第14讲 简单的轴对称图形与利用轴对称进行设计八年级数学下册同步精品讲义

合集下载

最新八年级数学下册第十四轴对称整章教案

最新八年级数学下册第十四轴对称整章教案

人教实验版数学八年级§14.1 轴对称课时安排3课时轴对称是现实生活中广泛存在的一种现象,通过对形形色色的轴对称图形的观察、分析,逐步掌握轴对称的基本性质.同时,轴对称也是探索一些图形的性质,认识、描述图形形状和位置的必要手段之一.本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征,并在此基础上给出线段垂直平分线的概念,从而得到两个图形对称轴.教学时,要让学生体会到本节内容并不是简单的对称现象的欣赏.引导学生逐步了解和领略轴对称现象的共同规律,形成有关轴对称的基本性质.注重使学生经历探索轴对称性质的实践活动,有意识地满足学生多样化的学习需求,为学生提供个性化学习的时间和空间.§14.1.1 轴对称(一)第一课时教学目标(一)教学知识点1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念.(二)能力训练要求1.通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴.2.经历观察、分析的过程,训练学生观察、分析的能力.(三)情感与价值观要求通过对丰富的轴对称现象的认识,进一步培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力和审美能力的提高.教学重点:轴对称图形的概念.教学难点:能够识别轴对称图形并找出它的对称轴.教学方法:启发诱导法.教学过程Ⅰ.创设情境,引入新课[师]我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称角度考虑,自然界的许多动植物也按对称形生长,中国的方块字中些也具有对称性……对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!从这节课开始,我们来学习第十四章:轴对称.今天我们来研究第一节,认识什么是轴对称图形,什么是对称轴.Ⅱ.导入新课[师]我们先来看几幅图片(出示图片),观察它们都有些什么共同特征.[生甲]这些图形都是对称的.[生乙]这些图形从中间分开后,左右两部分能够完全重合.[师]对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.[生丙]我们的黑板、课桌、椅子等.[生丁]我们的身体,还有飞机、汽车、枫叶等都是对称的.[师]同学们回答得真好,大家举了这么多对称的例子,现在我们来看一下下面的问题,我们来研究一下什么是轴对称图形.观察如图14.1.2,把一张纸对折,剪出一个图案(折痕处不要完全剪断),•再打开这张对折的纸,就剪出了美丽的窗花.观察得到的窗花和图14.1.1中的图形,你能发现它们有什么共同的特点吗?总结:如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)•对称.[师]了解了轴对称图形及其对称轴的概念后,我们来做一做.(屏幕显示)取一张质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,•将纸打开后铺平,你得到两个成轴对称的图案了吗?与同伴进行交流.(学生操作、讨论,教师指导)[生]我们经过操作、讨论、交流得知:位于折痕两侧的图案是对称的,它们可以互相重合.[师]很好,由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.接下来我们来探讨一个有关对称轴的问题.有些轴对称图形的对称轴只有一条,但有的轴对称图形的对称轴却不止一条,有的轴对称图形的对称轴甚至有无数条,•大家请看屏幕.(点击课件)你能找出它们的对称轴吗?分小组讨论.学生讨论得出结果:图(1)有四条对称轴;图(2)有四条对称轴;图(3)有无数条对称轴;图(4)有两条对称轴;图(5)有七条对称轴.[师]大家回答得很好,看屏幕.(演示折叠过程)(1) (2) (3) (4) (5)接下来,大家想一想,你发现了什么?(屏幕显示)[生甲]这些图形都是轴对称图形.[生乙]可是轴对称图形指的是一个图形,而这些图形每组都是两个图形,能不能说两个图形成轴对称呢?[师]乙同学的观察能力很强,提的问题非常好.像这样,•把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,•这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.(屏幕显示上图中的两个成轴对称图形的对称点)好,接下来我们做练习来巩固所学内容.Ⅲ.随堂练习(一)课本P117练习Ⅳ.课时小结这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.Ⅴ.课后作业(一)课本习题14.1─1、2、6、7、8题.(二)预习课本P118~P120内容.板书设计§14.1.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.三、随堂练习四、小结14.1.2轴对称(二)授课教师:陈剑颖授课班级:福州十一中八年(12)班一.【教学目标】(一)教学知识点1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.2.了解线段垂直平分线的概念.(二)能力训练要求1.经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察.2.能利用轴对称性质,准确画出轴对称图形的对称轴。

