旋转中的线段最值与路径长问题之动点定直线问题

合集下载

一道与旋转有关的动点最值问题的探究

一道与旋转有关的动点最值问题的探究

试题研究2023年10月下半月㊀㊀㊀一道与旋转有关的动点最值问题的探究◉湖北省武汉市吴家山第二中学㊀李幽兰㊀㊀初中平面几何中,由图形运动而产生的最值问题历来是学生解题的难点,究其原因是图形一直在变化,学生无法捕捉到运动变化背后 不变 的元素,难以分析出取最值时变化元素的位置,也就无法根据具体图形分析求解[1].其中,与旋转有关的动点求最值问题,热度一直高居不下,近几年常 驻 各地中考选填题和几何综合题的压轴位置,令莘莘学子头疼畏惧.下面笔者分享一道题目的解法和变式的深入探究,希望给读者一点启发.图1题目㊀(武汉蔡甸2021 第10题)如图1,在平面直角坐标系中,Q 是直线y =-12x +2上的一个动点,将Q 绕点P (1,0)顺时针旋转90ʎ,得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为(㊀㊀).A.455㊀㊀㊀B .5㊀㊀㊀C .523㊀㊀㊀D.655图2解法1:(坐标法)分别过点Q和Q ᶄ作x 轴的垂线,垂足分别为点M 和N ,如图2.于是øQ M P =øP N Q ᶄ=90ʎ,则øP Q ᶄN +øN P Q ᶄ=90ʎ.因为øQ P Q ᶄ=øQ P M +øN P Q ᶄ=90ʎ,则øP Q ᶄN =øQ P M .又P Q =Q ᶄP ,所以әP M Q ɸәQ ᶄN P (A A S ).故P M =Q ᶄN ,Q M =P N .设Q (a ,-12a +2).因为P (1,0),所以P M =Q ᶄN =a -1,Q M =P N =-12a +2.于是O N =O P +P N =3-12a .所以Q ᶄ(3-12a ,1-a ).所以O Q ᶄ=O N 2+Q ᶄN 2=(3-12a)2+(1-a )2=54(a -2)2+5ȡ5.故选答案:B .点评:解法1抓住平面直角坐标系中的有利条件,构造了 一线三垂直 模型证三角形全等.首先设未知数表示出动点Q 的坐标,用坐标来表示线段长度进行转化,然后由勾股定理表示两点之间的距离,用含x 的式子将O Q ᶄ表示出来,最后运用二次函数的知识求出最值.这种方法虽然很巧妙㊁简便,但是有一定的局限性,只能用于有坐标系且旋转角度特殊的题目.图3解法2:(轨迹法)如图3,将әA O B 绕点P 顺时针旋转90ʎ得到әA ᶄO ᶄB ᶄ,则Q ᶄ为直线A ᶄB ᶄ上一动点,根据垂线段最短,O Q ᶄ的最小值为点O 到直线A ᶄB ᶄ的垂线段的长度d .由直线A B 的解析式为y =-12x +2,得A (0,2),B (4,0),所以O A =2,O B =4.由题意,得O ᶄ(1,1),A ᶄ(3,1),B ᶄ(1,-3).设直线A ᶄB ᶄ的解析式为y =k x +b ,则有3k +b =1,k +b =-3,{解得k =2,b =-5.{于是直线A ᶄB ᶄ的解析式为y =2x -5,则E (52,0),F (0,-5),故O E =52,O F =5.所以E F =O E 2+O F 2=(52)2+52=552.由S әO E F =12O E O F =12E F d ,得O Q ᶄ的最小值为O E O F E F =52ˑ5552=5.点评:解法2由旋转的本质出发,直线A B 绕点P顺时针旋转90ʎ所得直线A ᶄB ᶄ即为动点Q ᶄ的轨迹,但直接求直线A ᶄB ᶄ的解析式不方便,因此旋转整个әA O B ,先求出点A ᶄ和B ᶄ的坐标,再求直线A ᶄB ᶄ的解析式,最后用面积法求出点O 到直线A ᶄB ᶄ的距离.85Copyright ©博看网. All Rights Reserved.2023年10月下半月㊀试题研究㊀㊀㊀㊀当然,在求出了直线A ᶄB ᶄ的解析式后,也可以由此设Q ᶄ的坐标,用解法1中的坐标法,运用勾股定理和二次函数来求最值.解法2适用于大部分的动点旋转求最值问题,即先确定动点轨迹.