怎样比较液体压强的大小

合集下载

流体流速与压强大小的关系

流体流速与压强大小的关系
风能“吸”起物体是因为( A )
• A.龙卷风内部的压强远小于外部的压强 • B.龙卷风增大了空气对物体的浮力 • C.龙卷风使物体受到的重力变小 • D.迷信说法中的“龙’把物体“抓”到空中
• 4.刮大风的天气,我们在上学的路上如果迎 风走路或骑车,一阵大风刮来时,我们无法 用嘴或鼻子吸进空气,但可以向外吐气,当 一阵风过去又恢复了正常呼吸,其原因是 ( B)
喷头
水龙头 水管
热水盆
课堂练习
相信大家都有过这样的经历:步行在雨 中,我们会打一把伞.一阵大风吹来, 雨伞会被向上吸起来.这是为什么呢? 你能不能用今天所学的知识解释这个现 象呢?
草原犬鼠洞穴的空调系统
AB
A 吹过平坦表面的风运动速度小,压强大
B
吹过隆起表面的风流速大,压强小
因为隆起的土堆处空气的流速比较快,压强就比较小,



上方压强大于下方



给车身较大压力
增加了稳定性



加大了与地面摩 擦
增 大 了 动力

液体中,流速越大的位置,压强越小
农村用的一种简易 的热水器,把热水盆放 在地上,用一根竖直的 管子连在自来水管上, 打开水龙头,热水便自 动上来和冷水混合,从 喷头出来的是混合后的 温水。你知道其中的道 理吗?
水翼船和其他船舶不同之处,是在船的底部装了 两幅类似于飞机机翼的水翼,船舶航行时,水流经过 水翼上方的流速大,压强小,水经过水翼下方的流速 小,压强大,从而产生了向上的压力差,有了向上的 升力,把船体向上托起,使船体与水的接触面积减小, 减小了水对船体的阻力,进一步提高了船速。
(4)气流偏导器
象“装反了的机翼”

液体压强

液体压强

第二节液体的压强1.液体内部产生压强的原因:液体受到重力作用,并且具有流动性。

2.液体内部压强的测量工具:压强计3.液体压强的特点:●液体对容器底和测壁都有压强,液体内部向各个方向都有压强。

●液体的压强随深度的增加而增大。

●在同一深度,液体向各个方向的压强相等。

●液体的压强还跟液体的密度有关,在深度相同时,液体密度越大,压强越大。

4.液体压强的大小●推导液体压强的公式使用了建立理想模型法。

●液体的压强公式:p=ρghp——压强——帕斯卡(Pa);ρ——液体密度——千克每立方米(kg/m3);h——液体深度——米(m)●液体的深度指从被研究点到自由液面的垂直距离。

左下三幅图中h都是液体的深度,a都是自由液面。

●从公式中看出:液体的压强只与液体的密度和液体的深度有关,而与液体的质量、体积、重力、容器的底面积、容器形状均无关。

●对于形状不规则的容器,液体对容器底部的压力不等于液体的重力。

此时液体压强只能用液体压强公式计算。

并且要先求压强,后求压力。

●形状不规则容器中的液体对容器底部产生压力的大小,等于以容器的底面积为底,液体深度为高的柱体体积的液体受到的重力大小。

●如果容器的形状是规则的(长方体、圆柱形),并且放在水平面上,那么液体对容器底部的压力等于液体受到的重力。

这时可以先求出压力,然后算出压强。

5.连通器●定义:上端开口,下部相连通的容器叫做连通器。

●连通器原理:如果容器内只有一种液体,在液体不流动时,各容器中的液面总保持相平。

应用:茶壶的壶嘴与壶身、锅炉的炉身与外面的水位计都构成了连通器;船闸、洗手间的下水管弯管、乳牛自动喂水器、船闸等*1.液体由于受作用,因而对容器底有力,当然也就有压强;液体具有性,容器壁要阻碍它,因而液体对容器壁要产生力,也要产生。

