⨯,∨,∨,⨯,⨯,⨯,二、ADBACDCC三、2,递增,(e ,+∞),(0,e ),-n-1, 1n e ---,1/2,3/2,0,0a b c d =-===,6、7略,1x e -=-,四、略,五、1、(,0),(0,2),(2,),22ln 4x -∞↑↓+∞↑=-时有极小值 2、01x x ==-时有最小值0,时有最大值e 3、(,,()-∞⋂⋃⋂+∞⋃,拐点:(0,0),()22- 4、(1)1,2x y x ==+(2)0,x y x == 5、6、8、略7、cos ,sec K x x ρ==一、21x -,12212-+x x ,32-=x y ,211x x --,c x x ++3312ln 2,二、CBDCC 三、c x x +-2325252,c x x +-arctan ,c x x ++cos sin ,c x x +-sec tan c x x +--4ln 3ln 1)43(3,c x x +--cot练习4-2一、21,21,x 2tan 21,3ln 31x-;二、DDDCC ,三、c x +--23)21(31,c a a x +ln 33,c x +3arctan 31,c e x +-1,c x+23arctan 61,c e x ++)1ln(,c x +|ln |ln ,c x +sec 练习4-3 一、CBA ,二、c x x x +--2121arcsin 21,c x ++-)1(212,c x x +-+|1)23(23|ln 312练习4-4c x x x ++-sin cos ,c n x x n n ++-++)11(ln 111,c x x x ++-)1ln(21arctan 2, c x x x +--21arccos ,c x x x +-ln ln ln ln ,c x x x x +++|)tan sec |ln tan (sec 21,c e xe e x x x x +------222,c x x e x ++)cos (sin 21练习4-4c x x +-+--|3|ln 6|2|ln 5,c x x x ++--+-|1|ln |1|ln 11, c xx x ++-|2sin 2cos |ln 2,c x x ++-)1ln(22, c x x ++-+4347)13(274)13(634, c x x +-+-22arctan 222, c e x x +-+-|1|ln ,c eex xx+-22,c x x x ++-sin 2cos 2一、1、0;2、0,2x =;3、1/2;4、5,二、DDCB三、2π,ln 22,323a ,3(1)e -,116,4,122ln 23+练习5-2一、42arctan 2-,22π-,32π+,263,121e --+,1122+,184π-,2,1,1ln 22-,二、1,π三、略练习5-3一、103,12π-,23a π,2343a π,二、1、152x V π=,863y V π=,2、24x V π=,2y V π=,三、121ln 23+,8||a ,。

微积分综合练习题及参考答案1

微积分综合练习题及参考答案1

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sinlim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B(7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x .解:4121lim )2)(2()1)(2(lim 423lim22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题(1)曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案:21(2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f .答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题(1)若x x f x cos e )(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e ()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21ex x y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .x e C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

大一微积分练习题及答案

大一微积分练习题及答案

《微积分(1)》练习题一.单项选择题1.设()0x f '存在,则下列等式成立的有( ) A. ()()()0000limx f x x f x x f x '=∆-∆-→∆ B.()()()0000lim x f xx f x x f x '-=∆-∆-→∆C.()()()00002limx f h x f h x f h '=-+→ D.()()()0000212lim x f h x f h x f h '=-+→2.下列极限不存在的有( )A.201sin lim xx x → B.12lim 2+-+∞→x x x xC. xx e1lim → D.()xx xx +-∞→632213lim3.设)(x f 的一个原函数就是x e 2-,则=)(x f ( )A.x e 22--B.x e 2-C.x e 24-D. x xe 22--4.函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在[)+∞,0上的间断点1=x 为( )间断点。

A.跳跃间断点;B.无穷间断点;C.可去间断点;D.振荡间断点5. 设函数()x f 在[]b a ,上有定义,在()b a ,内可导,则下列结论成立的有( ) A . 当()()0<b f a f 时,至少存在一点()b a ,∈ξ,使()0=ξf ; B . 对任何()b a ,∈ξ,有()()[]0lim =-→ξξf x f x ;C . 当()()b f a f =时,至少存在一点()b a ,∈ξ,使()0='ξf ; D.至少存在一点()b a ,∈ξ,使()()()()a b f a f b f -'=-ξ; 6. 已知()x f 的导数在a x =处连续,若()1lim-=-'→ax x f ax ,则下列结论成立的有( )A.a x =就是()x f 的极小值点;B.a x =就是()x f 的极大值点;C.()()a f a ,就是曲线()x f y =的拐点;D.a x =不就是()x f 的极值点,()()a f a ,也不就是曲线()x f y =的拐点; 二.填空: 1.设⎪⎭⎫⎝⎛=x f y 1arcsin,f 可微,则()='x y 2.若32325-+-=x x x y ,则()=6y3.过原点()1,0作曲线x e y 2=的切线,则切线方程为4.曲线()2142-+=xx y 的水平渐近线方程为 铅垂渐近线方程为 5.设x x f +='1)(ln ,则()='x f ()=x f三.计算题:(1)321lim 221-+-→x x x x (2)32lim +∞→⎪⎭⎫⎝⎛-x x x x(3)xx x x 3sin )1ln(lim 20+→ (4)()[]221ln x y -= 求dy (5)053=-+x y exy求=x dxdy四.试确定a ,b ,使函数()()⎩⎨⎧<-≥+++=0,10,2sin 1x e x a x b x f ax在0=x 处连续且可导。