图4解法3:(逆向轨迹法)O Q ᶄ的最小值其实是定点O 到直线y =-12x +2绕点P 顺时针旋转90ʎ所得到直线的距离,问题可转化为O ᶄ(1,-1)(由点O 绕点P 逆时针旋转90ʎ得到)到直线y =-12x +2的距离d .如图4,过点O ᶄ(1,-1)作O ᶄA 垂直于x 轴交直线y =-12x +2于点A ,O ᶄB 垂直于y 轴交直线y =-12x +2于点B .于是A (1,32),B (6,-1),所以O ᶄA =52,O ᶄB =5.故A B =O ᶄA 2+O ᶄB 2=(52)2+52=552.由S әA O ᶄB =12O ᶄA O ᶄB =12A B d ,得O ᶄQ 的最小值为O ᶄA O ᶄBA B=5,即为O Q ᶄ的最小值.点评:解法3在求O ᶄQ 的最小值时同样可以用解法1的坐标法来求,在本质上它与解法2是一样的,都是将所求最值转化成定点到定直线的距离,但是解法3对解法2进行了简化,免去了求直线y =-12x +2旋转后的直线解析式,直接旋转定点O ,思路新颖巧妙.变式1㊀在R t әA O B 中,O A =2,A B =4,P 是O B 上一点,O P =1,Q 是边A B 上的一个动点,将Q 绕点P 逆时针旋转30ʎ得到点Q ᶄ,连接O Q ᶄ,则O Q ᶄ的最小值为.图5解析:点Q 在A B 上运动,即点Q 的轨迹为A B ,那么将A B 绕点P 旋转就能得到点Q ᶄ的轨迹.于是,将әA O B 绕点P 逆时针旋转30ʎ得到әA ᶄO ᶄB ᶄ,如图5,则点O 到A ᶄB ᶄ的距离即为O Q ᶄ的最小值.由旋转,得øB P B ᶄ=30ʎ.在R t әA O B 中,O A =2,A B =4,所以øB =øB ᶄ=øB P B ᶄ=30ʎ,于是A ᶄB ᶄʊO B ,则øA E B ᶄ=øA O B =90ʎ.所以点O 到A ᶄB ᶄ的距离为O E 的长度.如图5,过点B ᶄ作B ᶄF ʅO B 于点F ,则øB ᶄF P =90ʎ,于是四边形O E B ᶄF 是矩形.由O B =A B 2-O A 2=42-22=23,O P =1,得B P =B ᶄP =23-1.øB ᶄF P =90ʎ,øB P B ᶄ=30ʎ,所以B ᶄF =12B ᶄP =23-12.故O Q ᶄ的最小值为O E =23-12.变式1没有坐标系背景,显然解法1不适用,而运用解法3,将点O 绕点P 顺时针旋转30ʎ以后再求O ᶄ到A B 的距离较为麻烦,经对比发现,此题解法2是最简便的.类似地,还可以变化图形形状和旋转角度,解法一样.图6变式2㊀如图6,在等腰三角形A B C 中,øB A C =120ʎ,A B =A C ,D 是AB 上一点,A D =2,B D =4,E 是边BC 上的动点,若点E 绕点D 逆时针旋转30ʎ的对应点是F ,连C F ,则C F 的最小值是.基于以上分析,我们可以总结:解决这类绕定点旋转的最值问题有三种方法,分别为坐标法㊁轨迹法㊁逆向轨迹法,根据不同的题目来选择合适的方法,最常用的是轨迹法.若是动点所在的直线绕定点旋转,则先确定动点旋转后的轨迹,再根据垂线段最短求点到直线的距离,最后解直角三角形得到所求最值.动态问题解题的关键是在 动 中寻找 定 的量,再由这些定量探寻出动点形成的轨迹,从而根据轨迹分析出最值位置,即 由动寻定,由定定轨,由轨求最 [2].题目只是知识方法的一个素材,解题的过程能让学生理解知识的原理,提炼方法的本质,注重解法的策略,总结问题的归类,从而达到利用有限的题目实现无限的再创造.由解一道题变成会解一类题,乃至通解一种体系的题,这也是解题教学的方向[1].参考文献:[1]郭源源.旋转位似 似 成双定点定形 轨 一致[J ].教学月刊 中学版(教学参考),2020(10):11G15.[2]郭源源. 定量 构建动点轨迹 隐圆 巧解最值问题[J ].中学数学杂志,2018(10):42G44.Z95Copyright ©博看网. All Rights Reserved.。