*3.研究液体内部压强的测量仪器是。

这种仪器上的金属盒(盒面是橡皮膜)放到液体中时,收到液体对它的压力,使它发生形变,_______(向内凹、向外凸),它的U形玻璃管两边液柱的高度会发生变化,被测的液体中某处的压强大小就是通过U形管两边液面的显示出来的。

液体压强的规律

液体压强的规律

液体压强的规律
液体对容器的底面和侧壁都有压强。

在同一深度,同一液体向各个方向有压强,且压强都相等。

在同一液体,液体内部压强随深度的增加而增大。

在同一深度,不同液体密度越大液体该处压强越大。

液体容器底、内壁、内部的压强称为液体压强,简称液压。

液体压强产生的原因是由于液体受重力的作用。

若液体在失重的情况下,将无压强可言。

由于液体具有流动性,它所产生的压强具有如下几个特点:①液体除了对容器底部产生压强外,还对“限制”它流动的侧壁产生压强。

固体则只对其支承面产生压强,方向总是与支承面垂直。

②在液体内部向各个方向都有压强,在同一深度向各个方向的压强都相等。

③密闭容器内的液体能把它受到的压强按原来的大小向各个方向传递。

我们知道,物体受到力的作用产生压力,而只要某物体对另一物体表面有压力,就存在压强,同理,水由于受到重力作用对容器底部有压力,因此水对容器底部存在压强。

液体具有流动性,对容器壁有压力,因此液体对容器壁也存在压强。

液体压强的探究实验

液体压强的探究实验

液体压强的探究实验液体压强的探究实验是一种常见的物理实验,通过该实验可以探索液体内部的压强分布规律,并将其应用于实际生活中的一些问题。

本文将从物理定律、实验准备和过程,以及实验的应用和其他专业性角度对这一实验进行详细解读。

一、物理定律在进行液体压强的探究实验之前,我们需要熟悉一些液体压强的相关物理定律。

首先是帕斯卡定律,即液体在静力平衡状态下,任意一点的压强大小与方向都相同。

根据帕斯卡定律,液体内的压强仅与液体的密度和高度有关,并且对液体内部的任意一点来说,压强只与该点所处的深度有关,而与液体的形状和容积无关。

另外还有浸没定律,该定律指出,浮在液体表面上的物体所受到的浮力大小等于物体排挤出的液体的重量,与物体的形状和材质无关。

二、实验准备和过程1. 实验材料和仪器本实验所需的材料和仪器包括:一个透明的容器(如玻璃瓶)、不同密度的液体(如水、橙汁、食用油)、一个支撑物(如长木棍)、一些标尺或尺子等。

