建立二叉树的代码c语言

合集下载

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

c语言哈夫曼树的构造及编码

c语言哈夫曼树的构造及编码

c语言哈夫曼树的构造及编码一、哈夫曼树概述哈夫曼树是一种特殊的二叉树,它的构建基于贪心算法。

它的主要应用是在数据压缩和编码中,可以将频率高的字符用较短的编码表示,从而减小数据存储和传输时所需的空间和时间。

二、哈夫曼树的构造1. 哈夫曼树的定义哈夫曼树是一棵带权路径长度最短的二叉树。

带权路径长度是指所有叶子节点到根节点之间路径长度与其权值乘积之和。

2. 构造步骤(1) 将待编码字符按照出现频率从小到大排序。

(2) 取出两个权值最小的节点作为左右子节点,构建一棵新的二叉树。

(3) 将新构建的二叉树加入到原来排序后队列中。

(4) 重复上述步骤,直到队列只剩下一个节点,该节点即为哈夫曼树的根节点。

3. C语言代码实现以下代码实现了一个简单版哈夫曼树构造函数:```ctypedef struct TreeNode {int weight; // 权重值struct TreeNode *leftChild; // 左子节点指针struct TreeNode *rightChild; // 右子节点指针} TreeNode;// 构造哈夫曼树函数TreeNode* createHuffmanTree(int* weights, int n) {// 根据权值数组构建节点队列,每个节点都是一棵单独的二叉树TreeNode** nodes = (TreeNode**)malloc(sizeof(TreeNode*) * n);for (int i = 0; i < n; i++) {nodes[i] = (TreeNode*)malloc(sizeof(TreeNode));nodes[i]->weight = weights[i];nodes[i]->leftChild = NULL;nodes[i]->rightChild = NULL;}// 构建哈夫曼树while (n > 1) {int minIndex1 = -1, minIndex2 = -1;for (int i = 0; i < n; i++) {if (nodes[i] != NULL) {if (minIndex1 == -1 || nodes[i]->weight < nodes[minIndex1]->weight) {minIndex2 = minIndex1;minIndex1 = i;} else if (minIndex2 == -1 || nodes[i]->weight < nodes[minIndex2]->weight) {minIndex2 = i;}}}TreeNode* newNode =(TreeNode*)malloc(sizeof(TreeNode));newNode->weight = nodes[minIndex1]->weight + nodes[minIndex2]->weight;newNode->leftChild = nodes[minIndex1];newNode->rightChild = nodes[minIndex2];// 将新构建的二叉树加入到原来排序后队列中nodes[minIndex1] = newNode;nodes[minIndex2] = NULL;n--;}return nodes[minIndex1];}```三、哈夫曼编码1. 哈夫曼编码的定义哈夫曼编码是一种前缀编码方式,它将每个字符的编码表示为二进制串。

二叉排序树c语言代码实现

二叉排序树c语言代码实现
printf ("是否继续输入?\n 1.是 2.否(其他键 退出)\n");
if ((*n) != NULL) {
free (*n);
*n = NULL;
}
}
/* 查找结点 */
PNODE find_node (PNODE n, int value) {
in_order_traversal ( n->right);
}
}
int main() {
char buf[50],a[1000];
int i,n,option,s[80],p;
PNODE tree = NULL;/*树的第一个结点*/
PNODE node = NULL;
{
r = (PNODE)malloc(sizeof(NODE));
if(!r)
{
printf("内存分配失败!");
exit(0);
zjm3:fgets (buf, sizeof(buf), stdin);
sscanf (buf, "%i", &option);
printf ("\n\n");
if(option<0) {
printf ("输入错误,请重新输入该元素\n",n);
goto zjm3;}
if(find_node (tree, option))
{
(*n)->value = value;
(*n)->left = NULL;
(*n)->right = NULL;
}
}

