二叉树的建立及其应用程序代码
二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。
二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。
本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。
一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。
下面以使用链表的方式来建立二叉树为例。
1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。
```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。
```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。
```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。
二叉排序树c语言代码实现

if ((*n) != NULL) {
free (*n);
*n = NULL;
}
}
/* 查找结点 */
PNODE find_node (PNODE n, int value) {
in_order_traversal ( n->right);
}
}
int main() {
char buf[50],a[1000];
int i,n,option,s[80],p;
PNODE tree = NULL;/*树的第一个结点*/
PNODE node = NULL;
{
r = (PNODE)malloc(sizeof(NODE));
if(!r)
{
printf("内存分配失败!");
exit(0);
zjm3:fgets (buf, sizeof(buf), stdin);
sscanf (buf, "%i", &option);
printf ("\n\n");
if(option<0) {
printf ("输入错误,请重新输入该元素\n",n);
goto zjm3;}
if(find_node (tree, option))
{
(*n)->value = value;
(*n)->left = NULL;
(*n)->right = NULL;
}
}
二叉树的建立方法总结

⼆叉树的建⽴⽅法总结之前已经介绍了⼆叉树的四种遍历(如果不熟悉),下⾯介绍⼀些⼆叉树的建⽴⽅式。
⾸先需要明确的是,由于⼆叉树的定义是递归的,所以⽤递归的思想建⽴⼆叉树是很⾃然的想法。
1. 交互式问答⽅式这种⽅式是最直接的⽅式,就是先询问⽤户根节点是谁,然后每次都询问⽤户某个节点的左孩⼦是谁,右孩⼦是谁。
代码如下(其中字符'#'代表空节点):#include <cstdio>#include <cstdlib>using namespace std;typedef struct BTNode *Position;typedef Position BTree;struct BTNode{char data;Position lChild, rChild;};BTree CreateBTree(BTree bt, bool isRoot){char ch;if (isRoot)printf("Root: ");fflush(stdin); /* 清空缓存区 */scanf("%c", &ch);fflush(stdin);if (ch != '#'){isRoot = false;bt = new BTNode;bt->data = ch;bt->lChild = NULL;bt->rChild = NULL;printf("%c's left child is: ", bt->data);bt->lChild = CreateBTree(bt->lChild, isRoot);printf("%c's right child is: ", bt->data);bt->rChild = CreateBTree(bt->rChild, isRoot);}return bt;}int main(){BTree bt;bt = CreateBTree(bt, true);LevelOrderTraversal(bt); /* 层序遍历 */return0;}2. 根据先序序列例如输⼊序列ABDH##I##E##CF#J##G##(#表⽰空),则会建⽴如下图所⽰的⼆叉树思路和第⼀种⽅式很相似,只是代码实现细节有⼀点区别,这⾥给出创建函数BTree CreateBTree(){BTree bt = NULL;char ch;scanf("%c", &ch);if (ch != '#'){bt = new BTNode;bt->data = ch;bt->lChild = CreateBTree();bt->rChild = CreateBTree();}return bt;}3. 根据中序序列和后序序列和⽅式⼆不同的是,这⾥的序列不会给出空节点的表⽰,所以如果只给出先序序列,中序序列,后序序列中的⼀种,不能唯⼀确定⼀棵⼆叉树。
数据结构二叉树的基本操作代码

数据结构二叉树的基本操作代码x#include<iostream>using namespace std;//二叉树的结构struct TreeNode{int data;//节点的值TreeNode *left;//指向左子树TreeNode *right;//指向右子树};//插入节点void insert(TreeNode *&tree, int val){if(tree == NULL){tree = new TreeNode;tree->data = val;tree->left = tree->right = NULL;}else if(val<=tree->data)//小于根节点的值则插入到左子树 insert(tree->left, val);else if(val>tree->data)//大于根节点的值则插入到右子树 insert(tree->right,val);}//查找节点TreeNode* find(TreeNode *tree,int val){if (tree == NULL)//树为空,无法查找return NULL;else if (val == tree->data)//值和节点的值相等,返回该节点return tree;else if (val < tree->data)//值小于节点的值,查找左子树 return find(tree->left,val);else if (val > tree->data)//值大于节点的值,查找右子树 return find(tree->right,val);elsereturn NULL;//无法查找}//遍历二叉树//先序遍历void