2. 实验步骤(1)将透明容器放置在水平的桌面上,使其底部与桌面保持平行。

(2)在容器中直立放置一根支撑物,这根支撑物的高度可以通过放置标尺或尺子并调整其位置来设定。

(3)将不同密度的液体分别倒入容器中,要保证液体的高度不同,并且顶部要与容器的边缘平行。

(4)通过观察液体的高度以及液体顶部与容器边缘的相对位置,来了解液体内部的压强分布情况。

(5)如果需要进一步研究液体压强与液体高度和密度的关系,可以调整容器的高度和液体的种类,重复以上步骤进行实验。

三、实验应用和其他专业性角度实验结果的应用与涉及液体压强的一些实际问题有关。

以下从应用和其他专业性角度对实验进行详细解读。

1. 水塔和水压控制液体压强的实验可以帮助我们理解水塔和水压控制的原理。

水塔中储存的水会通过重力作用施加压力,带动水流通过管道供应给上层建筑。

而水的流动速度和水压大小与液体高度和密度有关。

通过测量不同高度和密度的液体所产生的压强,可以帮助我们合理设计水塔的高度和管道的直径,以确保合适的水压供应。

专题4 压强的大小与比较

专题4 压强的大小与比较

专题4 压强的大小与比较
倒立放置时矿泉水瓶对桌面的压力:
返回目录
F′=G 水=m 水 g=0.28 kg×10 N/kg=2.8 N 倒立放置时矿泉水瓶对桌面的压强:
p′=SF瓶′盖 =8×21.08-N4 m2 =3 500 Pa 答:(1)倒立放置时瓶盖所受水的压力和压强分别为 1.04 N 和 1 300 Pa; (2)倒立放置时矿泉水瓶对桌面的压强为 3 500 Pa。
返回目录
专题4 压强的大小与比较
返回目录
9.解:(1)由题图知,倒立放置时,瓶内水深 13 cm ,瓶盖所受 水的压强:p=ρgh 倒立=1.0×103 kg/m3×10 N/kg×0.13 m=1 300 Pa
由 p=FS 可得,倒立放置时瓶盖所受水的压力: F=pS 瓶盖=1 300 Pa×8×10-4 m2=1.04 N (2)由题图知,正立放置时瓶内水深 10 cm,则瓶内水的体积: V=S 瓶底 h 正立=28 cm2×10 cm=280 cm3 瓶内水的质量:m 水=ρV=1.0 g/cm3×280 cm3=280 g=0.28 kg
专题4 压强的大小与比较
返回目录
专题4 压强的大小与比较
专题概述
专题精练
专题概述
返回目录
专题4 压强的大小与比较
1.本专题主要考查内容:对公式
p=FS
返回目录
和 p=ρgh 的理解和
运用,灵活运用公式及其变形式,比较固体压强、液体压强和大
气压强等相关物理量。
2.解题技巧:
(1)公式 p=FS 适用于计算所有物体的压强。
B.水桶内水的质量为25 kg
C.F的大小为154 N
D.F的大小为126 N

中考物理实验复习宝典实验14 探究液体内部的压强大小(考点解读)

中考物理实验复习宝典实验14  探究液体内部的压强大小(考点解读)

实验14 探究液体内部的压强大小【设计与进行实验】图探究液体内部压强与哪些因素有关的对比实验1.实验器材:压强计、刻度尺、水、硫酸铜溶液(盐水)等。

2. 实验前要检查装置的气密性:用手轻压金属盒上的橡皮膜,观察U型管中的液柱是否变化,若漏气,两液柱始终相平;3. 实验前U形管液面应调平:为了避免橡皮管中有气体导致液面不相平,应拆除橡皮管重新安装;4. 实验方法:(1)转换法:通过观察U形管两液柱的高度差来比较压强的大小;(2)控制变量法:①探究液体内部的压强与方向的关系:控制金属盒在同种液体的统一深度,改变金属盒的方向,观察U形管液面的高度差;②探究液体内部压强与深度的关系:控制金属盒在同种液体中,金属盒方向不变,改变金属盒的深度,观察U形管液面的高度差;③探究液体内部压强与液体密度的关系:控制金属盒在相同深度,金属盒方向不变,改变液体的种类,观察U形管液面的高度差;5. 实验过程中U形管两边液柱的高度几乎不变的原因:实验仪器气密性不好;6.分析数据和现象,总结结论【交流与反思】7.探究移动方向的判断:改变液体密度,为了使液体压强不变,若密度增大,探头应向上移动,若密度减小,探究应向下移动;8.液体密度的相关判断:①同一深度处,液面差大的液体密度大;②液面差相等时,深度深的液体密度小;9.液体压强的相关计算;实验结论:液体内部向各个方向都有压强,在液面同一深度处,向各个方向的压强都相等;深度越大,压强越大;液体内部的压强大小还跟液体的密度有关,在深度相同时,液体的密度越大,则压强越大。