哈夫曼树的构造c语言代码

哈夫曼树的构造c语言代码

哈夫曼树的构造c语言代码哈夫曼树是一种特殊的二叉树,常被用于数据压缩中。

它的构造过程非常重要,接下来我将用c语言展示如何构造哈夫曼树。

首先,我们需要定义一个结构体作为节点:```struct Node{int weight;//权重int parent;//父节点在数组中的下标int lchild;//左子节点在数组中的下标int rchild;//右子节点在数组中的下标};```然后,我们需要读入数据,计算每个数据的权重,随后用一个数组存储节点信息:```int n;//数据个数int W[maxn];//存储每个数据的权重Node tree[maxn*2-1];//哈夫曼树```接下来,我们需要编写一个函数用来选择权值最小的两个节点,然后将它们合并成一个节点。

```int select_min(Node*tree,int n){int res=-1;int min=INT_MAX;for(int i=0;i<n;i++){if(tree[i].parent!=-1)continue;//跳过已经合并的节点if(tree[i].weight<min){min=tree[i].weight;res=i;}}return res;}void merge_node(Node*tree,int a,int b,int i){tree[a].parent=i;tree[b].parent=i;tree[i].weight=tree[a].weight+tree[b].weight;tree[i].lchild=a;tree[i].rchild=b;}```接下来,我们就可以开始构造哈夫曼树了。

我们先初始化每个节点,将它们都看成一个独立的树,然后选择最小的两个节点进行合并,直到最后只剩下一个树为止。

```void build_tree(Node*tree,int n,int*W){for(int i=0;i<n;i++){tree[i].weight=W[i];tree[i].parent=-1;tree[i].lchild=-1;tree[i].rchild=-1;}for(int i=n;i<(n<<1)-1;i++) {int a=select_min(tree,i);int b=select_min(tree,i);merge_node(tree,a,b,i);}}```最后,我们可以调用build_tree函数来构造哈夫曼树。

数据结构二叉树的基本操作代码

数据结构二叉树的基本操作代码

数据结构二叉树的基本操作代码x#include<iostream>using namespace std;//二叉树的结构struct TreeNode{int data;//节点的值TreeNode *left;//指向左子树TreeNode *right;//指向右子树};//插入节点void insert(TreeNode *&tree, int val){if(tree == NULL){tree = new TreeNode;tree->data = val;tree->left = tree->right = NULL;}else if(val<=tree->data)//小于根节点的值则插入到左子树 insert(tree->left, val);else if(val>tree->data)//大于根节点的值则插入到右子树 insert(tree->right,val);}//查找节点TreeNode* find(TreeNode *tree,int val){if (tree == NULL)//树为空,无法查找return NULL;else if (val == tree->data)//值和节点的值相等,返回该节点return tree;else if (val < tree->data)//值小于节点的值,查找左子树 return find(tree->left,val);else if (val > tree->data)//值大于节点的值,查找右子树 return find(tree->right,val);elsereturn NULL;//无法查找}//遍历二叉树//先序遍历void preOrder(TreeNode *tree){if(tree != NULL){cout<< tree->data <<'t'; //先访问根节点preOrder(tree->left); //再遍历左子树 preOrder(tree->right); //最后遍历右子树 }}//中序遍历void inOrder(TreeNode *tree){if(tree != NULL){inOrder(tree->left); //先遍历左子树 cout<< tree->data <<'t'; //再访问根节点inOrder(tree->right); //最后遍历右子树 }}//后序遍历void postOrder(TreeNode *tree){if(tree != NULL){postOrder(tree->left); //先遍历左子树 postOrder(tree->right); //再遍历右子树 cout<< tree->data <<'t'; //最后访问根节点 }}//查找最大值TreeNode* findMax(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->right == NULL)return tree;elsereturn findMax(tree->right);}//查找最小值TreeNode* findMin(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->left == NULL)return tree;elsereturn findMin(tree->left);}//删除节点void remove(TreeNode *&tree, int val){if(tree == NULL)return;else if(val < tree->data)remove(tree->left, val);else if(val > tree->data)remove(tree->right, val);else//找到要删除的节点{if(tree->left != NULL && tree->right != NULL)//左右子树均不为空{TreeNode *temp = tree;TreeNode *max = findMax(tree->left);//查找左子树的最大结点tree->data = max->data;//将最大结点的值替换到要删除的节点remove(temp->left, max->data);//将最大结点删掉}else//只有一边的子节点不为空或者左右节点都为空{TreeNode *temp = tree;if(tree->left == NULL)//如果左节点为空,就将右节点提升 tree = tree->right;else if(tree->right == NULL)//如果右节点为空,就将左节点提升tree = tree->left;delete temp;//删掉要删除的节点}}}int main(){TreeNode *tree = NULL; //声明一个空树int arr[10] = {12, 3, 4, 6, 7, 9, 10, 5, 2, 8};for(int i=0; i<10; i++){insert(tree, arr[i]);//把数组元素插入到树当中}cout<<'先序遍历:';preOrder(tree);cout<<endl;cout<<'中序遍历:';inOrder(tree);cout<<endl;cout<<'后序遍历:';postOrder(tree);cout<<endl;cout<<'查找节点数据:4';TreeNode *findNode = find(tree, 4);if(findNode != NULL)//如果节点存在cout<<'找到了,节点的值是:'<<findNode->data;else//如果节点不存在cout<<'没有找到';cout<<endl;cout<<'查找树的最大值:'<<findMax(tree)->data<<endl; cout<<'查找树的最小值:'<<findMin(tree)->data<<endl; cout<<'删除节点:。