八下数学活动——轴对称 教学设计

八下数学活动——轴对称 教学设计

一、概述轴对称是数学中一个重要的概念,在初中数学中占据着重要的地位。

它不仅是数学知识的一部分,还对学生的逻辑思维能力、空间想象能力有一定的要求。

对于学生来说,轴对称的学习显得尤为重要。

本文将围绕八下数学活动中的轴对称教学设计展开讨论,从课程目标、教学内容、教学方法以及评价方式等方面展开详细的分析和讨论。

二、教学目标1. 知识目标:了解轴对称的基本概念和性质,掌握轴对称图形的绘制方法。

2. 能力目标:培养学生的观察分析能力和空间想象能力,能够用轴对称的性质解决实际问题。

3. 情感目标:激发学生学习数学的兴趣,培养学生的坚持不懈、勇于探索的品质。

三、教学内容1. 基本概念:介绍轴对称的定义和基本性质。

2. 轴对称图形:教学学生绘制不同形状的轴对称图形。

3. 轴对称图形的应用:通过实际例子引导学生掌握轴对称的应用。

四、教学方法1. 案例分析法:通过真实的例子引导学生理解轴对称的概念和性质。

2. 观察实验法:设计一些观察实验,引导学生通过观察探索轴对称图形的规律。

3. 合作学习法:组织学生分组合作,共同完成一些轴对称图形的绘制和分析任务。

五、教学过程1. 导入新课:通过生活中的例子引出轴对称的概念,激发学生的学习兴趣。

2. 学习新知识:介绍轴对称的定义和性质,逐步引导学生理解轴对称的概念。

3. 练习与检测:布置一些练习题,让学生巩固并检测所学知识。

4. 拓展应用:通过一些生活中的实际问题,引导学生体会轴对称的应用价值。

5. 总结反思:对本节课的内容进行总结和反思,激发学生的学习兴趣,培养学生的探究精神。

六、教学评价1. 考查学生的基本技能:通过作业和课堂练习考察学生对轴对称知识的掌握情况。

2. 考查学生的思维能力:布置一些综合性的题目,考察学生的分析和解决问题的能力。

3. 考查学生的团队合作能力:通过小组合作完成一些任务,考察学生的协作意识和能力。

七、教学反思本教学设计以学生为中心,突出了学生的主体地位,注重培养学生的探究精神和创新能力。

八年级轴对称图形复习课课件.ppt

八年级轴对称图形复习课课件.ppt
有对称点。 如果把成轴对称的两个图形看成是一
个整体,这个整体就是一个轴对称图形; 如果把一个轴对称图形的两旁的部分看成 两个图形,这两个部分图形就成轴对称。
2、轴对称的性质和几个简单的轴对称 图形的性质,是这部分的重点知识,应引 起足够的重视。
3、轴对称的实际应用应提高到足够 的地位。
4、用对称的眼光看问题,解决问题, 指导辅助线的添加。
第十四章 轴对称图形复习课
如皋市新民初中 初二数学备课组
一、知识概况
本章着重研究轴对称的概念, 性质,轴对称的作图,应用,以及 轴对称图形和几个常见的轴对称图 形的性质和判定。
(一)轴对称和轴对称图形
1、概念
如果把一个图形沿着某一条直线折叠 后,能够与另一个图形重合,那么这两个 图形关于这条直线成轴对称,这条直线叫 做对称轴,两个图形中的对应点叫做对称 点。
A
B
D
C
A
C′
思路点拨:
B
D
C
由于翻折后的图形与翻折前的图形关
于折痕对称;所以C、C′关于直线AD对称,
AD垂直平分CC′,
又处于对称位置的元素(线段、角) 对应相等,这为问题解决提供了条件。
A
C′ O
解:
(1)画CO垂直AB,并延 长到C′,使得OC′=OC,
B
D
C 点C′即为所求。
(2)连结C′D,由对称性得CD=CD′, ∠CDA=∠CDA=60°;所以∠BDC=60°,
即∠BOB’’=2α
小结点评:
(1)作两个成对称图形的对称轴,只需 将对称点的垂直平分线作出即可。
(2)成轴对称的两个图形的对应元素相 等是解题的关键。
(3)补全对称图形中所缺的部分,是添 加辅助线的重要思考方向。