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

初中数学精讲隐圆模型(线段最值和轨迹问题)

初中数学精讲隐圆模型(线段最值和轨迹问题)

几何模型11——隐圆问题在初中数学中利用隐圆解决平面几何问题大致分为三类,第一类是定点加定长构造圆形,第二类是定弦定角,第三类是从动模型之轨迹为圆也就是常说的“瓜豆原理”,在初中数学当中构造定弦定角构造圆形在压轴题当中经常出现,定弦定角构造圆形圆形中一般求一个定点到一动点线段长度的最小值问题的时候一般涉及定弦定角问题。

定弦定角解决问题的步骤:(1)让动点动一下,观察另一个动点的运动轨迹,发现另一个动点的运动轨迹为一段弧(2)找不变的张角(很多时候一般是找出张角的补角),(补角一般为60︒、45︒)(3)找张角所对的定弦,根据三点确定隐形圆,确定圆心位置(4)计算隐形圆的半径(5)圆心与所求线段上定点的距离可以求出来(6)最小值等于圆心到定点之间的距离减去半径例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,求A′C的长的最小值变式1.如图,在矩形ABCD中,AB=2,AD=,点E为AB中点,点F为AD 边上从A到D运动的一个动点,连接EF,将△AEF沿EF折叠,点A落在点G处,在运动的过程中,求点G运动的路径长(1)直径所对的圆周角是直角. 构造思路:一条定边所对的角始终为直角,则直角顶点轨迹是以定边为直径的圆或圆弧.图形释义:例2.如图,半径为4的⊙O 中,CD 为直径,弦AB ⊥CD 且过半径OD 的中点,点E 为⊙O 上一动点,CF ⊥AE 于点F .当点E 从点B 出发顺时针运动到点D 时,求点F 所经过的路径长变式1.如图,在正方形ABCD 中,AB =2,动点E 从点A 出发向终点D 运动,同时动点F 从点D 出发向终点C 运动,点E ,F 的运动速度相同,当它们到达各自的终点时停止运动.运动过程中线段AF ,BE 相交于点P ,求线段DP 长的最小值变式2.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于点G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .P PA BOP变式3.如图,在菱形ABCD 中,∠ABC =60°,AB =4,点E 是AB 边上的动点,过点B 作直线CE 的垂线,垂足为F ,当点E 从点A 运动到点B 时,求点F 的运动路径长变式4.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )(2)定边对定角在“定边对直角”问题中,依据“直径所对的圆周角是直角”,关键性在于寻找定边、直角,而根据圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角都相.定边必不可少,而直角则可一般为定角.例如,AB 为定值,∠P 为定角,则A点轨迹是一个圆.∠P 度数也是特殊角,比如30°、45°、60°、120°,下分别作对应的轨迹圆.例3.如图,△ABC 是等边三角形,边长为6,E 、F 分别是BC 、AC 上的动点,且CE =AF ,连接AE 、BF 交于点G ,求CG 最小值60°120°O P ABO120°120°P ABP PAB P30°O 60°BAP 90°45°ABO P变式2.如图,△ABC为等边三角形,AB=3.若P为△ABC内一动点,且满足∠P AB=∠ACP,求线段PB长度的最小值变式3.边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.例4.如图,半径为2cm,圆心角为90°的扇形OAB的弧AB上有一运动的点P,从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在弧AB上从点A运动到点B时,求内心I所经过的路径长变式1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是.变式2.如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;例5.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()16A.213+C.5D.13-B.29变式1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.2D.241-4例6.如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点满足(1)∠PAQ=60°;(2)AP=AQ ,故Q 点轨迹是个圆: 考虑∠PAQ=60°,可得Q 点轨迹圆圆心M 满足∠MAO=60°;考虑AP=AQ ,可得Q 点轨迹圆圆心M 满足AM=AO ,且可得半径MQ=PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .例7.如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.【解析】E 是主动点,F 是从动点,D 是定点,E 点满足EO=2,故E 点轨迹是以O 为圆心,2为半径的圆.答案为52-2 变式1.如图,已知在扇形AOB 中,OA =3,∠AOB =120º,C 是在上的动点,以BC 为边作正方形BCDE ,当点C 从点A 移动至点B 时,求点D 运动的路径长?OPA Q60°MQAPOO AB CD E F O A B C D EF M变式2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.变式3.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点,当半圆从点A运动至点B时,点M运动的路径长为________.。