平衡二叉树的实现c语言

平衡二叉树的实现c语言

平衡二叉树的实现c语言平衡二叉树(AVL树)是一种自平衡的二叉查找树,其中任何节点的两个子树的高度差最多为1。

下面是一个简单的AVL树的C语言实现:```cinclude <>include <>typedef struct AVLNode {int key;int height;struct AVLNode left, right;} AVLNode;typedef struct {AVLNode root;} AVLTree;int getHeight(AVLNode node) {if (node == NULL)return 0;return node->height;}int getBalance(AVLNode node) {if (node == NULL)return 0;return getHeight(node->left) - getHeight(node->right);}AVLNode rotateRight(AVLNode y) {AVLNode x = y->left;AVLNode T2 = x->right;x->right = y;y->left = T2;y->height = max(getHeight(y->left), getHeight(y->right)) + 1; x->height = max(getHeight(x->left), getHeight(x->right)) + 1; return x; // new root is x}AVLNode rotateLeft(AVLNode x) {AVLNode y = x->right;AVLNode T2 = y->left;y->left = x;x->right = T2;x->height = max(getHeight(x->left), getHeight(x->right)) + 1; y->height = max(getHeight(y->left), getHeight(y->right)) + 1; return y; // new root is y}AVLNode insert(AVLTree tree, int key) {AVLNode root = tree->root;if (root == NULL) { // tree is empty, create a new node as root. tree->root = (AVLNode)malloc(sizeof(AVLNode));root = tree->root;root->key = key;root->height = 1;return root;} else if (key < root->key) { // insert into left subtree.root->left = insert(root->left, key);} else if (key > root->key) { // insert into right subtree.root->right = insert(root->right, key);} else { // duplicate keys not allowed.return root; // don't insert duplicate key.}root->height = 1 + max(getHeight(root->left), getHeight(root->right)); // adjust height of current node.int balance = getBalance(root);if (balance > 1 && key < root->left->key) { // left left case.return rotateRight(root); // rotate right.} else if (balance < -1 && key > root->right->key) { // right right case.return rotateLeft(root); // rotate left.} else if (balance > 1 && key > root->left->key) { // left right case. root->left = rotateLeft(root->left); // rotate left first.return rotateRight(root); // then rotate right.} else if (balance < -1 && key < root->right->key) { // right left case.root->right = rotateRight(root->right); // rotate right first.return rotateLeft(root); // then rotate left.} // keep balance.return root; // already balanced.} ```。

C语言实现创建二叉树,先序遍历、中序遍历、后序遍历输出

C语言实现创建二叉树,先序遍历、中序遍历、后序遍历输出

C语⾔实现创建⼆叉树,先序遍历、中序遍历、后序遍历输出# include <stdio.h># include <stdlib.h># include <string.h># include <iostream># define OK 0;# define ERROR -1;typedef int TElemType;typedef char DataType;typedef int Status;typedef struct BiNode {DataType data;//存⾃定义类型的值struct BiNode *lchild, *rchild;//左右⼩孩指针}BiNode,*BiTree;void CreatBiNode(BiNode **Node)//此处应注意传递的参数(⼆重指针){char data;scanf_s("%c", &data);*Node = (BiTree)malloc(sizeof(BiNode));if (data == '#'){*Node = NULL;}else if ((data != '#') && (*Node)){(*Node)->data = data;(*Node)->lchild = NULL;(*Node)->rchild = NULL;CreatBiNode(&(*Node)->lchild);CreatBiNode(&(*Node)->rchild);}}Status PreOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {printf("%c", T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}Status InOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {InOrderTraverse(T->lchild);printf("%c", T->data);InOrderTraverse(T->rchild);}}Status PostOrderTraverse(BiTree T) {if (T == NULL) {return OK;}else {PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c", T->data);}}int main(){printf("先序输⼊⼆叉树(空结点⽤'#'表⽰):");BiTree T=NULL;CreatBiNode(&T);printf("先序遍历⼆叉树:");PreOrderTraverse(T);printf("\n中序遍历⼆叉树:");InOrderTraverse(T);printf("\n后序遍历⼆叉树:");PostOrderTraverse(T);system("pause");return 0;}解决思想:⼩⽣⽤的是递归创建⼆叉树,递归遍历⼆叉树,因为使⽤递归会⽐较简洁。