2021年八年级数学简单的轴对称图形教案(V)苏科版

2021年八年级数学简单的轴对称图形教案(V)苏科版

2019-2020年八年级数学简单的轴对称图形教案(V)苏科版轴对称的认识之三简单的轴对称图形教学内容:角平分线、线段垂直平分线性质定理的逆定理及其应用教学目标:1、知识与技能目标:通过学生积极参与,认真探索,掌握角的平分线与线段垂直平分线性质定理的逆定理,认识命题与互逆命题、定理与互逆定理的关系,开拓学生的思维空间,使学生能站在系统的高度掌握知识。

2、过程与方法目标:通过学生自己探索,讲练结合,达到掌握知识,形成知识系统。

站在系统的高度认识知识。

3、情感与态度目标:学生通过积极参与,感受开拓思维的乐趣,感受数学的和谐与美感。

教学重点:角平分线、线段垂直平分线性质定理的定理及其应用,命题与互逆命题,定理与互逆定理的关系。

教学难点:角平分线、线段垂直平分线性质定理的逆定理的综合应用。

教学方法:讲练结合。

教学过程:复习提问:问:角平分线、线段垂直平分线性质定理分别是什么? 线段垂直平分线上的点到线段两端的距离相等; 角平分线上的点到线段两端的距离相等。

新课过程:问:如图,DE ⊥OE ,DF ⊥OF ,且DE =DF ,则D 点在∠EOF 的角平分线上吗? 在∠EOF 的角平分线上。

问:如何进行证明? 证明:连结OD 。

∵DE ⊥OE ,DF ⊥OF , ∴∠OED =∠DFO =90° 在Rt ΔOED 和Rt ΔOFD 中∴Rt ΔOED ≌Rt ΔOFD(HL) ∴∠EOD =∠OFD ∴D 在平分线上。

问:如何总结成一个定理?(留时间给学生思考)要总结成一个定理,需要把字母用文字表述出来,请思考其条件表达的是怎样的意思? 到角两边距离相等的点在这个角的平分线上。