初中数学常见几何动点问题专题分类归纳汇总

初中数学常见几何动点问题专题分类归纳汇总

初中数学常见几何动点问题专题分类归纳汇总近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;求和最小,差最大;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多,几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴)我们知道“对称、平移、旋转”是三种保形变换.通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的.数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效.(1)去伪存真.剔除不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长.(2)科学选择.捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连─平移、碰头─旋转、同侧─对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息.(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°.(4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最短”或“垂线段最短”把“折线”转“直”,找出最短位置,求出最小值.忠告:任何数学知识,都必须立足于基础,以教材为根本.本作品所涉及的内容灵活性较强,难度较大,若挑选一二拓宽视野,尚有营养,如忽视基础,以难题为主,则贻害无穷!请慎之!慎之!!再慎之!!!目录一.一条线段最值.1.单动点型 (3)1.1动点运动轨迹──直线型 (3)1.2动点运动轨迹──圆或圆弧型 (8)1.2.1定点定长 (8)1.2.2定弦定角 (11)1.3动点轨迹为其他曲线,构造三角形 (17)2.双动点型 (19)2.1利用等量代换实现转化 (19)2.2利用和差关系实现转化 (20)2.3利用勾股定理实现转 (20)2.4利用三角形边角关系实现转 (21)二.两条线段最值 (21)1.P A+PB型 (21)1.1两定一动(将军饮马) (21)1.2两定两动 (28)过河造桥 (28)四边形周长最小 (29)一定两动 (31)两动点不随动 (31)1.4三动点 (33)2.PA+kPB型 (34)2.1“胡不归”模型 (34)2.2阿氏圆 (42)三.“费马点”模型 (47)线段极值解题方略 (54)编后语 (55)一.一条线段最值1.单动点型所谓的单动点型指:所求线段两端点中只有一个动点的最值问题.通常解决这类问题的思考步骤为三步:(一)分析“源动点”的不变量.(二)分析“从动点”与“源动点”问关系.(三)分析“从动点”的不变量.1.1动点运动轨迹─直线型.动点轨迹为一条直线,利用“垂线段最短”.例1.如图1,在Rt △ABC 中,∠CAB =30°,BC =1,D 为AB 上一动点(不与点A 重合),△AED 为等边三角形,过D 点作DE 的垂线,F 为垂线上任一点,G 为EF 的中点,则线段CG 长的最小值是.方法指导:1.当动点的运动轨迹是一条直线(射线、线段)时,可运用“垂线段最短”性质求线段最值.2.有时动点轨迹不容易确定,如例1,建议看到“中点”联想“三角形的中位线及直角三角形斜边上的中线”等性质.3.试着观察“动点运动到一些特殊位置时,该动点与其他定点连结的线段是否与已知边有一‘定角’产生”,若成立,则动点轨迹为直线”.如何在动态问题中找寻“不变量”特征是突破这类问题的关键.①当一个点的坐标以某个字母的代数式表示,若可化为一次函数,则点的轨迹是直线;1.在平面直角坐标系中,点P (0,2),点M (m -1,-34m -94)(其中m 为实数),当PM 的长最小时,m 的值为.2.如图,在平面直角坐标系中,A (1,4),B (3,2),C (m ,-4m +20),若OC 恰好平分四边形...O .ACB ...的面积,求点C 的坐标.②当某一动点到某条直线的距离不变时,该动点的轨迹为直线;1.如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB运动到点B停止.EF⊥PE交射线BC于F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为.(第1题图)(变式1图)(变式2图)【变式1】如图,矩形ABCD中,AB=6,AD=8,点E在BC边上,且BE:EC=1:3.动点P从点B出发,沿BA运动到点A停止.EF⊥PE交AD边或CD边于点F,设M 是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为.【变式2】如图,在矩形ABCD中,点P在AD上,AB=2,AP=1,E是AB上的一个动点,连接PE,过点P作PE的垂线,交BC于点F,连接EF,设EF的中点为G,当点E从点B运动到点A时,点G移动的路径的长是.【变式3】在矩形ABCD中,AB=4,AD=6,P是AD边的中点,点E在AB边上,EP 的延长线交射线CD于F点,过点P作PQ⊥EF,与射线BC相交于点Q.(1)如图1,当点Q在点C时,试求AE的长;(2)如图2,点G为FQ的中点,连结PG.①当AE=1时,求PG的长;②当点E从点A运动到点B时,试直接写出线段PG扫过的面积.(变式3图1)(变式3图2)(变式3备用图)AB=1.点P是线段CD上一个动点,2.如图,C,D是线段AB上两点,且AC=BD=16在AB同侧分别作等边△PAE和等边△PBF,M为线段EF的中点,在点P从点C移动到点D时,点M运动的路径长度为.(第2题图)(变式1图)(变式2图)(变式3图)【变式1】已知AB=10,点C,D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作正方形APEF和正方形PBGH,点Q1和Q2是这两个正方形的中心,连接Q1Q2,设Q1Q2的中点为Q;当点P从点C运动到点D时,则点Q移动路径的长是.【变式2】等边△ABC中,BC=6,D,E是边BC上两点,且BD=CE=1,点P是线段DE 上的一个动点,过点P分别作AC,AB的平行线交AB,AC于点M,N,连接MN,AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过的区域面积为.【变式3】如图,四边形ABHK是边长为6的正方形,点C,D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,点E,F分别为MN,QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为.3.如图,已知在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,连接PD并延长到点E,使得PD:PE=1:3,以PE,PC为边作□PEFC,连接PF,则PF的最小值为.(第3题图)(延伸题图)【延伸】在四边形ABCD中,AB∥CD,BC⊥CD,AB=3,CD=4,在BC上取点P(P不与B,C重合),连接PA延长至E,使PE:PA=x:1,连接PD并延长到F,使PF:PD=y:1(x,y>1),以PE,PF为边作平行四边形,另一个顶点为G,求PG长度的最小值(用x,y表示).【同型练】如图,已知□OABC的顶点A,C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为③当某一动点与定线段一个端点连接后成的角度不变,则该动点轨迹是直线.1.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,点O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE 的最小值是【变式1】如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段BN长度的最小值是2.在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得线段AE,连接ED,N为ED的中点,连AN,MN.(1)如图1,当BD=2时,AN=____,NM与AB的位置关系是___(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,求ME的长的最小值?3.在△ABC中,∠BAC=90°,AB=AC=2,线段BC上一动点P从C点开始运动到B点停止,以AP为边在AC的右侧做等边△APQ,则Q点运动的路径长为【秒杀训练】1.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()2.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()3.如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.(1)求证:△MDC是等边三角形;(2)将△MDC绕点M旋转,当MD(即MD′与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.1.2动点运动轨迹──圆或圆弧型动点轨迹为定圆,利用三点共线方法指导:1.当动点的轨迹是定圆时,可利用“一定点与圆上的动点距离最大值为定点到.圆心的距离与半径和,最小值为定点到圆心的距离与半径差”性质求解.2.试着观察“动点与其他定点连结的线段长是否为‘定值’或动点与两定点构成的角是否为直角”,这是常见判断动点轨迹是圆的条件。