二叉树 c语言

二叉树 c语言

二叉树 c语言在计算机科学领域中,树型数据结构是一种非常重要的数据结构,在实际开发中也得到了广泛的应用。

其中,二叉树又是一种非常常见的树型结构。

二叉树在很多情况下都能够提供更好的算法效率,同时也易于理解和实现,因此我们可以通过通过学习和掌握二叉树的特点以及优点,来更好的应用到实际开发中。

一、二叉树的定义二叉树是一种树型结构,树型结构是由节点构成的。

二叉树与一般的树型结构不同,它的每个节点最多只有两个子节点,分别称为左子树和右子树。

它们可以为空或者不为空,其子节点的数量时不固定且没有任何限制的。

二叉树的定义如下:(1)空树是树的一种特殊的状态。

我们可以把它称为二叉树;(2)若不是空树,那么它就是由一个称为根节点(root)的元素和左右两棵分别称为左子树(left subtree)和右子树(right subtree)的二叉树组成。

二、二叉树的特性(1)每个节点最多只有两个子节点,分别称为左子节点和右子节点;(2)左子树和右子树是二叉树;(3)二叉树没有重复的节点。

三、二叉树的应用二叉树是一种非常实用的数据结构,因为它可以模拟很多实际生活中的情况。

例如,我们可以利用二叉树来对某些数据进行分类和排序。

在二叉树的基础上,我们还可以构造二叉堆、哈夫曼树等更高级的数据结构。

除此之外,二叉树还可以应用到程序设计中。

例如,我们可以构造一个二叉树来表示某个程序的控制流,这个程序在执行时可以沿着二叉树的各个节点进行分支和选择,实现不同的功能。

此外,我们还可以利用二叉树来加快某些算法的执行效率,比如二分查找算法等。

四、二叉树的遍历方式对于二叉树的遍历,有三种基本方式,即前序遍历、中序遍历、后序遍历。

它们的遍历顺序不同,因此也得到了不同的称呼。

下面我们来简要介绍一下这三种遍历方式的特点和应用。

(1)前序遍历前序遍历是指首先访问树的根节点,然后按照从左到右的顺序依次遍历左子树和右子树。

前序遍历的应用非常广泛,可以用于生成表达式树、构造二叉树等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建立二叉树的代码c语言
建立二叉树是数据结构中的一个重要内容,它是一种树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

在C语言中,我们可以通过指针来实现二叉树的建立。

我们需要定义一个二叉树节点的结构体,包含节点的值和左右子节点的指针。

代码如下:
```
typedef struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
} TreeNode;
```
接下来,我们可以通过递归的方式来建立二叉树。

具体实现如下:
```
TreeNode* createTree() {
int val;
scanf("%d", &val);
if (val == -1) { // 如果输入-1,表示该节点为空
return NULL;
}
TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode)); // 创建新节点
root->val = val;
root->left = createTree(); // 递归创建左子树
root->right = createTree(); // 递归创建右子树
return root;
}
```
在上述代码中,我们通过scanf函数来输入节点的值,如果输入-1,则表示该节点为空。

如果节点不为空,则创建一个新节点,并递归创建左右子树。

最后返回根节点。

通过上述代码,我们就可以建立一个二叉树了。

下面是一个完整的示例代码:
```
#include <stdio.h>
#include <stdlib.h>
typedef struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
} TreeNode;
TreeNode* createTree() {
int val;
scanf("%d", &val);
if (val == -1) {
return NULL;
}
TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode)); root->val = val;
root->left = createTree();
root->right = createTree();
return root;
}
void preOrder(TreeNode* root) {
if (root == NULL) {
return;
}
printf("%d ", root->val);
preOrder(root->left);
preOrder(root->right);
}
int main() {
TreeNode* root = createTree();
printf("前序遍历结果:");
preOrder(root);
return 0;
}
```
在上述代码中,我们还实现了二叉树的前序遍历,用于验证建立的二叉树是否正确。

运行结果如下:
```
1 2 -1 -1 3 -1 -1
前序遍历结果:1 2 3
```
通过上述代码,我们可以看到,我们成功地建立了一个二叉树,并进行了前序遍历。

这个过程中,我们使用了指针和递归的方式,这也是C语言中常用的二叉树建立方法。

相关文档
最新文档