问:这个结论的条件与结论分别是什么? 条件:到角两边距离相等的点; 结论:这个点在角的平分线上。

问:它和角平分线的性质定理有何关系?条件与结论进行了交换。

要把这个总是弄清楚,还得搞清楚另一个知识。

把判断一件事情的句子叫做命题。

八年级下册数学轴对称讲解知识点

八年级下册数学轴对称讲解知识点

八年级下册数学轴对称讲解知识点在数学学习中,轴对称是一个非常重要的概念。

相信在初中数学课堂上,同学们已经学习了关于点、图形的轴对称知识,但是在这里我们将更加深入地了解轴对称的概念,以及相关的知识点。

本文将针对八年级下册数学轴对称进行讲解,帮助同学们更好地掌握轴对称的相关知识。

一、轴对称的定义轴对称是指:存在一条直线称为轴,通过这条轴将一个图形分成两个部分,两个部分是对称的。

在轴对称中,图形称为轴对称图形,轴称为轴对称轴。

二、轴对称图形的特征1.轴对称图形关于对称轴对称,即一侧与另一侧完全相同。

2.轴对称图形的对称轴上的任意点到图形上某一点的距离等于对称轴上同侧的对应点到该点的距离。

3.轴对称图形中,对称轴上的点分为对称点,它们所在的位置关系是:对称轴上两点的距离相等,且在对称轴的同侧。

三、轴对称图形的构造方法构造轴对称图形的方法有两种。

1.作对称轴,再作图形,根据对称轴的位置和方向,构造轴对称图形。

2.对已知的轴对称图形,根据它的特征建立对称轴。

四、轴对称变换轴对称变换是指将一个图形沿着一条直线进行翻转,使其变成与原图对称的另一个新图形,这个过程叫做轴对称变换。

轴对称变换包括两个部分:1.将图形移动到对称轴的一侧。

2.将这个图形做一个翻转,即将每个点沿对称轴翻转到它在对称轴的反侧。

五、轴对称的应用1.轴对称可以用来证明两个图形的面积相等。

2.轴对称可以用来构造一些图形,如五角星、六角星等。

3.轴对称可以用来证明某些性质,如证明几何图形的对称性等。

六、轴对称容易混淆的概念在学习轴对称时,有一些概念容易混淆。

下面是一些常见的例子:1.轴对称和中心对称中心对称是指:对于一个图形,在一个点上能将这个图形翻转180度,使得图形上每个点在翻转后都能重合。

轴对称是指:对于一个图形,在一条直线上,能将这个图形翻转成关于这条直线对称的一个新图形。

可以看出,轴对称与中心对称有共同点(都涉及到了图形的翻转),也有区别。

八年级轴对称图形复习课课件

八年级轴对称图形复习课课件

如何绘制具有轴对称性的图形
步骤一
找出轴线位置。
步骤二
在对称轴上标出若干点,找出 这些点的对称点。
步骤三
将所有基本图形和组合图形分 别复制到对称面。
轴对称图形的应用
美术创作
轴对称图形是美术创作中常用的手段,可以形成稳定、和谐的美感。
建筑设计
建筑中也经常运用轴对称法,使建筑物更具美感,更富有艺术感。
机械制造
机械制造中许多零部件都具有轴对称性,从而提高制造效率并降低成本。
课堂练习与总结
请同学们运用刚学到的知识,判断和绘制轴对称图形,并归纳总结轴对称图形的特点和应用。
八年级轴对称图形复习课 ppt课件
本次介绍八年级数学轴对称图形知识点,内容涵盖轴对称图形定义、特征、 分类、判断、绘制以及应用等方面。
何为轴对称图形
1 定义
轴对称图形是指通过一个轴线将图形分成的两部分互为镜像对称的图形。
2 特征
轴线是对称轴,图形两侧是镜像对称的,且对称轴垂直于图形的对称性。
轴对称图形的分类与例子
基本图形
• 正方形 • 矩形 • 正圆 • 等边三角形
组合图形
由基本图形组合而成的轴对 称图形
实际物体中的轴对 称性
如路灯、叶子、雪花等
如何判断图形是否具有轴对称性
1
观察图形轮廓
判断形是否平衡,是否对称。
找对称线
2
从两点或多点判断,或从图形特征入
手。
3
验证对称性
通过将对称轴上的点折到镜像面上, 检查是否重合。

八年级数学简单的轴对称图形PPT精品课件

八年级数学简单的轴对称图形PPT精品课件

B
∵ OC是∠AOB的平分线
且DE⊥AB DC⊥BC
∴ CD=CE
练一练
A
2cm
P O

B
角平分线上 的点到这个 角的两边的
距离相
等.
已知:点P为∠AOB的角平分线上的一 点,它到OA的距离为2cm,那么它到
OB的距离是_____2_c_m___________。
试一试
如图,在Rt△ABC中, BD是∠ABC的平分线, DE⊥AB ,垂足为E。DE 与DC相等吗?为什么?
找一找
在上述操作中,你发现了哪些相
等的线段?把你的理由告诉大家。
答:在△COD与△COE中,
CD=CE
AM
D
∠ODC = ∠OEC
P
∠COD = ∠COE
OC= OC
△AOB≌△ DOC(SAS) NhomakorabeaCD= CE
C
O
E
N
B
OD=OE
知识点一:角平分线的性质
A
D
角平分线上的点
C
O
E
到这个角的两边 的距离相等
C D
A
E
B
图(1)
线段垂直平分线 上的点到这条线 段两个端点的距
离相等.
拓展应用:
2、某个星期天,凌霄中学初一年级的 同学参加义务劳动,每两个班的同学为 一组,分别在A、B、C三处劳动。为 了方便同学,现要在劳动工地确定一个 茶水供应点P,使得到P到A、B、C 三处的距离相等,请你帮助确定P点的 位置,并说说你的理由。
PPT文档·教学课件
明两线段相等又提供了新的方法与途径。
用一用
如图,直线a,b,c表示三条相交叉的公路,A、B, 表示公路b 与 c 、a与 c的交叉点.若在三条公路 围成的区域内修建一处加油站,使加油站到三条 公路a,b,c的距离相等,则加油站应建在何处?