初中常见的动点轨迹问题归纳与突破策略

初中常见的动点轨迹问题归纳与突破策略

运 动 ,如 图 3,劣 弧 AC 的 弧 长 即 为 动 点 P 运 动 的 路
寻找定角的度数是解决问题的突破口 .
是一个定角 . 因此 ,动点 P 在以 AC 为弦的圆的圆弧上
径长 .
通过例 1 的分析 ,我们初步了解解决动点轨迹为
圆弧型这一类的思路与方法——“定边对定角”,
为定边

∴ 点 P 在弧 EF 上运动
二、夹角定位法
如图 6,有一条定直线 l ,以及存在某个定点 A ,若
动点 B 与定点 A 的连线与该定直线 l 的夹角 α 是一个
定角 ,则动点 B 一定也在一条定直线上运动 . 对于这
一类型 ,只要能找到这个定点 A 与定直线 l ,再证明出
吕锦秀
(厦门国祺中学,
福建 厦门 361100)


动点轨迹问题对于初中生来说既是重点也是难点 . 文章归纳出初中常见的两大类动点轨迹类型——圆弧型和直线型 . 列
举具体实例对学生比较困惑的两种动点轨迹问题(即“定边对定角”的动点轨迹和动点与定点的连线与定直线的夹角为定
角的动点轨迹)进行分析讲解:题目中如能找到定边对定角,则该动点的运动轨迹为在以定边为弦且经过定点的圆弧上,
动点与定点 A 连线与
定直线 l 的夹角是一
个定角 α ,就能断定动
点的运动轨迹是直线
型 ,可 形 象 地 称 之 为
图6
[1]
“夹角定位法”
.
特别注意的是这一类型的动点是定角(夹角)一
边上的点 ,定角的一边是定直线 . 下面笔者举两个例
子进行实例分析:
例 3 如 图 7,已 知 点 P 在 正 三 角 形 ABC 的 边 BC
点的轨迹为该线段的垂直平分线;

瓜豆原理——主从动点问题(解析)

瓜豆原理——主从动点问题(解析)

瓜豆原理——主从动点问题初中数学有一类动态问题叫做主从联动,这类问题应该说是网红问题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,也有的老师叫他旋转相似,我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型。