10.注意:①液体压强大小与其他的因素,如重力、体积、容器的形状、底面积等无关。

②此实验只能定性的描述液体内部的压强特点。

【例1】如图所示为探究“影响液体内部压强的因素”的实验装置,四幅图中容器中的液面相平.甲乙丙丁(1)实验前,首先应检查U形管压强计的气密性是否良好.(2)在进行(1)中的操作时,发现无论重压还是轻压橡皮膜,U形管两侧的液柱的高度均变化很小,说明该U形管压强计气密性较差.(3)若在使用压强计前,发现U形管内的水面已有高度差,通过②方法可以进行调节.(填序号)①从U形管中向外倒出适量的水②拆除软管重新安装③向U形管中倒入适量的水(4)U形管压强计是通过U形管两侧液柱的高度差来显示橡皮膜所受压强大小的. (5)比较图甲和图乙,可以初步得出结论:在同种液体中,液体内部压强随深度的增大而增大.(6)保持金属盒在水中的深度不变,改变它的朝向,如图乙、丙所示,根据实验现象可以初步得出结论: 在同一液体的同一深度处,液体向各个方向的压强相等.(7)比较图乙和图丁,能初步得出液体内部压强与液体密度有关的结论吗? 不能,理由是: 没有控制金属盒在液体中的深度相同 .(8)该实验中用到的研究问题的科学方法有控制变量法和转换法.(9)若图乙中U形管左侧液柱的高度为4 cm,右侧液柱的高度为7 cm,则U形管底部受到的液体的压强为700 Pa.(ρ水=1.0×103 kg/m3,g=10 N/kg)【例2】在探究液体内部的压强与哪些因素有关的实验中,小宇的探究过程如下:(1)他分别在两端开口的玻璃管的一端扎上相同的橡皮薄膜(a、b、c粗细相同,d横截面细些),并在玻璃管内注入不同的液体,观察到橡皮薄膜分别向下凸起,实验现象如图戊所示:根据图甲cd 猜想A:液体内部的压强与液体的质量无关;根据图甲a、b猜想B:液体内部的压强可能与液体的深度有关;根据图甲b、c猜想C:液体内部的压强可能与液体的密度有关.(2)小宇用压强计继续探究,当压强计的金属盒在空气中时,U形管两边的液面应当相平,而小吴却观察到如图乙a所示的情景,出现这种情况的原因是:U形管左支管液面上方的气压小于(选填“大于”“小于”或“等于”)大气压:调节的方法是 B (填选项字母);A.将此时右边支管中高出的液体倒出B.取下软管重新安装(3)小宇再做如图乙b所示的操作,当用手指按压(不论轻压还是重压)橡皮薄膜时,发现U形管两边液柱的高度几乎不变化,出现这种情况的原因是:软管与U形管接触不严密或漏气.(4)压强计调节正常后,小宇将金属盒先后浸入到不同液体中进行实验,如图乙c所示,并记录部分实验数据在下表中:实验序号液体的密度ρ(×103kg/m3)U形管液柱高度差H(cm)橡皮薄膜的深度h(cm)10.8 H 5.02 8.0 10.0实验序号液体的密度ρ(×103kg/m3)U形管液柱高度差H(cm)橡皮薄膜的深度h(cm)31.0 10.0 10.04 20.0 20.05ρ12.0 10.06 24.0 20.0忽略橡皮薄膜的影响,分析实验数据得出:实验序号1中的H= 4 cm,实验序号5和6中的ρ= 1.2×103kg/m3,再继续分析实验序号2、3、5的数据初步得出猜想 C 是正确的.赵华小组在探究液体内部压强的特点时,遇到如下问题:(1)本实验探究中,主要用到的物理方法有转换法和控制变量法法.(2)如图甲,将压强计的金属盒放在水中,若要使压强计U形管两边液面的高度差减小,可行的办法是 B (填选项字母).A.将压强计的金属盒向下移动一段距离B.将压强计金属盒向上移动一段距离C.将压强计金属盒在原位置转动180°D.将压强计金属盒放在同深度的食盐水中(3)该组同学用a、b两种液体进行了多次实验,根据实验数据画出了液体压强随深度变化的图像,如图乙所示,则a、b两种液体的密度关系是ρa>ρb(选填“>”“=”或“<”).。