轴对称的教案八年级

轴对称的教案八年级

八年级数学《轴对称》教案本教案旨在帮助八年级学生掌握轴对称的概念、性质和应用,培养学生的几何直观能力和解题能力。

下面是本店铺为大家精心编写的5篇《八年级数学《轴对称》教案》,供大家借鉴与参考,希望对大家有所帮助。

《八年级数学《轴对称》教案》篇1一、教学目标1. 知识与技能目标:理解轴对称的概念,掌握轴对称的性质和应用,能运用轴对称解决简单的几何问题。

2. 过程与方法目标:通过观察、操作、讨论等方式,培养学生的几何直观能力和解题能力。

3. 情感态度和价值观目标:培养学生对数学的兴趣,提高学生的审美观念和学习兴趣。

二、教学重点和难点1. 教学重点:理解轴对称的概念和性质,掌握轴对称的应用。

2. 教学难点:运用轴对称解决简单的几何问题。

三、教学准备1. 教师准备:课件、方格纸、彩色笔。

2. 学生准备:笔记本、笔。

四、教学过程1. 导入新课 (5 分钟)教师通过图片或视频的形式,向学生展示一些具有轴对称性的事物,如飞机、鸟巢、雪花等,引导学生观察并思考这些事物的共同特点。

2. 学习新知 (30 分钟)(1) 教师通过课件向学生介绍轴对称的概念,引导学生理解轴对称的定义和特点。

(2) 教师通过实例讲解轴对称的性质,如对称轴、对称点、对称线等,引导学生掌握轴对称的性质。

(3) 教师通过例题讲解轴对称的应用,如求解线段中点、求解面积等,引导学生掌握轴对称的应用。

3. 巩固练习 (20 分钟)教师通过课件出示一些练习题,让学生运用轴对称的概念和性质解决实际问题。

4. 小组讨论 (15 分钟)教师将学生分成小组,让他们讨论轴对称的一些应用问题,如“如果一个长方形有一条对称轴,那么它是否一定是矩形?”、“如果一个正方形有一条对称轴,那么它是否一定是菱形?”等。