preOrder(TreeNode *tree){if(tree != NULL){cout<< tree->data <<'t'; //先访问根节点preOrder(tree->left); //再遍历左子树 preOrder(tree->right); //最后遍历右子树 }}//中序遍历void inOrder(TreeNode *tree){if(tree != NULL){inOrder(tree->left); //先遍历左子树 cout<< tree->data <<'t'; //再访问根节点inOrder(tree->right); //最后遍历右子树 }}//后序遍历void postOrder(TreeNode *tree){if(tree != NULL){postOrder(tree->left); //先遍历左子树 postOrder(tree->right); //再遍历右子树 cout<< tree->data <<'t'; //最后访问根节点 }}//查找最大值TreeNode* findMax(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->right == NULL)return tree;elsereturn findMax(tree->right);}//查找最小值TreeNode* findMin(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->left == NULL)return tree;elsereturn findMin(tree->left);}//删除节点void remove(TreeNode *&tree, int val){if(tree == NULL)return;else if(val < tree->data)remove(tree->left, val);else if(val > tree->data)remove(tree->right, val);else//找到要删除的节点{if(tree->left != NULL && tree->right != NULL)//左右子树均不为空{TreeNode *temp = tree;TreeNode *max = findMax(tree->left);//查找左子树的最大结点tree->data = max->data;//将最大结点的值替换到要删除的节点remove(temp->left, max->data);//将最大结点删掉}else//只有一边的子节点不为空或者左右节点都为空{TreeNode *temp = tree;if(tree->left == NULL)//如果左节点为空,就将右节点提升 tree = tree->right;else if(tree->right == NULL)//如果右节点为空,就将左节点提升tree = tree->left;delete temp;//删掉要删除的节点}}}int main(){TreeNode *tree = NULL; //声明一个空树int arr[10] = {12, 3, 4, 6, 7, 9, 10, 5, 2, 8};for(int i=0; i<10; i++){insert(tree, arr[i]);//把数组元素插入到树当中}cout<<'先序遍历:';preOrder(tree);cout<<endl;cout<<'中序遍历:';inOrder(tree);cout<<endl;cout<<'后序遍历:';postOrder(tree);cout<<endl;cout<<'查找节点数据:4';TreeNode *findNode = find(tree, 4);if(findNode != NULL)//如果节点存在cout<<'找到了,节点的值是:'<<findNode->data;else//如果节点不存在cout<<'没有找到';cout<<endl;cout<<'查找树的最大值:'<<findMax(tree)->data<<endl; cout<<'查找树的最小值:'<<findMin(tree)->data<<endl; cout<<'删除节点:。
二叉树的创建与应用实例

二叉树的创建与应用实例一、引言二叉树是一种非常常见的数据结构,它在很多领域都有着广泛的应用,如文件系统、计算机科学、数据挖掘等。
了解和掌握二叉树的结构和应用,对于深入理解数据结构和算法是非常有帮助的。
本篇文档将详细介绍二叉树的创建以及应用实例。
二、二叉树的基本概念二叉树是一种递归定义的数据结构,它由一个根节点和两个子节点(分别称为左子树和右子树)组成。
二叉树的每个节点最多有两个子节点,这使得二叉树具有高度优化和紧凑性的特点。
三、二叉树的创建创建二叉树通常有两种方式:手动创建和通过算法创建。
1.手动创建:手动创建二叉树需要按照二叉树的定义规则,逐个创建节点并连接它们。
这种方式的优点是直观易懂,缺点是手动创建大量的节点会比较繁琐。
2.算法创建:算法创建二叉树通常使用递归的方式,通过特定的算法步骤逐个构建节点。
这种方式可以自动化地创建大量的二叉树,而且效率较高。
四、二叉树的应用实例1.文件系统:文件系统中的目录结构可以看作是一种特殊的二叉树,其中根节点是整个文件系统的入口,左子节点表示子目录,右子节点表示文件。
通过二叉树可以方便地管理和查找文件。
2.计算机科学:在计算机科学中,二叉树常用于表示程序的执行路径,如决策树、堆栈等。
此外,二叉树也常用于数据压缩和哈希算法等。
3.数据挖掘:在数据挖掘中,二叉树常用于分类和聚类算法,如决策树、k-means等。
通过构建二叉树,可以将数据集划分为不同的类别,从而更好地理解和分析数据。
五、应用实例代码展示下面是一个简单的Python代码示例,展示了如何手动创建一个简单的二叉搜索树(BinarySearchTree,BST):```pythonclassNode:def__init__(self,key):self.left=Noneself.right=Noneself.val=keydefinsert(root,key):ifrootisNone:returnNode(key)else:ifroot.val<key:root.right=insert(root.right,key)else:root.left=insert(root.left,key)returnrootdefinorder(root):ifroot:inorder(root.left)print(root.val),inorder(root.right)r=Node(50)r=insert(r,30)r=insert(r,20)r=insert(r,40)r=insert(r,70)r=insert(r,60)r=insert(r,80)print("Inordertraversalofthegiventree")inorder(r)#Output:20304050607080```六、总结本篇文档详细介绍了二叉树的创建以及应用实例,包括二叉树的基本概念、创建方式以及在文件系统、计算机科学、数据挖掘等领域的应用。