微积分综合练习题及答案

微积分综合练习题及答案

北京邮电大学高等函授、远程教育04—05学年春季学期《高等数学(微积分)》综合练习题与答案经济管理、电子邮政专业第一部分练习题、判断题设f (x )的定义域为(,1),则f (1的定义域为(0,1). x设f (X )的值域为(,1),则arctgf (x )的值域为(一,一).2 411.12.如果0 113.如果级数n1. 2. 3.e (x 1^是偶函数.4. 1 xy ln—是奇函数.5.1lim (1 x), e6. d22设 f (u)是可导函数,则 一 f (sinx2) 2xcosx 2f (u) dxu sin x 27. 设函数y f (ex)可微,则dy e xf(e x)dx . 9.10.设 df (x)」^dx ,则 f (x)1 xdxf(x)df(x) f(x)df(x).f (x)dx f (x) c .arctgx .1un发散,则nimun0.14.级数X n (x 0)收敛的充分必要条件是 X 1.115.级数1nz 收敛的充分必要条件是p 16.如果a(|)n 1 41,则常数a 1417. —f(x,y) X X X 0y y 0f (x,y 。

)x Xo -18.设 z xy r 「 ZX ,则—— X xy 1 xyx 19. d-f[x,y(x)] dx X f y y (X). 20.设 f 、u 、v 都是可微函数,则 一 f [u(x, y), v(x, y)] f^UX X f£. X 二、单项选择题 1.设 f(x) X, 0 X, 2 2, X 0则f(X)的定义域为 A.( B.[ 2,2)C. (,2] D.[ 2,2]2.设 f(X)的定义域为(,0),则函数f (In X)的定义域是A.(0,B.(0,1]C.(1,D.(0,1)3.设 f(X 1) X (X 1),则 f(X)=A. x(x 1)B. x(x 1)C.(x 1)(x 2)D.X24.下列函数中,奇函数为 A.sin(cosx)B.l n(x J x21)1 XC.tgxlnCf si nxD. esin n5. lim -----nn 1A.0B.1C. 1D.6. 当X X 0时,和 都是无穷小,下列变量中,当X X o 时可能不是无穷小的是A. B. C.D. —( 0)7. 设f(X)1 .-SI nx, Xk,.1xsin —X1,X A.0 B.1 0 且f (X)在X 0处连续,则k C.2D. 18.设f(X)在点X o 可导,则lim h 0 f(X oh) f(X o h) 2hA. f(X 0)B. f (X 。

微积分习题一答案详解

微积分习题一答案详解
B. D.
2
y y
x2 1 x2 1
y x2 1 y x2 1
C.
解: 可以从 y
x y2 1 , x 1( x 0) ,得出
可以得出 y x 2 1 .可以得出答案为B.
2.填空题.
(1) 设集合 A {1,2,3,4}, B {1,3,5},,则 A B =
(2)
f ( x ) 和 g( x ) 不表示同一个函数的是( B )
A. f ( x ) x 与 g( x )
1 x C. f ( x ) 1 x 与
x
2
x0 x0
1 x g( x ) D. f ( x ) x x 与 (1 x )
3
2
g( x )
3
x

x x0 B中 f ( x ) 与 g( x ) 不相同,所以选B. x x 0
x20 x 2 (3) 1 x 0 x 1 x [ 2,0) (0,1) lg(1 x) 0 x 0
(4)
1 x 1 x 0, 0 1 x 1 1 x x 1
f ( x) lg x 2 , g ( x) 2 lg x
0 x 4 得 x (0,2) (2,4) x2
(4) 解
ax x0
(

a 0 , 0 ,x0 为常数)
0 原式
ax x0
x0 ax x 0 a 0
x0 x0 x a a
y 10
x 1
2
x R
(3)
y 2 e x x ln(2 y) 交换 x 和 y 得反函数:

微积分(一)综合测试1试题及答案

微积分(一)综合测试1试题及答案

h→0
h
9. 若 f (x) 的导函数是 sin x ,则 f (x) 的一个原函数是(
)。
(A) 1 + sin x
(B)1 + cos x
(B) (C)1 − sin x
(D)1 − cos x
第2页共9页
2
10.设f
'
( x)在[1,2]上可积,且f
(1)
= 1,
f
(2)
=
2
−4, ∫1
f
( x)dx
时,
f
'( x)
<
0,当x
>
π 3
时,
f
'( x)
>
0,∴
f
⎛ ⎜ ⎝
π 3
⎞⎟是极小值 ⎠
∫ 5.若 x3−1 f (t)dt = x ,则 f (7) = 1 。
0
12
解 f (x3 −1)3x2 = 1, ⇒ 当x = 2时,(f 7)= 1
12
二、单项选择(每小题 2 分,共 20 分):
1. 函数 f (x) = arcsin 2x −1 + 2x − x2 的定义域区间是( C )。

二、单项选择(每小题 2 分,共 20 分):
1. 函数 f (x) = arcsin 2x −1 + 2x − x2 的定义域区间是(
)。
7 ln(2x −1)
(A)
1 [
,
1)

(1 ,
2]
2
(C)
1 (
,
1)

(1 ,
2]
2
2. 函数 f (x) = x sin 1 ,则 f (x) (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微积分》上册 综合练习题1参考答案一、填空题(每小题2分,共10分):1. 设1211(),(),[()].11ln(1)f xg x f g x x x -===+++。

121211()ln(1),(),[()]11ln(1)g x x f x f g x x x --=+==+++解 2.2)(x e x f =,则x f x f x )1()21(lim--→= 4e - 。

2(12)(1)'()2,lim2'(1)4x x f x f f x xe f e x→--==-=-解3.)1(1)(2--=x x e x f x 的可去间断点为=0x 0 ;补充定义=)(0x f -2时,则函数在0x 处连续。

2200111212lim lim 2,lim lim (1)(1)(1)(1)x x x x x x e x e xx x x x x x x x →→→→--==-==∞----解4.已知函数1()sin 3cos 3f x x a x =-在3x π=处取极值,则 a =,()3f π为极 小 值。

解 '()c o s 3s i n 0,'()33f x x a x x f x a π=+=⇒==⇒=,'()0,,'()0,333x f x x f x f πππ⎛⎫<<>>∴ ⎪⎝⎭ 当时当时是极小值 5.若⎰-=13)(x x dt t f ,则=)7(f112。

解 32(1)31,27f x x x f -=⇒=1当时,()=12二、单项选择(每小题2分,共20分):1. 函数)12ln(2712arcsin )(2--+-=x x x x x f 的定义域区间是( C )。

(A )12[,1)(1,2] (B )12[,1)(1,2) (C )12(,1)(1,2] (D )]2,(21 2. 函数1()sin f x x x=,则)(x f ( B )。

(A ) 单调 (B ) 有界 (C )为周期函数 (D )关于原点对称3.曲线1222()arctan 2x x f x e x x =⋅--有( B )条渐近线。

(A ) 1 (B ) 2 (C ) 3 (D )44. 在同一变化过程中,结论( D )成立。

(A) 两个穷大之和为无穷大 (B )两个无穷大之差为无穷大(C) 无穷大与有界变量之积为无穷大 (D )有限个无穷大之积为无穷大5.当0→x 时,下列函数那个是其它三个的高阶无穷小( D )。

(A )2x (B )1cos x - (C ))1ln(2x + (D )x x tan -6. 若)(x f 为定义在),(∞+-∞的可导的偶函数,则函数( A )为奇函数。

(A )(sin )f x ' (B )()sin f x x ' (C )(cos )f x ' (D )[()sin ]f x x '7.已知函数)(x f 任意阶可导,且2()[()]f x f x '=,则)(x f 的n (n ≥2)阶导数=)()(x f n ( B )。

(A )n x f n )]([! (B )1)]([!+n x f n (C ) n x f 2)]([ (D )n x f n 2)]([!8. 若)(x f 在x = a 处可微,则()()f a A '=。

(A )1lim ()()n n f a f a n→∞⎡⎤+-⎢⎥⎣⎦(B )[]h h a f h a f h )()(lim 0--+→(C )[]ha f h a f h )()(lim--→ (D )[]ha f h a f h )()2(lim 0-+→9. 若)(x f 的导函数是sin x ,则()f x 的一个原函数是( C )。