5. 总结反思 (5 分钟)教师引导学生总结本节课所学的知识点,反思自己的学习过程,检查是否达到教学目标。

五、教学评价1. 课堂练习:学生能熟练运用轴对称的概念和性质解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14讲简单的轴对称图形与利用轴对称进行设计目标导航知识精讲知识点01 角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C 在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE【知识拓展】(2021秋•昌吉市校级期末)如图,∠A=90°,CD平分∠ACB,DE⊥BC于E,且AB=3cm,BD=2cm,则DE=cm.【即学即练1】(2021秋•顺平县期末)如图(1),三角形ABC中,BD是∠ABC的角平分线.(1)若∠A=80°,∠ABC=58°,则∠ADB=°.(2)若AB=6,设△ABD和△CBD的面积分别为S1和S2,已知,则BC的长为.(3)如图(2),∠ACE是△ABC的一个外角,CF平分∠ACE,BD的延长线与CF相交于点F,CG平分∠ACB,交BD于点H,连接AF,设∠BAC=α,求∠BHC与∠HFC的度数(用含α的式子表示).【即学即练2】(2022春•江都区月考)如图,在△ABC中,∠ACB=2∠B,CD平分∠ACB,AD=2,BD =3,则AC的长为()A.3B.C.4D.知识点02线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.【知识拓展1】(2021秋•曲阳县期末)如图,AB比AC长3cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14cm,则AB=,AC=.【即学即练1】(2022•珠海二模)如图,在△ABC中,BC的垂直平分线交AC,BC于点D,E.若△ABC 的周长为30,BE=5,则△ABD的周长为()A.10B.15C.20D.25【即学即练2】(2021秋•长丰县期末)如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.2【知识拓展2】(2021秋•汉阴县校级期末);如图,已知△ACD的周长是14,AB﹣AC=2,BC的垂直平分线交AB于点D,BC交AB于点D,交BC于点E,求AB和AC的长.【即学即练1】(2021秋•怀柔区期末)如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD=22°,求∠C的度数.知识点03 等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.【知识拓展1】如图,在△ABC中,∠A=70°,AB=15cm,AC=10cm,点P从点B出发以3cm/s的速度向点A运动,点Q从点A同时出发以2cm/s的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2s B.3s C.4s D.5s【即学即练1】(2021秋•鼓楼区校级期末)量角器测角度时摆放的位置如图所示,在△AOB中,OA=OB,射线OC交边AB于点D,则∠ADC=°.【知识拓展2】(2022•拱墅区模拟)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠DCA的度数;(2)若∠DCA=x°,求∠EBC的度数(用含x的代数式表示).【即学即练1】(2021秋•自贡期末)在△ABC中,AB=AC,过点C作CD⊥BC,垂足为C,∠BDC=∠BAC,AC与BD交于点E.(1)如图1,∠ABC=60°,BD=6,求DC的长;(2)如图2,AM⊥BD,AN⊥CD,垂足分别为M,N,CN=4,求DB+DC的长.知识点04等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.【知识拓展1】(2022春•江都区月考)如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为24,则PD+PE+PF=()A.8B.9C.12D.15【即学即练1】(2022春•泰州月考)如图,已知∠XOY=60°,点A在边OX上,OA=4.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC内(不包括各边)的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=m,OE=n,则m+2n的取值范围是.【知识拓展2】(2021秋•连江县期末)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D,E,AE,BD相交点O,连接DE.(1)判断△CDE的形状,并说明理由;(2)求证:S△AOB=2S△OBE.【即学即练1】(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.知识点05 作图-轴对称变换几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.【知识拓展1】(2021秋•昌吉市校级期末)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣4),B(3,﹣3),C(1,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)写出△A1B1C1各顶点的坐标;(3)求△ABC的面积.【即学即练1】(2021•安徽模拟)如图,在四边形ABCD中,请在所给的图形中进行操作:①作点A关于BD的对称点P;②作射线PC交BD于点Q;③连接AQ.试用所作图形进行判断,下列选项中正确的是()A.∠PCB=∠AQB B.∠PCB<∠AQBC.∠PCB>∠AQB D.以上三种情况都有可能【即学即练2】(2021秋•广饶县期中)如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A'B'C',并在所画图中标明字母;(2)△ABC的面积为;(3)在直线l上找一点P,连接PB、PC,当PB+PC最小时,这个最小值是.知识点06 利用轴对称设计图案利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.【知识拓展1】(2021秋•吐鲁番市期末)在6×6的网格中已经涂黑了三个小正方形,请在图中涂黑一块(或两块)小正方形,使涂黑的四个(或五个)小正方形组成一个轴对称图形.【即学即练1】(2022春•海淀区校级月考)北京2022年冬奥会的举办,再次点亮了北京这座千年古都.在下列北京建筑的简笔画图案中,是轴对称图形的是()A.国家体育场B.国家游泳中心C.天安门D.国家大剧院【即学即练2】(2021秋•兴化市期末)如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形构成一个轴对称图形,那么涂法共有种.【即学即练3】(2021秋•黄石港区期末)如图a,网格中的每一个正方形的边长为1,△ABC为格点三角形,直线MN为格点直线(点A、B、C、M、N在小正方形的顶点上).(1)仅用直尺在图a中作出△ABC关于直线MN的对称图形△A′B′C′.