涉及的知识和方法:知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。

方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值。

类型1.求轨迹解析式例1.如图,△ABO为等腰直角三角形,A(﹣4,0),直角顶点B在第二象限.点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是_____.【分析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出所求直线解析式.【解答】当BC与x轴平行时,过B作BE⊥x轴,过D作DF⊥x轴,交BC于点G,如图1所示,∵等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=1/2OA=2,OF=DG=BG=CG=1/2BC=1,DF=DG+GF=3,∴D坐标为(﹣1,3);当C与原点O重合时,D在y轴上,此时OD=BE=2,即D(0,2),设所求直线解析式为y=kx+b(k≠0),将两点坐标代入得:-k+b=3, b=2,解得:k=-1,b=2.则这条直线解析式为y=﹣x+2,当D(﹣1,1)和D(﹣2,0)于是得到y=x+2,综上所述:这条直线的函数表达式是y=x+2或y=﹣x+2.故答案为:y=x+2或y=﹣x+2.【点评】本题考查了轨迹问题,待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解本题的关键.而本题若用一般方法求解,也不难,构造一线三直角全等可破.解答:类型2.求经过的路径长例2.已知:如图,正方形ABCD的边长为2,动点E从点A出发,沿着A﹣B﹣C的方向以每秒钟1个单位长度的速度匀速运动,当点E到达点C时运动停止.联结DE,以DE为边作正方形DEFG.设运动的时间为x秒.(1)如图①,当点E在边AB上时,联结CG,求证:AE=CG;(2)如图②,当点E在边BC上时,设正方形ABCD与正方形DEFG重叠部分的面积为y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)直接写出,在点E的运动过程中,对应的点F的运动路径的长.【分析】(1)由正方形的性质得出AD=CD,DE=DG,∠ADE+∠EDC=∠EDC+∠CDG=90°,证出∠ADE=∠CDG,由SAS证明△ADE≌△CDG;(2)利用三角形的面积公式即可得出结论;(3)由(1)知,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F的位置如图:点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;由勾股定理求出BD,即可得出结果.【解答】(1)∵正方形ABCD,正方形DEFG,∴∠ADC=∠EDG=90°,AD=CD,DE=DG.∴∠ADC﹣∠EDC=∠EDG﹣∠EDC.即:∠ADE=∠CDG.在△ADE和△CDG中,AD=CD, ∠ADE=∠CDG,DE=DG,∴△ADE≌△CDG.∴AE=CG.(2)∵正方形ABCD的边长为2,∴AB=BC=CD=2,∠BCD=90°.∵动点E从点A出发,沿着A﹣B﹣C的方向以每秒钟1个单位长度的速度匀速运动,且运动的时间为x秒.∴EC=4﹣x,∴y=S△CDE=1/2ECCD=1/2(4﹣x)×2=4﹣x∴所求函数解析式为y=4﹣x.自变量x的取值范围是2≤x≤4.(3)如图,当点E在AB上时,点G在直线BC上,当点E与B点重合时,点F运动的路径为BF;同理,点E在BC上时,当点E与C点重合时,点F运动的路径为FG;∵由勾股定理可求得BD=2√2,∴BF+FG=2BD=4√2,∴点F运动的路径长为4√2.【点评】本题是四边形综合题目,考查了正方形的性质、平行线的判定与性质、三角形面积的计算、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;熟练掌握正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质是解决问题的关键.例3.在边长为12cm的正方形ABCD中,点E从点D出发,沿边DC以1cm/s的速度向点C运动,同时,点F从点C出发,沿边CB以1cm/s的速度向点B运动,当点E达到点C时,两点同时停止运动,连接AE、DF交于点P,设点E、F运动时间为t秒.回答下列问题:(1)如图1,当t为多少时,EF的长等于4√5cm?(2)如图2,在点E、F运动过程中,①求证:点A、B、F、P在同一个圆(⊙O)上;②是否存在这样的t值,使得问题①中的⊙O与正方形ABCD的一边相切?若存在,求出t值;若不存在,请说明理由;③请直接写出问题①中,圆心O的运动的路径长为_______.