实验11 探究液体压强大小的影响因素实验(解析版)

实验11 探究液体压强大小的影响因素实验(解析版)

实验十一、探究液体压强大小的影响因素【实验目的】探究液体内部压强的影响因素有哪些。

【实验器材】压强计;相同的大烧杯2个;食盐;水;刻度尺。

【实验设计】提出问题: 液体内部压强的大小可能与哪些因素有关?猜想或假设:可能与液体深度,液体的密度,液体重力,方向等有关。

【实验方法】控制变量法和转换法【实验步骤】①将水倒入烧杯,如图a,控制探头在水下深度不变,调节旋钮改变探头的朝向,观察并测出U形管中液面的高度差,将数据填入下表。

②如图b,控制橡皮膜的朝向不变,改变探头浸入水中的深度,观察并测出U形管中液面的高度差,将数据填入下表。

③如图c,控制探头在水和盐水下的深度相同,观察并测出U形管中液面的高度差,将数据填入下表。

【实验记录】:实验内容液体物质探头浸入水下深度橡皮膜朝向U形管两端液面高度差(cm)a 水相同(5cm)向下相同(5cm)向前相同(5cm)向上b 水不同(3cm) 向下不同(5cm)不同(7cm)向下向下c水相同(5cm)向下盐水相同(5cm)向下【实验结论】:实验剖析液体内部向各个方向都有压强,压强随液体深度的增加而增加;同种液体在同深度的各处,各个方向的压强大小相等;不同的液体,在同一深度产生的压强大小与液体的密度有关,密度越大,液体的压强越大。

【考点方向】1、由图1、图2可以知道液体压强产生的原因是:液体受到重力作用;液体有流动性。

(因此在太空失重情况下液体不会产生压强)2、探究液体压强与哪些因素有关实验中,采用了哪些方法?答:控制变量法、转换法。

3、通过观察什么开知道液体压强大小的?答“U型管内页面的高度差,高度差越大说明液体产生的压强越大”。

4、实验前的两个操作:(1)先检查U型管左右两边的液面是否相平。

(2)检查装置的气密性:(用手压金属盒上的橡皮膜,观察U型管中液面是否发生变化,若变化明显,则气密性良好)。

5、实验时发现U型管内高度差没变化原因是什么?怎么解决?答:气密性不好,拆下来重新安装。

液体的压强

液体的压强

图22
四、如何计算液体内部的压强
• 思路:
设想在液面下有一深度为h、截面积 为s的液柱。计算这段液柱产生的压 强,就能得到液体内部深度为h处的 压强公式。
h
S
h
公式推导步骤: 1:这个液柱的体积: V=sh 2 这个液柱的质量: m=ρv=ρSh 3 这个 液柱有多重?对平 面的压力是: F=G=mg=ρgsh 4平面受到的压强 F = ρgh P= - S
在图1中,能正确描述液体压强与深度关系的是
长江三峡大坝上下游水位差最高可达113 m,上游的船要 在船闸中经过5个闸室使船体逐渐降低,每个闸室水位变化 二十多米,因而三峡船闸的闸门非常大。其首级人字闸门 每扇高39.5 m,宽20.2 m。倘若门外的水位高30 m,则这 扇闸门所受水的最大压强是 Pa,已知闸门 所受水的平均压强是最大压强的一半, 则这扇闸门所受水的压力是 N。(g取10 N/kg
(1)实验所得的数据有一组是错误的,其实验序号为________________。; (2)综合分析上列实验数据,归纳可以得出液体压强的规律: ____________________,该结论是通过分析比较实验序号____的数据得出 来的.
例题:如图所示,放在水平桌面上容器 内装有质量为1 kg的水 ,若水深h=18 cm 求:(1)离容器底8 cm处有一个A点, A点处受到水的压强和方向 (2)水对容器底的压强
A、煤油 C、硫酸 B、水 D、酒精
如图所示,底面积相同的甲、乙两容器,装有 质量相同的不同液体,则它们对容器底部压强的大小关系 正确的是 A.P甲>P乙 B.P甲<P乙 C.P甲=P乙 D.条件不足,无法判断