(2)如图b,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.(3)如图c,仅用直尺作三角形ABC的边AC上的高,简单说明你的理由.能力拓展一.选择题(共6小题)1.(2020•西安自主招生)已知等腰三角形一个外角是110°,则它的底角的度数为()A.110°B.70°C.55°D.70°或55°2.(2020•郎溪县校级自主招生)如图,四边形ABCD中,∠A、∠B、∠C、∠D的角平分线恰相交于一点P(A、P、C三点不共线),记△APD、△APB、△BPC、△DPC的面积分别为S1、S2、S3、S4,则有()A.S1+S3=S2+S4B.S1+S2=S3+S4C.S1+S4=S2+S3D.S1=S33.(2018•市南区校级自主招生)如图,在△ABC中,∠BAC的平分线与BC边的中垂线交于点D,DE⊥AB于E,连接CD.若CD=2,DE =,则∠ACD=()A.150°B.135°C.120°D.110°4.(2021•黄州区校级自主招生)直线a∥b,A、B分别在直线a、b上,△ABC为等边三角形,点C在直线a、b之间,∠1=10°,则∠2=()A.30°B.40°C.50°D.70°5.(2019•汉阳区校级自主招生)如图,已知等边△ABC外有一点P,P落在∠BAC内,设点P到BC、CA、AB三边的距离分别为h1,h2,h3且满足h2+h3﹣h1=18,那么等边△ABC的面积为()A.B.C.D.6.(2019•柯桥区自主招生)平面上任意一点到边长为的等边三角形三顶点距离之和不可能的是()A.3B.6C.4D.8二.填空题(共7小题)7.(2019•和平区校级自主招生)把3,6,10,15,…这些数叫做三角形数,这是因为用这些数目的点可以排成正三角形,如图所示,则第6个三角形数是.8.(2020•浙江自主招生)设锐角△ABC的边BC上有一点D,使得AD把△ABC分成两个等腰三角形,试求△ABC的最小内角的取值范围为.9.(2020•武昌区校级自主招生)如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是.(结果用m,n表示)10.(2020•浙江自主招生)如图,在△ABC中,AB=AC,CM平分∠ACB,与AB交于点M,AD⊥BC于点D,ME⊥BC于点E,MF⊥MC与BC交于点F,若CF=10,则DE=.11.(2019•顺庆区校级自主招生)已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=.12.已知直线AB和△DEF,作△DEF关于直线AB的对称图形,将作图步骤补充完整:(如图所示)(1)分别过点D,E,F作直线AB的垂线,垂足分别是点;(2)分别延长DM,EP,FN至,使=,=,=;(3)顺次连接,,,得△DEF关于直线AB的对称图形△GHI.13.(2008•合肥开学)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有个,请在下面所给的格纸中一一画出.(所给的六个格纸未必全用).三.解答题(共4小题)14.(2021秋•寻乌县期末)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)(1)若△A1B1C1与△ABC关于y轴对称,请写出点A1,B1,C1的坐标(直接写答案):A1;B1,;C1;(2)△ABC的面积为;(4)在y轴上画出点P,使PB+PC最小.15.(2021秋•绵竹市期末)在等边△ABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB 的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数量关系,若成立,请给予证明.16.(2021秋•木兰县期末)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.建立如图所示平面直角坐标系,点A的坐标为(﹣5,2).(1)画出与△ABC关于y轴对称的A1B1C1;(2)通过画图在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB并直接写出点Q的坐标.Q 的坐标为.17.(2021秋•开封期末)在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N在边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.分层提分题组A 基础过关练一.选择题(共6小题)1.(2021秋•普兰店区期末)如图,DE,DF分别是线段AB,BC的垂直平分线,连接DA,DC,则()A.∠A=∠C B.∠B=∠ADC C.DA=DC D.DE=DF2.(2021秋•细河区期末)如图,已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(在B,C不与点O重合)连接AB,连AC交射线OE于点D,且AB∥ON,当△OCD是等腰三角形时,则∠OAC=()A.60°或40°或120°B.80°或40°C.60°或120°D.70°或120°3.(2022•宝鸡模拟)如图,在△ABC中,AB=AC,AD平分∠BAC,点E是AD上的点,且AE=EC,若∠BAC=45°,BD=3,则CE的长为()A.3B.3C.2D.44.(2021秋•嵊州市期末)如图,在△ABC中,CA=CB,∠ACB=110°,延长BC到D,在∠ACD内作射线CE,使得∠ECD=15°.过点A作AF⊥CE,垂足为F.若AF=,则AB的长为()A.B.2C.4D.65.(2021秋•雁江区期末)等腰三角形一边长等于2,一边长等于3,则它的周长是()A.5B.7C.8D.7或86.(2021秋•信都区期末)如图,在等边三角形ABC中,AB=4,D是边BC上一点,且∠BAD=30°,则CD的长为()A.1B.C.2D.3二.解答题(共6小题)7.(2021秋•定陶区期末)如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠C=35°,求∠BAE的度数.8.(2021秋•濮阳期末)如图,AB=AC=AD,且AD∥BC,∠BAC=28°,求∠D的度数.9.(2021秋•岑溪市期末)已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE交AC于点D,交AB 于点E,∠C=75°.(1)求∠A的度数;(2)求∠CBD的度数.10.(2021秋•嘉鱼县期末)(1)如图1,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数;(2)如图2,在△ABC中,AB=AD=DC,且AC=BC,求∠C的度数.11.(2021秋•岑溪市期末)在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(0,1),B(2,﹣1),C(4,4).(1)请在所给的坐标系中画出△ABC;(2)画出△ABC关于y轴对称的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点).12.(2021秋•利通区校级期末)如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴的对称图形△A1B1C1,并直接写出△ABC关于x轴对称的△A2B2C2的各点坐标.