【分析】(1)由题意可知:DE=t,CF=t,则EC=12﹣t,然后,在Rt△EFC中,依据勾股定理列方程求解即可;(2)①首先证明△ADE≌△DCF,从而可得到∠CDF=∠DAE,然后再证明∠DAP+∠ADP=90°,于是可证明∠APF+∠B=180°,故此可证明点A、B、F、P共圆;②如图1所示:当⊙O与CD相切时(切点为M).连接OM,并延长MO交AB与点N.则AN=6,ON=12﹣r,OA =r,然后由勾股定理列方程求解即可;当AB为⊙O的直径时,⊙O与AD、BC都相切,从而可得到此时t的值;由于点A和点B均在⊙O上,故此不存在AB与⊙O相切的情况;③点O运动的轨迹为△ACB的中位线,从而可求得点O运动的路径.【解答】(1)由题意可知:DE=t,CF=t,∴EC=12﹣t.由勾股定理可知:CE+CF=EF,∴(12﹣t)+t=(4√5),解得:t=4或t=8.∴当t为4或8时,EF的长等于4√5.(2)①由题意可知:DE=CF.∵ABCD为正方形,∴AD=DC,∠ADC=∠FCD.在△ADE和△DCF中,DE=CF, ∠ADC=∠FCD,AD=DC,∴△ADE≌△DCF.∴∠CDF=∠DAE.∵∠CDF+∠ADP=90°,∴∠DAP+∠ADP=90°,∴∠APF=90°,∴∠APF+∠B=180°,∴点A、B、F、P在同一个圆(⊙O)上.②如图1所示:当⊙O与CD相切时(切点为M).连接OM,并延长MO交AB与点N.∵DC与⊙O相切,∴OM⊥DC,∴ON⊥AB,∴AN=1/2AB=6.设⊙O的半径为r,则ON=12﹣r,在Rt△AON中,由勾股定理得:6+(12﹣r)=r,解得r=7.5.∴AF=15.在Rt△ABF中,由勾股定理可知:BF=9.∴CF=3,即t=3秒.当点F与点B重合时,AB为⊙O的直径,⊙O与BC、AD均相切,此时t=12.∵点A和点B均在⊙O上,∴不存在AB与⊙O相切的情况.综上所述,当t=3或t=12时,⊙O与正方形的一边相切.③∵点O为AF的中点,点F在CB上移动,∴点O运动的路径为△ACB中AC和AB两边中点连线.∴点O运动的路径=1/2BC=6cm.故答案为:6cm.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了全等三角形的性质和判定、勾股定理、切线的性质,三角形中位线的性质,掌握本题的辅助线的作法是解题的关键.类型3.求最值问题例4.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下作等边△ABC,连接OC,则OC的最小值_________.分析:点B为主动点,点C为从动点,根据瓜豆原理,BA绕点A逆时针旋转60°到CA,主动点B的轨迹是y轴的正半轴,则从动点C的运动轨迹为y轴正半轴绕点A逆时针旋转60°后的射线,我们可以用特殊位置来考虑.当OC⊥点C轨迹所在射线时,OC最短.当然,我们也可以构造手拉手模型,将OC边转化,详细过程请见方法2.解答:方法一:方法二:例5.如图,正方形ABCD的边长为4cm,点E、F分别从点D和点C出发,沿着射线DA、射线CD运动,且DE=CF,直线AF、直线BE交于H点.(1)当点E从点D向点A运动的过程中:①求证:AF⊥BE;②在图中画出点H运动路径并求出点H运动的路径长;(2)在整个运动过程中:①线段DH长度的最小值为______.②线段DH长度的最大值为_________.【分析】(1)①根据正方形的性质、全等三角形的判定定理证明△ABE≌△DAF,得到∠ABE=∠DAF,根据垂直的定义证明即可;②根据90°的圆周角所对的弦是直径画出点H运动路径,根据弧长公式求出点H运动的路径长;(2)①根据勾股定理求出PD,根据点与圆的最小距离求出DH长度的最小值;②与①类似,求出DH长度的最大值.【解答】(1)①证明:∵四边形ABCD是正方形,∴AD=CD,又DE=CF,∴AE=DF,在△ABE和△DAF中,AB=AD, ∠BAE=∠ADF,AE=DF,∴△ABE≌△DAF,∴∠ABE=∠DAF,又∠BAH+∠DAF=90°,∴∠BAH+∠ABE=90°,即∠AHB=90°,∴AF⊥BE;②∵∠AHB=90°,∴点H运动路径是以AB为直径的圆的一部分,如图1所示:∴点H运动的路径长为:90π×2/180=π;(2)①设AB的中点为P,连接PD,当点H在PD设时,DH最小,由题意得,AP=2,AD=4,由勾股定理得,PD=2√5,则DH长度的最小值为:2√5﹣2,故答案为:2√5﹣2cm;②由①可知,DH长度的最大值为2√5+2,故答案为:2√5+2cm.【点评】本题考查的是正方形的性质、轨迹问题、最大值和最小值的确定,掌握正方形的性质、圆的概念是解题的关键.综述所示,我们可以归纳提炼上述解题思想方法:第一步:找主动点的轨迹;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值。