如图所示,底面积不同的圆柱形容器A和B分别盛有甲、乙 两种液体,两液面相平且甲的质量大于乙的质量。若在 两容器中分别加入原有液体后,液面仍保持相平.则此时 液体对各自容器底部的压强PA、PB的压力FA、FB的关系是 A.PA<PB FA=FB B.PA<PB FA>FB C.PA>PB FA=FB D.PA>PB FA>FB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样比较液体压强的大小
新城初级中学 刘东
水平桌面上的容器中装有液体,液体对容器底部的压强为p g h =ρ,
对容器底部的压力为F p S =;容器对桌面的压力为F G =总
,容器对桌面的压强为p F
S
=。

例1. 三个形状不同的容器A 、B 、C 的底面积都等于S ,分别装有相同深度h 的同种液体,置于水平桌面上,如图1。

试比较: (1)各容器底面所受液体压强的大小; (2)液体对各容器底面的压力的大小; (3)如果各容器的重力不计,三个容器对水平桌面的压强的大小。

图1 分析:(1)三个容器中装的是同种液体,容器中液体的深度也相等,根据液体压强公式p g h =ρ知,三个容器底面受到的液体压强相等,即 p p p g h A B C
===ρ
(2)根据压强公式p F
S
=,有F p S =
因为三个容器的底面积相等,所受液体压强也相等,所以三个容器的底面所受到的液体压力相等,即 F F F p Sg h S A B C
====ρ
(3)若容器的重力不计,则容器对水平桌面的压力等于容器内液体的重力。

由Gm g g V
==ρ,再根据压强公式p F
S
=,得: p F S G S gV
S
=
==
ρ 由图可知,三个容器中液体体积V V V B A C >> 所以容器对水平桌面的压强p p p B A C
>> 从本题可发现,液体对容器底部的压力 F p S g h S ==ρ 容器中液体的重力 Gm g V g ==ρ 若容器是柱形,则V S h =,所以F =G 若容器口大于底面,则S h V
<,所以F <G
若容器口小于底面,则Sh >V ,所以F >G
例2. 有三根两端开口的玻璃管,形状不同,如图2,在它们下端挡一薄塑料片后都插入水中。

当分别注入100克水时,薄塑料片都恰好下落。

如果不注入水而是分别轻轻地放入一个100克的砝码,则薄塑料片不会脱落的是( )
图2
A. 甲管
B. 乙管
C. 丙管
D. 乙管和丙管 分析:对于甲容器,100克水对塑料片的压力等于水的重力,也等于100克砝码的重力,所以甲的塑料片会脱落。

对于乙容器,100克水对塑料片的压力小于水的重力,即能使塑料片脱落的力小于100克水的重力。

因此,放上100克砝码时,乙的塑料片会脱落。

对于丙容器,100克水对塑料片的压力大于水的重力,即能使塑料片脱落的力大于100克水的重力。

因此,放上100克砝码时,丙的塑料片不会脱落。

选C 。

例3. 如图3所示是装满某种液体的密封容器,容器底受到液体的压强为p 1,受到液体的压力为F 1,容器对桌面的压强为p 2,压力为F 2。

若把它倒置过来后,容器底受到液体的压强为p 3,受到液体的压力为F 3,容器对桌面的压强为p 4,压力为F 4,则p 1_______p 3,F 1_______F 3,p 2_______p 4,F 2_______F 4。

图3
分析:根据p g h =ρ,因ρ,h 相等,所以p p 13= 根据F p S =,因p 相等,S S 13>,所以F F 13>
根据F G =总,因容器的重力与液体的重力之和相等,所以F F 24=
根据p F
S
=
,因S S F F 1324>=,,所以p p 24<
例4. 若例3中液体没有装满容器,如图4,则p 1______p 3,F 1______F 3,p 2______p 4,F 2_______F 4。