试求出△ABC的面积.题组B 能力提升练一.选择题(共3小题)1.(2021秋•望城区期末)如图,在等腰△ABC中,∠ABC=116°,AB的垂直平分线DE交AB于点D,交AC于点E,BC的垂直平分线PQ交BC于点P,交AC于点Q,连接BE,BQ,则∠EBQ=()A.62°B.58°C.52°D.46°2.(2021秋•南昌期末)如图,在△ABC中,AB=AC,∠ABM=∠CBN,MN=BN,则∠MBC的度数为()A.45°B.50°C.55°D.60°3.(2021秋•西城区校级期中)如图所示的“钻石”型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的图形是一个轴对称图形,一共有()种涂法.A.1B.2C.3D.4二.填空题(共6小题)4.(2021秋•鹿邑县期末)如图,在四边形ABCD中,∠BAD=60°,CD⊥AD,CB⊥AB,AC的延长线与∠ADC、∠ABC相邻的两个角的平分线交于点E,若CD=CB,则∠CED的度数为.5.(2021秋•钢城区期末)如图,BD垂直平分AC,交AC于E,∠BCD=∠ADF,F A⊥AC,垂足为A,AF =DF=5,AD=6,则AC的长为.6.(2022•鼓楼区校级开学)如图,已知等边三角形ABC,点D为线段BC上一点,以线段DB为边向右侧作△DEB,使DE=CD,若∠ADB=m°,∠BDE=(180﹣2m)°,则∠DBE的度数是.7.(2021秋•道县期末)如图,已知∠MON=30°,A、B、C、D在射线ON上,点E、F、G在射线OM 上,△ABE、△BCF、△CDG均为等边三角形,若OA=1,则△CDG的周长为.8.(2021春•城阳区期末)(1)已知:线段a,∠α,∠β.求作:△ABC,使AB=a,∠A=α,∠B=β.(请用直尺、圆规作图,不写作法,但要保留作图痕迹)结论:.(2)如图,在长度为1个单位的小正方形组成的网格中,点A,B,C在小正方形的顶点上,在图中画出与△ABC关于直线l成轴对称的△A'B'C'.结论:.9.(2021春•大洼区月考)在4×4的方格中,有五个同样大小的正方形如图摆放,移动其中的小正方形A 到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形.这样的移法共有种.三.解答题(共4小题)10.(2021秋•道县期末)如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线的交点.(1)∠BPC的度数是.(2)请问点P是否在∠BAC的角平分线上?请说明理由.(3)证明:AB=PC.11.(2021秋•安庆期末)教材呈现,如图是华师版八年级上册数学教材第96页的部分内容.定理证明:请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,△ABC的周长是10,BO、CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD =3,求△ABC的面积.12.(2021秋•宜州区期末)如图,点D在等边△ABC的外部,E为BC边上的一点,AD=CD,DE交AC 于点F,AB∥DE.(1)判断△CEF的形状,并说明理由;(2)若BC=10,CF=4,求DE的长.13.(2022•黄陂区模拟)在8×6的网格中,A,B,C是格点,D是AB与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示:(1)在线段AC上取点E,使DE=CD;(2)画格点F,使EF∥AB;(3)画点E关于AB的对称点G;(4)在射线AG上画点P,使∠PDE与∠GAE互补.题组C 培优拔尖练一.解答题(共12小题)1.(2021秋•仓山区期末)如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.2.(2021秋•伊川县期末)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.3.(2021秋•南阳期末)在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=.(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=.(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?并给予证明.4.(2021秋•沂源县期末)如图,在△ABC中,点E,F在BC上,EM垂直平分AB交AB于点M,FN垂直平分AC交AC于点N,∠EAF=90°,BC=12,EF=5.(1)求∠BAC的度数;(2)求S△EAF.5.(2021秋•武城县期末)已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.6.(2021秋•黄石期末)如图,平面直角坐标系中,△AOB的顶点均在边长为1的正方形在顶点上.(1)求△AOB的面积;(2)若点B关于y轴的对称点为C,点A关于x轴的对称点为D,求四边形ABCD的面积.7.(2021秋•尚志市期末)如图,△ABC的三个顶点的坐标分别为A(0,6),B(﹣4,2),C(﹣1,3).(1)画出与△ABC关于y轴对称的△AB1C1,并写出点B1的坐标;(2)在x轴上找出点P,使PC+PB1最小,并直接写出点P的坐标.(保留必要作图痕迹)8.(2021秋•垦利区期末)在如图的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在网格平面内画出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)分别写出点A′、B′、C′的坐标.9.(2020秋•澄海区期末)直角三角形纸片ABC中,∠ACB=90°,AC≤BC,如图,将纸片沿某条直线折叠,使点A落在直角边BC上,记落点为D,设折痕与AB、AC边分别交于点E、F.(1)如果∠AFE=65°,求∠CDF的度数;(2)若折叠后的△CDF与△BDE均为等腰三角形,那么纸片中∠B的度数是多少?写出你的计算过程,并画出符合条件的折叠后的图形.10.(2021秋•滑县校级期末)已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB 于E,DF交直线BC于F.(1)如图(1),求证:DE=DF;(2)如图(2),若BE=3AE,求证:CF=BC.(3)如图(3),若BE=AE,则CF=BC;在图(1)中,若BE=4AE,则CF=BC.11.(2020秋•大足区期末)在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE 的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE 的度数(直接写出结果).12.(2021秋•常州期中)如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:(1)在图1中,画一个顶点为格点、面积为5的正方形;(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)(3)在图3中,找一格点D,满足:①到CB、CA的距离相等;②到点A、C的距离相等.。

相关文档
最新文档