(A) 1sin x + (B )1cos x + (C )1sin x - (D )1cos x -()[]22'1110.12(1)1,(2)4,()2,'().() 7() 5 () 1 () 1f x f f f x dx xf x dx A B C D ==-=-=--⎰⎰设在,上可积,且则( A ) 三、计算题(每小题7分,共56分):1. 求极限21lim[ln(1)]x x x x→∞-+。

2220000111ln(1)lim[ln(1)]lim ln(1)lim1111 lim lim 22(1)2x t t t t t t x x t x t t t t t t t t →∞→→→→-+⎡⎤-+=-+=⎢⎥⎣⎦-+===+解 2.已知函数2 , 2()25, 2x ax bx f x x x ⎧++≠⎪=-⎨⎪=⎩连续,求a ,b 。

222222222(2)5lim2lim 0420(42)(42)42 lim lim lim(2)4522 1,6x x x x x x ax bf x x ax b a b b a x ax a x ax ax a a x x a b →→→→→++==-∴++⇒++=⇒=-++-+-+-==++=+=--⇒==- 解()=3.设方程 22)sin(y y x e xy =+,求0=x dy 。

解22()cos()(2)2xy e ydx xdy x y xydx x dy ydy +++=0101,2,2x x y dx dy dy dx ===±==当时,则4.设函数)(x f 任意阶可导,且()(),f x f x e -'=求)()(x f n 。

()()2()2()3()()1()'(),"()'() "'()2'()2! ()(1)(1)!f x f x f x f x f x n n nf x f x e f x f x e e f x f x e e f x n e -------==-=-===--解5.设曲线c bx ax x x f +++=23)(有一拐点(1,-1),且在x = 0处切线平行于直线y = x ,求a ,b ,c 及曲线方程。

解 (1,1)- 是曲线的拐点,2 '()32, "()62, "(1)6203 1111,f x x ax b f x x a f a a f a b c b c =++=+=+=⇒=--=+++⇒+=()=32,'(0)1,0()3.y x f b c f x x x x ===⇒=∴=-+又因为曲线平行与则曲线方程为6.计算不定积分⎰dx x )cos(ln 。

1cos(ln )cos(ln )sin(ln )1cos(ln )sin(ln )cos(ln )sin(ln )cos(ln )1cos(ln )[cos(ln )sin(ln )]2x dx x x x x dxxx x x dx x x x x x x dx xx dx x x x x C=+⋅⋅=+=+-⋅⋅∴=++⎰⎰⎰⎰⎰ 解7.计算不定积分222sin ,cos cos 1cos 1cos 1cos sin sin 1cot sin sin sin 1sin .x t dx tdt tdt dt tt t dt t t tdt d t t t t C t t tarc x C x==-==+=+++=+-=-++=++⎰⎰⎰⎰⎰解令8.求函数20()(2)x t f x t e dt -=-⎰在(,)-∞+∞内的最大和最小值. 解 因()f x 为偶函数,则只需求()f x 在[0,+∞)内的最值.令222'()2(2)0x f x x x e -=-=,则得驻点为x =.且当0x <<时,'()0f x >,当x >时, '()0f x <,故x = 为()f x 在[0,+∞]的极大值点,也是最大值点,且2222000max ()(2)(2)1t tt f x f t e dt t e e dt e ----==-=--=+⎰⎰-而 000()lim ()(2)(2)1t t tx f f x t e dt t e e dt +∞+∞---+∞→+∞+∞==-=---=⎰⎰ (0)0f =所以 m i n ()(0)f x f ==四、应用题(本题8分):已知某商品的需求函数为x =125-5p ,成本函数为C (x )=100 + x + x 2,若生产的商品都能全部售出。

求:(1)使利润最大时的产量;(2) 最大利润时商品需求对价格的弹性及商品的售价。

222101251()()()10010051.224100 '()2.424010 "() 2.40,10''23(5,10,23,x xL x R x C x px x x x x x x x L x x x L x x x px x p x xηη=-=-=---=⋅---=-+-=-+=⇒==-<∴=⨯-===解()驻点唯一当时,利润最大。

(2)=当时则=)11.510=-五、证明题:(本题6分)证明:当3!31sin ,0x x x x ->>时。

证明 设 31()sin ,(0)03!f x x x x f =-+= 231 '()cos 1,'(0)02"()sin 0, '()'()0(0)1 () ()0(0),sin (0)3!f x x x f f x x x f x f x x f x f x x x x x x =-+==-+>>>>>⇒<->单调增加,单调增加,。

相关文档
最新文档