图4
分析:根据p g h =ρ,因ρ相等,h h 13<,所以p p 13< 根据例1的结论,因F G F G 13><
,,所以F F 13> 根据F G =总
,因容器的重力与液体的重力之和相等,所以F F 24= 根据p F
S
=
,因S S F F 1324>=,,所以p p 24<
这里若用F p S =来比较F 1与F 3的大小,因p p 13<,而S S 13>,则不好比较。

例5. 在图5中,甲、乙两容器的底面积相等,高度相等,且都装满密度相等的盐水,则甲、乙容器底部所受到的液体压强p p 甲乙,所受到的液体压力F F 甲乙。

图5
分析:根据p g h =ρ,因ρ,h 相等,所以p p 甲乙=
根据F p S =,因ρ,S 相等,所以F F 甲乙
=
例6. 两个完全相同的容器中分别盛有质量相等的水和酒精,如图6,下列说法正确的是( )
图6
A. 两容器底受到液体的压力相等
B. 液面下深度相同的两处a ,b 所受液体的压强相等
C. 盛水容器底部受到液体的压强较大
D. 盛水容器底部受到液体的压强较小
分析:容器是柱形,两容器底受到的液体压力相等,F G m g
==,所以A 正确。

根据p g h =ρ,因ρρ水酒精
,>h 相等,所以p p a b >,B 错。

从A 可知,F 相等,而S 也相等,而p F
S
=
,所以p 相等,C 、D 错。

例7. 一柱形容器装满水,把一木块轻轻放入水中,则木块放入前后,水对容器底的压强___________,容器对桌面的压强___________。

若容器没有装满水,木块放入后,水没有溢出,则木块放入前后,水对容器底的压强___________,容器对桌面的压强___________。

(选填:“变大”、“变小”或“不变”) 分析:若容器装满水,放入木块前后,h 不变,所以水对容器底的压强不变。

放入木块前,F G G 前水杯=+ 放入木块后,FG G G G 后水杯木排
=++-
因为木块漂浮,所以
G F G 木浮排==,即F F 前后= 而S 不变,由p F
S
=
知,放入木块前后容器对桌面的压强不变。

若容器没有装满水,放入木块后,h 变大,所以水对容器底的压强变大。

放入木块前, F G G 前水杯
=+ 放入木块后,F G G G 后水杯木=++,即F F 前后<,而S 不变 所以放入木块后容器对桌面的压强变大。

思考:上题中,如果放入水中的是铁块,情况又如何?
练习:
1. 柱形容器中的热水冷却后,容器底部所受水的压强将怎样变化?(设容器的容积不随温度变化,且不考虑蒸发的影响)
2. 有三个圆柱形的容器,它们的底面积有如下的关系:S S S A B C ==2。

(1)把水倒入这三个容器,使其中水的高度相同,则三个容器中的水重G G A B 、、G C
的关系为__________;三个容器底部受到水的压强p p p A B C 、、的关系为__________;三个容器底部受到的水的压力F F F A B C 、、的关系为___________。

(2)如果在三个容器中倒入相等质量的水,若水不溢出容器,三个容器底部受到水的压强p p p A B C 、、的关系为___________。

(3)若在A 中装煤油,B 中装水,C 中装水银,三种液体高度仍相等,这三个容器底部受到的液体的压强p p p A B C
、、的大小关系为___________。

3. 如图7所示,两支相同的试管中装有质量相等的不同液体,则液体对容器底部的压强
p p 甲乙。

图7
答案: 1. 不变
2. (1)G G G p p p F F F AB C AB C A B C
======22;; (2)p p p A B C ==1
2
(3)p p p A B C
<< 3. p p 甲乙
>。

相关文档
最新文档