高考数学专题四立体几何 微专题29 立体几何中的动态问题

高考数学专题四立体几何 微专题29 立体几何中的动态问题
形的面积为2π
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1

轨迹问题再探究(圆轨问题)主从联动模型

轨迹问题再探究(圆轨问题)主从联动模型

轨迹问题再探究(圆轨问题)主从联动模型专注陕西中考数学研究关注刘⽼师微信公众号“龙哥与数学”,和你⼀起挑战中考数学,冲刺名校。

轨迹问题再探索---圆轨模型导读在前⾯的学习中,我们已经认识了轨迹,知道在初中阶段,我们会遇到两种轨迹问题,⼀它们分别对应不同的知识点。

圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。

它们分别对应不同的知识点。

圆弧上的点到定点的距离等于定个是圆弧,⼀个是线段。

长,线段上的点到直线的距离也等于定长。

但是在实际的考查过程中,我们往往不是事先知道动点所形成的轨迹。

⽽需要我们结合题⽬中的条件,来分析出问题是不是轨迹问题,是哪种轨迹问题,它们常见的处理⽅法⼜是什么呢?在随后的讲解中,将逐步为⼤家揭开谜底。

敬请您的期待。

⾸先我们先给轨迹下个定义,简单的说就是:动点在空间或者平⾯内移动,它所通过的全部路径叫做这个点的轨迹。

我们在理解这个定义时,可从下列⼏个⽅⾯考虑:(1)符合⼀定条件的动点所形成的图形,或者说,符合⼀定条件的点的全体所组成的集合,叫做满⾜该条件的点的轨迹。

(2)凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性)。

(3)另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

我们要记住两点:平⾯轨迹⼀般是曲线,空间轨迹⼀般是曲⾯。

常见的平⾯内点的轨迹1.到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆。

2.到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。

3.到已知⾓的两边距离相等的点的轨迹,是这个⾓的⾓平分线。

4.到直线L的距离等于定长D的点的轨迹,是平⾏于这条直线,并且到这条直线的距离等于定长的的两条直线。

5.到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线。

6.到两定点距离和等于常数(⼤于两定点的距离)的点的轨迹是以两定点为焦点的椭圆。

7.到两定点的距离的差的绝对值等于常数(⼩于两定点的距离)的点的轨迹,是以两定点为焦点的双曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档