实现二叉树的各种基本运算的算法代码

实现二叉树的各种基本运算的算法代码(一)创建二叉树1. 二叉树的链表存储结构://定义二叉树的链表存储结构typedef struct BiTNode{char data;struct BiTNode *lchild, *rchild;} BiTNode, *BiTree;2.利用二叉树的链表存储结构,创建一棵二叉树//根据二叉树的链表存储结构,创建一棵二叉树BiTree CreateBiTree(BiTree T){char c;scanf(&c);if(c=='#')T=NULL;else{T=(BiTree)malloc(sizeof(BiTNode)); // 产生根节点 T->data=c; // 生成根结点T->lchild = CreateBiTree(T->lchild); // 构造左子树 T->rchild = CreateBiTree(T->rchild); // 构造右子树 }return T;}(二)二叉树的遍历1.先序遍历// 先序遍历:根左右void PreOrderTraverse(BiTree T){if(T==NULL)return;printf('%c',T->data); // 访问根结点PreOrderTraverse(T->lchild); // 遍历左子树PreOrderTraverse(T->rchild); // 遍历右子树}2.中序遍历// 中序遍历:左根右void InOrderTraverse(BiTree T){if(T==NULL)return;InOrderTraverse(T->lchild); // 遍历左子树 printf('%c',T->data); // 访问根结点InOrderTraverse(T->rchild); // 遍历右子树 }3.后序遍历// 后序遍历:左右根void PostOrderTraverse(BiTree T){if(T==NULL)return;PostOrderTraverse(T->lchild); // 遍历左子树 PostOrderTraverse(T->rchild); // 遍历右子树 printf('%c',T->data); // 访问根结点}(三)二叉树的其他基本运算1.计算二叉树的结点数// 计算二叉树的结点数int CountTreeNode(BiTree T){if(T==NULL)return 0; // 二叉树T为空时,结点数为0elsereturnCountTreeNode(T->lchild)+CountTreeNode(T->rchild)+1; }2.计算二叉树的深度// 计算二叉树的深度int TreeDepth(BiTree T){int depL, depR;if(T==NULL)return 0; // 二叉树T为空时,深度为0else{depL = TreeDepth(T->lchild); // 左子树深度depR = TreeDepth(T->rchild); // 右子树深度if(depL > depR)return depL+1;elsereturn depR+1;}}。
二叉树的应用程序代码

if ((*p)->data==parents)
{
if((*p)->lchild)
{
*k= (*p)->lchild ; //查找左子树
//Deletel(*k);
}
}
else
{
if((*p)->lchild) Search_lchild(&(*p)->lchild,parents,&(*k));
if((*p)->rchild) Search_lchild(&(*p)->rchild,parents,&(*k));
}
}
void Deletel(Bitree *p)
{
Bitree *t;
t=p;
if((*t))
{
Deletel(&(*t)->lchild);
{
if((*p)->data==childl) //找到结点
{
q=(Bitree)malloc(sizeof(Bitree));
q->data=child;
if(!(*p)->lchild) //左结点不存在
{
(*p)->lchild=q;
if(T) printf("左子树为:%c\n",T->data); else printf("不符合要求\n");
printf("删除左子树后为: ");
Deletel(&T);
q->lchild=NULL;
First(p);
printf("\n");
二叉树的完整代码实现

⼆叉树的完整代码实现1 #include<stdio.h>2 #include<stdlib.h>3 #include<malloc.h>45 typedef struct Node//结构体6 {7char data;8struct Node *LChild;9struct Node *RChild;10 } BinNode,*BinTree;1112 BinTree CreateTree(BinTree T)13 {14char ch;15 scanf("%c",&ch);16if(ch=='#')17return NULL;18else19 {20 T=(BinTree)malloc(sizeof(BinNode));21 T->data=ch;22 T->LChild=CreateTree(T->LChild);/*创建左⼦树*/23 T->RChild=CreateTree(T->RChild);/*创建右⼦树*/24return T;25 }26 }2728void PreOrder(BinTree root)//先序遍历29 {30if (root != NULL)31 {32 printf("%c", root->data);33 PreOrder(root->LChild);34 PreOrder(root->RChild);35 }36 }3738void InOrder(BinTree root)//中序遍历39 {40if (root != NULL)41 {42 InOrder(root->LChild);43 printf("%c", root->data);44 InOrder(root->RChild);45 }46 }4748void PostOrder(BinTree root)//后序遍历49 {50if (root != NULL)51 {52 PostOrder(root->LChild);53 PostOrder(root->RChild);54 printf("%c", root->data);55 }56 }57/*求⼆叉树结点总数*/58int Count(BinTree T)59 {60if(T==NULL)61return0; /*空⼆叉树结点数为0*/62else/*左右⼦树结点总数加1*/63return Count(T->LChild)+Count(T->RChild)+1;64 }65//叶⼦数66int LeafCount(BinTree T){67if(T == NULL){68return0;69 }70else if ((T->LChild==NULL) && (T->RChild==NULL)){71return1;72 }73else{74return LeafCount(T->LChild)+LeafCount(T->RChild);75 }76 }77int main()78 {7980 BinTree bt;81 printf("⼀、请按先序的⽅式输⼊⼆叉树的结点元素(注:输⼊#表⽰节点为空)如:ABC##DE#G##F###\n");82 bt=CreateTree(bt);83 printf("⼆、前序遍历⼆叉树:\n");84 PreOrder(bt);85 printf("\n");86 printf("三、中序遍历⼆叉树:\n");87 InOrder(bt);88 printf("\n");89 printf("四、后序遍历⼆叉树:\n");90 PostOrder(bt);91 printf("\n");92 printf("五、⼆叉树结点数: %d\n",Count(bt));93 printf("六、叶⼦节点的个数:%d \n",LeafCount(bt));94 system("pause");95 }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <string.h>
typedef char elemtype;
typedef struct tree //二叉树结构体
{
elemtype data;
struct tree *lchild;
struct tree *rchild;
}TREE;
TREE *createbitree() //递归建立二叉树{
char ch;
TREE *p;
ch=getchar();
if (ch=='#')
p=NULL;
else
{
p=(TREE *)malloc(sizeof(TREE));
p->data=ch;
p->lchild=createbitree();
p->rchild=createbitree();
}
return p;
}
void preorder(TREE *p) //前序遍历
{
if(p!=NULL)
{
printf("%c ",p->data);
preorder(p->lchild);
preorder(p->rchild);
}
}
void inorder(TREE *p) //中序遍历
{
if (p!=NULL)
{
inorder(p->lchild);
printf("%c ",p->data);
inorder(p->rchild);
}
}
void postorder(TREE *p) //后序遍历
{
if (p!=NULL)
{
postorder(p->lchild);
postorder(p->rchild);
printf("%c ",p->data);
}
}
void shu(TREE *p,int len) //数的形状{
if (p!=NULL)
{
shu(p->lchild,len+1);
for (int i=1;i<=4*len;i++)
{
printf(" ");
}
printf("%c",p->data);
printf("------\n");
shu(p->rchild,len+1);
}
}
int shendu(TREE *p) //计算深度
{
int l,r;
if (p==NULL)
{
return 0;
}
l=shendu(p->lchild)+1;
r=shendu(p->rchild)+1;
if (l>=r) //左右子树比较return l;
else
return r;
}
int dianshu(TREE *p) //计算结点数
{
int s;
if (p==NULL)
{
return 0;
}
s=dianshu(p->lchild)+dianshu(p->rchild)+1;
return s;
}
void jiemian() //操作界面
{
printf("请选择功能:\n");
printf("=========================\n");
printf("* 1.看看我建立的树\n");
printf("* 2.看看它的深度和叶子结点数\n");
printf("* 3.前、中、后序遍历\n");
printf("* 4.结束····\n");
printf("=========================\n");
printf("请选择:\n");
}
void main()
{
TREE *p;
int len=0,c,flag=1,i=0,s,a;
printf("实验3 二叉树的建立及其应用:\n");
printf("\n");
printf("请输入结点元素,输入#表示空(按前序输入):\n");
p=createbitree();
while (flag) //循环
{
jiemian();
scanf("%d",&c);
switch (c)
{
case 1:
printf("数的形状:\n");
shu(p,len);
getch();
system("CLS");
break;
case 2:
printf("此树的深度:\n");
s=shendu(p);
printf("%d\n",s);
printf("\n");
printf("此树的结点数:\n");
a=dianshu(p);
printf("%d\n",a);
printf("\n");
printf("数的形状:\n");
shu(p,len);
getch();
system("CLS");
break;
case 3:
printf("前序遍历结果:\n");
printf("\n");
preorder(p);
printf("\n");
printf("\n");
printf("中序遍历结果:\n");
printf("\n");
inorder(p);
printf("\n");
printf("\n");
printf("后序遍历结果:\n");
printf("\n");
postorder(p);
printf("\n");
printf("\n");
getch();
system("CLS");
break;
default:
flag=0;
exit(0);
break;
}
}
}。